ΒΓ διπλῆ , ἡ δὲ ΑΕ τῆς ΕΒ διπλῆ , λοιπὴ ἄρα ἡ ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ
ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν ἴση .
6939847 ἰσημερινη
ἐστιν , οἵων ὁ γνώμων ξ , τοιούτων ἡ μὲν ἰσημερινὴ σκιὰ κϚʹ ∠ , ἡ δὲ χειμερινὴ ξεʹ ∠
ἑξηκοστὰ Ϛʹ , ἡ δὲ θερινὴ εʹ , ἡ δὲ ἰσημερινὴ ηʹ ἐξ ἑκατέρου μέρους τοῦ ἰσημερινοῦ ἑξηκοστὰ δʹ ,
6918719 ἡμισεια
ὑπὸ ΑΕΒ ὀρθή ἐστιν . καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς , ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ :
ΑΒΓ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΔ ἡμίσειά ἐστιν ὀρθῆς . ὅλη ἄρα ἡ ὑπὸ ΔΑΓ γωνία
6858174 ΔΚ
τὴν ΜΖ : καὶ περὶ ὀρθὰς γωνίας τὰς ὑπὸ τῶν ΔΚ , ΚΒ , ΜΝ , ΜΖ αἱ πλευραὶ ἀνάλογόν
ΚΜΔ γωνίᾳ τῇ ὑπὸ ΒΜΔ ἴση : βάσις ἄρα ἡ ΔΚ βάσει τῇ ΔΒ ἴση ἐστίν . λέγω [ δή
6826976 ρμδ
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ
6803195 ΘΡ
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ ,
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
6783324 ριδ
ἐστιν ρμδ κϚ καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ριδ ιϚ , ἡ δὲ τῆς ΕΚ μοιρῶν λε λδ
Πρὸϲ τοὺϲ διὰ ξηρότητα ἐν ταῖϲ τῶν παροξυϲμῶν ἀρχαῖϲ ϲυγκοπτομένουϲ ριδ Πρὸϲ τοὺϲ διὰ ἔμφραξιν κυρίου μορίου λειποθυμοῦνταϲ ριε Πρὸϲ
6750707 ριϚ
ἐκκειμένην μετοπωρινὴν ἰσημερίαν ἀποχῆς ἀπὸ τοῦ ἀπογείου τοῦ ἐκκέντρου μοίραις ριϚ μ προσθῶμεν ἑνὸς κύκλου μοίρας τξ καὶ ἀπὸ τῶν
. . . . . . . . . . ριϚ ιϚ ∠ ʹδ . Τῶν δὲ ἀνδρῶν Πειρατῶν μεσόγειοι
6725056 ριη
τῶν αὑτοῦ μηνῶν ιθ ἑαυτῷ ἐπιμερίζει ἡμέρας πγ , Σελήνῃ ριη , Κρόνῳ ρλ , Διὶ νβ , Ἄρει ξδ
. . . . . . . . . . ριη ∠ ʹ λη ∠ ʹδ Βαρζαῦρα . . .
6691373 ξγ
ξε μη . καὶ λοιπὴ ἡ ΕΗ περιφέρεια μοιρῶν ἐστιν ξγ μθ . καὶ τὸ ἀπ ' αὐτῆς μοιρῶν ͵δοβ
. . . . . . . . . . ξγ ∠ ʹγ λϚ ∠ ʹδ ἀπὸ δὲ μεσημβρίας αὐτῷ
6687681 ΠΔ
ἄρα ἔγγιόν ἐστι τῆς συναφῆς τοῦ θερινοῦ τροπικοῦ ἤπερ ἡ ΠΔ . ὡσαύτως δὲ καὶ ἐν τῷ ἑτέρῳ ἡμικυκλίῳ αἱ
Π τὴν ΠΓ διελθὸν ἐπὶ τὸ Γ παραγίγνεται , ἡ ΠΔ ἐξαλλάττει τὸ φανερὸν ἡμισφαίριον : ἐν πλείονι ἄρα χρόνῳ
6675121 ἐλασσων
Μο λ . ἐπὶ τὰς ὑποστάσεις . ἔσται ὁ μὲν ἐλάσσων Μο λ , ὁ δὲ μείζων Μο ο ,
τὸ φανερὸν ἡμισφαίριον . ἀλλ ' ἔστω ἡ ΕΖ περιφέρεια ἐλάσσων τεταρτημορίου : καὶ ἡ ΕΚ ἄρα ἐλάσσων ἐστὶ τεταρτημορίου
6670738 ρμη
∠ ʹ τὸ πέμπτον , ὃ καλεῖται Ἀντιβολή . . ρμη ∠ ʹ ιη δʹ : Ὄρη δὲ ὀνομάζεται ἐν
ὑπὸ ΑΖΒ ὅλη τὸ ὁμαλὸν μῆκος περιέχουσα τῶν μὲν αὐτῶν ρμη λη , οἵων δ ' αἱ δ ὀρθαὶ τξ
6662615 σλδ
ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά ἐστι τῶν ἀπὸ τῶν ΑΓ , ΓΔ
σὺν τῇ προσκειμένῃ ὡς μιᾶς , ἅ εἰσιν ἡμίση τῶν σλδ . Τὰ ἀπὸ τῶν ΑΔ καὶ ΔΒ τετράγωνα διπλάσιά
6659450 χειμερινη
ι , ἡ δὲ ἰσημερινὴ λθʹ ∠ , ἡ δὲ χειμερινὴ Ϙγ ιβʹ . ιαʹ . ἑνδέκατός ἐστι παράλληλος ,
ἡ δὲ ἰσημερινὴ ξγʹ ∠ γʹ ιβʹ , ἡ δὲ χειμερινὴ ροα Ϛʹ . ιζʹ . ἑπτακαιδέκατός ἐστιν παράλληλος ,
6646156 μγ
ἔσται μοιρῶν η λα , ἡ δὲ ΕΜ ὅλη ιδ μγ . ὥστε καὶ ἡ ἀπὸ τοῦ βορείου πέρατος τοῦ
. . . . . . . . . ξγ μγ Γήλακα ἢ Σήλκα . . . . . .
6645785 λϚ
δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς
6619569 ρπζ
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ
6617750 μβ
λα γοʹ Κινύφου ποταμοῦ ἐκβολαί . . . . . μβ δʹ λα ∠ ʹ Βαραθία . . . .
, Ἑρμῇ ε , Σελήνῃ ζ : Ἄρης ἀπὸ τῶν μβ ἑαυτῷ πρῶτον ἡμέρας ε , Κρόνῳ ι , Διὶ
6611997 ΖΝ
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου ,
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ
6608084 ρνγ
. ἐπὶ τὰς ὑποστάσεις : ἔσται ὁ μὲν τρίγωνος Μο ρνγ , ὁ δὲ τετράγωνος Μο ͵Ϛυ , ὁ δὲ
, οἵων δ ' αἱ β ὀρθαὶ τξ , τοιούτων ρνγ λ : ὥστε καὶ λοιπὴ μὲν ἡ ὑπὸ ΖΔΚ
6584906 ΔΛ
ΑΓ , ΓΒ μέσα ἐστίν . μέσον ἄρα ἐστὶ τὸ ΔΛ . καὶ παρὰ ῥητὴν τὴν ΔΕ παραβέβληται : ῥητὴ
ἡ μὲν ΑΚ τῇ ΛΒ , ἡ δὲ ΓΚ τῇ ΔΛ , δύο δὴ αἱ ΑΚ , ΚΓ δύο ταῖς
6584878 Ϙα
λάθος ἔσται μου τῷ δρασμῷ Ϙ εἰ ἀπαλλαγήσομαι τῆς γυναικός Ϙα εἰ πεφαρμάκευμαι Ϙβ εἰ λήψομαι λεγάτον Ϙγ εἰ ὃ
κ κη γ ια ιε μ μζ θ κζ μ Ϙα β θ μ λγ δ ιβ ιη ο νδ
6572457 ὑποτεινουσα
ἐκκέντρου ὑπόκειται ξ . καὶ οἵων ἄρα ἐστὶν ἡ ΓΖ ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΖΛ ἔσται πδ
ΒΝ εὐθεῖα τοιούτων ια μδ , οἵων ἐστὶν ἡ ΕΒ ὑποτείνουσα ρκ . καὶ οἵων ἐστὶν ἄρα ἡ μὲν ΕΒ
6563164 ρκ
εὐθεῖα τοιούτων κε ζ , οἵων ἐστὶν ἡ ΒΕ τείνουσα ρκ . καὶ οἵων ἐστὶν ἄρα ἡ μὲν ΒΕ εὐθεῖα
διὰ τοῦτο τὴν μὲν ἐπὶ τῆς ΒΗ περιφέρειαν τοιούτων γίνεσθαι ρκ , οἵων ἐστὶν ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος
6559930 ρμα
τῶν ἑαυτοῦ μηνῶν κ ἑαυτῷ ἐπιμερίζει ἡμέρας ϘϚ , Κρόνῳ ρμα , Διὶ νϚ , Ἄρει ο , Ἡλίῳ Ϙ
ϘϚ , Ἡλίῳ Ϙ , Σελήνῃ ριζ , Κρόνῳ ἡμέρας ρμα , Διὶ νϚ , Ἄρει ο , Ἀφροδίτῃ λϚ
6556769 πεμπτων
ἐπιδίτριτος , καὶ αὕτη πρὸς τὸ τμῆμα τὸ πρὸς αὐτῇ πέμπτων θ ὂν ὡσαύτως ἐπιδίτριτος , πρὸς μέντοι τὴν ἑτέραν
ἐλάσσονος . Ἔστω γὰρ ἰσοσκελὲς τρίγωνον τὸ ΒΔΕ ἔχον τεσσάρων πέμπτων τὴν πρὸς τῷ Ε περιειλημμένην κύκλῳ οὗ κέντρον τὸ
6554175 ΔΒΖ
[ κἂν ἡμίσειαν ὀρθῆς ] , ἄλογος ἔσται ἡ ὑπὸ ΔΒΖ . νβʹ . Τῆς ὑπὸ Ἀρχιμήδους ἐν τῷ περὶ
ἡ ΔΖ τῇ ΓΑ ἴση : γωνία ἄρα ἡ ὑπὸ ΔΒΖ γωνίᾳ τῇ ὑπὸ ΓΒΑ ἴση ἐστίν . τὰ δὲ
6553235 ΜΒ
, τοιούτων ἡ μὲν ΗΜ δ λγ , ἡ δὲ ΜΒ β λζ λ . πάλιν , ἐπεὶ ἡ ὑπὸ
πενταγώνου ἐστὶν ἡ τοῦ εἰκοσαέδρου : εἰκοσαέδρου ἄρα ἐστὶν ἡ ΜΒ . Καὶ ἐπεὶ ἡ ΖΒ κύβου ἐστὶ πλευρά ,
6544618 ρξθ
ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα
λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ
6544174 ΜΑ
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ
6541218 συλλογιστικη
ἑτέρα ἀποφατικὴ καθόλου , ὁποτέρα ἂν αὐτῶν ᾖ ὑπάρχουσα , συλλογιστικὴ ἔσται συζυγία : τῆς γὰρ καταφατικῆς ἐπὶ μέρους ,
μέρους καταφατικὴ ἐνδεχομένη ἡ δὲ ἐλάττων καθόλου καταφατικὴ ἐνδεχομένη , συλλογιστικὴ καὶ οὕτως ἡ συζυγία : ἀντιστραφείσης γὰρ τῆς μείζονος
6536766 Ϙβ
ἀνασκευάσαι τὰ εἰρημένα . τὰ πάντα δὲ ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ αὐτοῦ δράματα ξζ καὶ γ πρὸς
τρίτος ἐγένετο . τὰ πάντα δ ' ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ οη : τούτων νοθεύεται τρία ,
6535502 ρν
καὶ ἡ ὑπὸ ΒΕΓ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων ρν κϚ , οἵων εἰσὶν αἱ δύο ὀρθαὶ τξ .
μεμφόμενος τῆς πόλεως κάθαρσιν [ . ] . οὗτος ἔζησεν ρν ἔτη , τὰ δὲ Ϙ ἐκαθεύδησεν . καὶ παροιμία
6527151 ξζ
ἀπόγειον τῆς ἐκκεντρότητος ἀπὸ τοῦ περιγείου τοῦ ἐπικύκλου διάστασις μοιρῶν ξζ ιε ἔγγιστα , ἡ δὲ κατὰ τὸ περίγειον μοιρῶν
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων ξζ δ ἔγγιστα , οἵων ἐστὶν ὁ περὶ τὸ ΒΔΞ
6527020 ΘΣ
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ .
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ
6513093 συναμφοτερος
ὡς συναμφότερος ὁ Α Β πρὸς τὸν Β , οὕτως συναμφότερος ὁ Β Γ πρὸς τὸν Γ , καὶ πάντες
συνθέντι ὡς συναμφότερος ὁ ΑΒ πρὸς τὸν Β , οὕτως συναμφότερος ὁ ΒΓ πρὸς τὸν Γ : καὶ πάντες ἄρα
6509010 λειπουσα
ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν
τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων
6502577 Κοινη
αʹ . Προφυλακτικὰ πάντων κοινῇ τῶν ἰοβόλων . βʹ . Κοινὴ θεραπεία πάντων τῶν ὑπό τινοϲ ἰοβόλου πληγέντων ἢ δηχθέντων
καὶ τὸ στερεὸν τὰ ͵αφλϚ τῶν ρϘβ . τρία τέταρτα Κοινὴ προσκείσθω ἡ ὑπὸ ΔΥΟ , καὶ γίνονται αἱ τρεῖς
6502451 ΥΗ
τοῦ δὲ Φ τῆς φαινομένης αὐτῶν ἐποχῆς . ἡ δὲ ΥΗ ἔσται # δ τῆς ἡλίου κινήσεως ἀπὸ τοῦ Υ
ΡΥ τῶν αὐτῶν # μβ . καὶ λοιπὴ ἡ ὑπὸ ΥΗ # δ : ἐν ᾧ γὰρ ἡ σελήνη τὴν
6498700 ὀρθη
[ ] ὀρθὴ ἔσται . Κείσθω πρὸς τῷ Δ γωνία ὀρθὴ [ ἡ ΑΔΕ ] : διάμετρος ἄρα ἡ ΑΕ
καὶ θεωρίαν δοίημεν τῷ προβλήματι τούτῳ , ἔοικεν ἡ μὲν ὀρθὴ γωνία σύμβολον εἶναι ζωῆς κατ ' ἀρετὴν ἀνιούσης καὶ
6493259 ὑπετεθη
ἐπειδὴ ἐν τῷ λόγῳ τῶν καλῶν τι ἡμῖν ἡ σωφροσύνη ὑπετέθη , καλὰ δὲ οὐχ ἧττον τὰ ταχέα τῶν ἡσυχίων
τε μετρηθῆναι . ὁ μείζων τὸν ἐλάσσονα . , ] ὑπετέθη γὰρ ἐξ ἀρχῆς ἐλάττων ὁ Δ . καὶ εἰλήφθωσαν
6481938 Ἐπιμελεια
αὐτὸ εὗρε δοκιμώτερον πάντων , ὥϲτε μὴ καταφρονήϲῃϲ . ] Ἐπιμέλεια τῶν ὑπερκαθαιρομένων Ὀριβαϲίου . Ἐπὶ τῶν ὑπερκαθαιρομένων ϲυϲτέλλειν χρὴ
Περὶ ϲκληροφθαλμίαϲ Δημοϲθένουϲ οζ Περὶ ξηροφθαλμίαϲ οη Περὶ ψωροφθαλμίαϲ οθ Ἐπιμέλεια ξηροφθαλμίαϲ καὶ ϲκληροφθαλμίαϲ καὶ ψωροφθαλμίαϲ π Πρὸϲ μαδάρωϲιν βλεφάρων
6479586 ρϚ
. . . . . . . . . . ρϚ νβ ∠ ʹ ἀπὸ δὲ τούτου ῥεῖ ὅ τε
ἐπὶ τὴν δευτέραν ἔτη μὲν Αἰγυπτιακὰ περιέχει γ καὶ ἡμέρας ρϚ καὶ ὥρας κγ , μοίρας δὲ τῆς φαινομένης τοῦ
6475876 ΘΥ
τὸ ΛΥ στερεόν , τῆς δὲ ΘΖ βάσεως καὶ τοῦ ΘΥ στερεοῦ ἥ τε ΝΖ βάσις καὶ τὸ ΝΥ στερεόν
ΖΩΑ . ὁμοίως δὴ δειχθήσεται μείζων ἢ ὁμοία ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ ,
6474347 ΞΝ
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ
6470945 ΔΒΕ
ὡς ἄρα τὸ ΔΒΕ τρίγωνον πρὸς τὸ ΗΘΙ , τὸ ΔΒΕ πρὸς τὸ ΓΒΘ . ἴσον ἄρα ἐστὶ τὸ ΗΘΙ
ΒΕ , ΔΓ , ΖΗ : ἴσον ἄρα ἐστὶν τὸ ΔΒΕ τρίγωνον τῷ ΔΓΕ τριγώνῳ . κοινὸν προσκείσθω τὸ ΔΑΕ
6462911 ΛΒ
ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ
μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι
6460414 ΖΛ
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν
6448871 ΛΡ
ἐν τριγώνῳ οὖν τῷ ΚΛΡ μείζων ἐστὶν ἡ ΛΚ τῆς ΛΡ : αὕτη δὲ τῆς ΛΠ μείζων . ὥστε καὶ
ἀρχόμεναι ἀπὸ μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων
6435504 οβ
ἐκ τῆς βας διαιρέσεως Μο κη , ὁ δὲ μείζων οβ . καὶ δῆλον ὡς ποιοῦσι τὸ πρόβλημα . ιδ
. . . . . . . . . . οβ ∠ ʹ λβ ∠ ʹ Γαύαρα . . .
6431200 ΖΑ
τὸ ΑΔΖ τρίγωνον τῷ εἴδει : λόγος ἄρα ἐστὶ τῆς ΖΑ πρὸς τὴν ΑΔ δοθείς : ἡ δὲ ΑΖ συναμφότερός
διὰ τὸ ἴσα εἶναι τά τε ἀπὸ τῶν ΒΖ , ΖΑ καὶ τὰ ἀπὸ τῶν ΒΚ , ΚΑ τῷ ἀπὸ
6428685 ριζ
. . . . . ριζ ιδ Ψευδοστόμου ποταμοῦ ἐκβολαί ριζ γʹ ιδ Ποδοπέρουρα . . . . . .
. . . . . . . . . . ριζ κγ ∠ ʹ Πίσκα . . . . .
6427453 Ἱερα
σώματα τῶν ἀποθανόντων ταφῆς ἀξιοῦντες . ἡ δ ' οὖν Ἱερὰ τῶν μὲν ἄλλων καρπῶν ἄμοιρός ἐστι , φέρει δὲ
. . . . . . . πη κγ γʹ Ἱερὰ Ἡλίου ἄκρα . . . . . . .
6423090 ΟΛ
ἄρα ἐστὶν ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν
ἡ μὲν ΠΟ τῆς ΟΚ , ἡ δὲ ΞΟ τῆς ΟΛ , ἴση ἐστὶ τῇ ΚΟ ἡ ΟΛ . διὰ
6420528 ξη
. . . . . . . . . . ξη λϚ ∠ ʹ Πυράμου ποταμοῦ ἐκβολαί . . ξη
. . . . . . . . . . ξη λα δʹ καὶ μέρει τῆς Πετραίας Ἀραβίας παρὰ τὴν
6416957 ρλη
. . . . . . . . . . ρλη ιζ Βαρδαμάνα . . . . . . .
ἐν πυρετοῖϲ ἐκ τῶν Φιλαγρίου ρλζ Ἡ διὰ κωδυῶν ἀντίδοτοϲ ρλη Ὀμφακομέλιτοϲ ϲκευαϲία ρλθ Ῥοδομέλιτοϲ ϲκευαϲία ρμ Ὑδροροϲάτου ϲκευαϲία ρμα
6415045 δοθεισα
. ἔστιν δὲ καὶ ἡ τὰ δοθέντα ἐπιζευγνύουσα ἡ ΑΓ δοθεῖσα . ἐκ τριῶν οὖν τῶν ΑΒ ΑΓ ΓΒ τρίγωνον
τὸ Α . ἔστιν δὲ καὶ τὸ Ε δοθέν : δοθεῖσα ἄρα ἐστὶν ἑκατέρα τῶν ΔΑ ΑΕ τῇ θέσει .
6414032 νζ
. . . . . . . . . Ϙθ νζ ∠ ʹ ἀφ ' ὧν ῥέουσιν ὅ τε Ῥυμμὸς
ιθ ὀκταετηρίσιν , ὅπερ ἐστὶν ἔτη ρνβ , ἐμβόλιμοι ἄγονται νζ : ἐν δὲ τῷ αὐτῷ χρόνῳ κατὰ τὴν ἐννεακαιδεκαετηρίδα
6413301 ΚΖ
δὴ ὑποκείσθω τὸ αὐτὸ σχῆμα , καὶ ἔστω τετραγώνου ἡ ΚΖ , καὶ ἴσαι ἀπειλήφθωσαν ἐπὶ τὰ Ζ Δ μέρη
ΔΖ πρὸς τὴν ΘΖ , οὕτως ἡ ΓΚ πρὸς τὴν ΚΖ . Ὡς γὰρ αἱ γωνίαι , δι ' ὧν
6410251 ρνβ
λ λγ μδ κζ # # , Ἄρεως δὲ μοίρας ρνβ λγ ε ιη με να # , Ἀφροδίτης δὲ
δ , ἡ δ ' ἐπὶ τῆς ΘΓ ὁμοίως μοιρῶν ρνβ κζ νϚ . ταύταις δ ' ἀκολούθως καὶ ἡ
6408541 ρξα
. καὶ λοιπὴ ἄρα ἡ μὲν ΓΕ περιφέρεια μοιρῶν ἐστιν ρξα ζ , ἡ δ ' ὑπ ' αὐτὴν εὐθεῖα
. . . . . . . . . . ρξα νότ . α γʹ . Νῆσοι δὲ φέρονται κατὰ
6404788 πθ
πζ εἰ πρεσβεύσω τὰ πρὸς θεόν πη εἰ βουλευτὴς ἔσομαι πθ εἰ λανθάνει μου ὁ δρασμός Ϙ εἰ ἀπαλλάσσομαι τῆς
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων πθ ιϚ , οἵων ἐστὶν ὁ περὶ τὸ ΓΖΛ ὀρθογώνιον
6392022 πβ
εἰ ζῇ ὁ ἀπόδημος πα εἰ κερδαίνω ἀπὸ τοῦ πράγματος πβ εἰ προγράφεται τὰ ἐμά πγ εἰ εὑρίσκω πωλῆσαι πδ
π = λ ἐρώτησον Νεβαῦ πα = ξδ ἐρώτησον Ἰεσσαί πβ = νη ἐρώτησον Ἰεφθάε πγ = πε ἐρώτησον Σιγώρ
6383696 ΑΝ
τῇ ΑΕ : μείζων ἄρα ἐστὶν καὶ ἡ ΑΕ τῆς ΑΝ : ὅπερ ἀδύνατον . οὐκ ἄρα τὸ κέντρον τῆς
ἐστίν . ὀρθὴ ἄρα ἡ ὑπὸ ΒΝΑ γωνία : ἡ ΑΝ ἄρα ὕψος ἐστὶ τοῦ διὰ τοῦ ἄξονος τριγώνου ,
6383472 μεση
τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ
Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν
6379117 νβ
ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν ΔΖ
ἰσημερινοὶ χρόνοι , ἐπὶ δὲ τῆς κατὰ τὸ μεσουράνημα νζ νβ , ἐπὶ δὲ τῆς κατὰ τὸ δῦνον ο κθ
6377182 ΓΚ
. ἐκβεβλήσθω γὰρ ἐπ ' εὐθείας τῆς ΓΘ εὐθεῖα ἡ ΓΚ , καὶ πεποιήσθω ὡς ἡ ΓΔ πρὸς τὴν ΕΖ
, ὧν ὁ ΔΓ ἐστὶ δυάς , λοιπὸς ἄρα ὁ ΓΚ μείζων δυάδος τοῦ ΓΔ : ἡ ἄρα διχοτομία τοῦ
6377001 ὁλη
πανταχοῦ τοῦ ἀέρος οὐ μία μεμερισμένη , ἀλλὰ μία πανταχοῦ ὅλη : καὶ τὸ τῆς ὄψεως δέ , εἰ παθὼν
περιφέρεια τῇ ΔΟ περιφερείᾳ , κοινὴ προσκείσθω ἡ ΑΟ : ὅλη ἄρα ἡ ΚΟ ἴση ἐστὶ τῇ ΑΔ : ὥστε
6370803 Κυρνος
Βοῦσος , Σαρδώ τ ' εὐρυτάτη καὶ ἐπήρατος εἰν ἁλὶ Κύρνος , ἥν ῥά τε Κορσίδα φῶτες ἐπιχθόνιοι καλέουσιν :
ἐπὶ τῶν χωρῶν τῶν λῃστὰς ἐχουσῶν : τοιαύτη γὰρ ἡ Κύρνος πρώην . Κυνόσαργες : ὁ τόπος ἐν ᾧ οἱ
6370614 ρνα
ρμϚ Ἕρπυλλοϲ ρμζ Ἐρύϲιμον ρμη Ἐρυθρόδανον ρμθ Εὔζωμον ρν Εὐπατόριον ρνα Εὐφόρβιον ρνβ Ζειά ρνγ Ζιγγίβερι ρνδ Ζύθοϲ ρνε Ζύμη
λείπουσα εἰς ρπ μοίρας περιφέρεια οε λβ : ἡ διπλῆ ρνα δ : ἡ δ ' ὑπ ' αὐτὴν εὐθεῖα
6370551 ἀμβλεια
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ
6368864 Καλαμοϲ
Ἰϲάτιϲ βαφική ρογ Ἰϲάτιϲ ἀγρία ροδ Ἰτέα ροε Καλαμίνθη ροϚ Κάλαμοϲ ἀρωματικόϲ ροζ Κάλαμοϲ φραγμίτηϲ ροη Καννάβεωϲ ὁ καρπόϲ ροθ
καὶ ἐπιχρίϲαϲ μέτωπον καὶ κροτάφουϲ παύϲειϲ παραχρῆμα κεφαλῆϲ ὀδύναϲ . Κάλαμοϲ ἀρωματικὸϲ ϲτύψεωϲ βραχείαϲ καὶ δριμύτητοϲ ἐλαχίϲτηϲ μετέχει . τὸ
6365992 ΕΛ
ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ ἡ ΒΕ τῇ ΕΛ ἐστὶν ἴση διὰ τὸ εἶναι ὡς τὴν ΒΓ πρὸς
οὕτως ἡ ΓΔ πρὸς τὴν ΚΛ . μείζων δὲ ἡ ΕΛ τῆς ΕΔ : μείζων ἄρα καὶ ἡ ΚΛ τῆς
6364899 λειψις
ταῦτα ἴσα ΔΥ α Μο α . κοινὴ προσκείσθω ἡ λεῖψις , καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια : λοιποὶ ʂ
ταῦτα ἴσα ʂ α Μο κ . κοινὴ προσκείσθω ἡ λεῖψις , καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια . λοιποὶ ʂ
6364470 ΠΜ
δὲ ἡ ΜΑ τῆς ΛΑ : μείζων ἄρα καὶ ἡ ΠΜ τῆς ΒΛ . ὁμοίως καὶ ἡ ΜΘ τῆς ΛΓ
τῶν λόγων τῆς τε ΖΑ πρὸς ΘΒ , καὶ τῆς ΠΜ πρὸς ΜΣ , τουτέστιν ξ πρὸς ε ιε κατ
6356091 ξϚ
, πολυπλασιάσαντες τὸν ἀριθμὸν τῶν Ϙθ νβ κγ καὶ τῶν ξϚ λα κγ ἐπὶ τὴν εὑρεθεῖσαν μοῖραν α ιϚ με
. . . . . . . . . . ξϚ λθ γοʹ ὅθεν ὁ Μέλας καλούμενος ποταμὸς ῥέων συμβάλλει
6349221 ϘϚ
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . .
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ
6349001 πγ
. καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . , ,
μεταξὺ τῶν τροπικῶν ια ἔγγιστα , οἵων ἐστὶν ὁ μεσημβρινὸς πγ . εὔληπτα δὲ αὐτόθεν ἐκ τῆς προκειμένης παρατηρήσεως γίνεται
6331179 ΝΗ
ὑποτείνουσα ν λγ . καὶ οἵων ἐστὶν ἄρα ρκ ἡ ΝΗ , τοιούτων καὶ ἡ μὲν ΝΧ ἔσται ιθ μβ
, τμημάτων ρθ με ιβ . ἡ δὲ διπλῆ τῆς ΝΗ μοιρῶν ρπ : καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα
6329408 ὑπεροχη
, ι : εἰ δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς
, ἀφελόμενον ἀπὸ τοῦ κέρδους τοῦ ἠδικηκότος , ὅπερ ὡς ὑπεροχή ἐστιν αὐτοῦ πρὸς τὸν ἠδικημένον , καὶ προστεθὲν τῷ
6325933 ρμ
. . . . . . . . . . ρμ κζ γʹ Ἀσπαθίς . . . . . .
⋖ π , ἀϲβέϲτου ⋖ ρμ , ἀϲπίδων ϲποδοῦ ⋖ ρμ , ἐλαίου παλαιοῦ κοτύλαϲ β : ψυγέντι τῷ φαρμάκῳ
6324660 ρμγ
. πολλαπλασίασον τὰς ια ἐπὶ τὸν ιγʹ , καὶ γίνονται ρμγ . ταῦτα ἀπόλυσον ἀπὸ τοῦ ζωδίου , ἐν ᾧ
. ρμβ κη Παλιμβόθρα βασίλειον . . . . . ρμγ κζ Ταμαλίτης . . . . . . .
6321118 ΔΜ
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ
6319676 ΓΛ
ΗΒ ἴσον ἐστὶ τὸ ΖΛ : ἀσύμμετρον ἄρα ἐστὶ τὸ ΓΛ τῷ ΖΛ . ὡς δὲ τὸ ΓΛ πρὸς τὸ
τῆς ΛΟ ἐλάσσων ἐστὶν ἢ β . καὶ ἐπεὶ ἡ ΓΛ κάθετός ἐστιν ἐπὶ τὴν ΒΛ , παράλληλος ἄρα ἐστὶν
6314255 ἐχομενη
ὀρθή ; εἰ ἡ προαίρεσις σπουδαία ἐστί , τουτέστιν ἀρετῆς ἐχομένη , καὶ προτιθεῖσα τὸ κρεῖττον τοῦ χείρονος : ὄρεξις
καὶ ἔχει οὐκ ἐχομένη . Ἔχουσα δὴ καὶ αὐτὴ οὐκ ἐχομένη οὐκ ἔστιν ὅπου μὴ ἔστιν : εἰ γὰρ μὴ
6310350 Ϟων
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς
6310263 μϚ
δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα #
. . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ
6305678 Ϙθ
καὶ ἡ ὑπὸ ΑΕΒ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων Ϙθ νε , οἵων εἰσὶν αἱ β ὀρθαὶ τξ :
, οἵων δ ' αἱ δύο ὀρθαὶ τξ , τοιούτων Ϙθ λϚ : ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΑΛ
6304437 ΕΚ
ἀπὸ τῶν ΚΖ , ΖΕ , τουτέστι τοῦ ἀπὸ τῆς ΕΚ : ἡ ΓΕ ἄρα ἐλάσσων ἐστὶ τῆς ΕΚ .
τῶν ΕΚ ΚΒ : ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ΕΚ πρὸς τὸ ἀπὸ τῆς ΚΛ , οὕτως ἡ ΕΚ
6303164 ΤΗ
σοι μοιχείας ἔχειν γραφὴν , ἀλλὰ καὶ φόνου κρίνεσθαι . ΤΗ ΜΕΤΑΘΕΣΕΙ ΤΗΣ ΑΙΤΙΑΣ , Ο ΚΑΛΕΙΤΑΙ ΧΡΩΜΑ . Ἀλλ
Βατή τὸ τοῦ δήμου . . . . Τὰ εἰς ΤΗ παραληγόμενα τῷ Ε κύρια ὄντα βαρύνεται : Βρεμέτη Ὠκυπέτη
6300822 θερινη
Κατὰ μὲν γὰρ Μερόην τῆς Αἰθιοπίας ἕνδεκα ὡρῶν εἶναι ἡ θερινὴ νὺξ ἱστορεῖται , κατὰ δὲ Ἀλεξάνδρειαν δέκα , κατὰ
τροπή , ἐν αἰγοκέρῳ δὲ χειμερινή , ἐν καρκίνῳ δὲ θερινὴ καὶ ἐν ζυγῷ φθινοπωρινή . στερεὰ δὲ ὑπειλήφασι ταῦρόν
6299181 ροα
ρξθ ιϚ γʹ Σήρου ποταμοῦ ἐκβολαί . . . . ροα ∠ ʹ ιζ γʹ τὸ πρὸς τοὺς Σίνας τοῦ
? ! δήσατο δεσμοῖς , αἴκιζέν τ ' ἀλόχους ! ροα ? ? ? κερδαλεόφρον ' ἐόντα . ἡμέας ἔτρεψεν
6298885 διμοιρου
τρίγωνον , καὶ αἱ πρὸς τῇ βάσει γωνίαι ἴσαι . διμοίρου δὲ ἡ πρὸς τῷ Ε : διμοίρου ἄρα καὶ
ἐπιπέδῳ κεκλιμένῳ πρὸς τὸν ὁρίζοντα , τῆς ὑπὸ ΚΜΝ γωνίας διμοίρου ὀρθῆς ὑποκειμένης . ιαʹ . Τῆς αὐτῆς δέ ἐστιν
6295696 οζ
. . . . . . . . . . οζ γοʹ λδ Θάκκονα . . . . . .
. . . . . . . . . . οζ ∠ ʹγ λϚ ∠ ʹ Βίρθα . . .
6289404 ΠΑΡ
ἀρχάς . . ΟΝΟΤΑΖΩΝ . Μεμφόμενος , ἐφυβρίζων . . ΠΑΡ ΔΙΙ ΠΑΤΡΙ ΚΑΘΕΖΟΜΕΝΗ . Ἢ τῇ Εἱμαρμένῃ , ὡς
ΕΙΣ ΙΑΜΒΟΝ ΟΙΟΝ ΕΝΘΑ ΔΗ ΠΟΙΚΙΛΩΝ ΑΝΘΕΩΝ ΑΜΒΡΟΤΟΙ ΛΙΜΑΚΕΣ ΒΑΘΥΣΚΙΟΝ ΠΑΡ ΑΛΣΟΣ ΑΒΡΟΠΑΡΘΕΝΟΥΣ ΕΥΙΩΤΑΣ ΧΟΡΟΥΣ ΑΓΚΑΛΑΙΣ ΔΕΧΟΝΤΑΙ ΕΝ ΤΟΥΤΩΙ ΓΑΡ
6286868 αβ
χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων
γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα
6286723 ιζ
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ
6275690 ρμθ
ἥπατοϲ ρμζ Κενωτικὰ τῶν κυρτῶν τοῦ ἥπατοϲ ρμη Ϲπληνὸϲ κενωτικά ρμθ Νεφρῶν κενωτικά ρν Κύϲτεωϲ κενωτικά ρνα Ὅϲα ἐντίθεται τῇ
ρμδ Ἐπίθυμον ρμε Ἐρέβινθοϲ ρμϚ Ἕρπυλλοϲ ρμζ Ἐρύϲιμον ρμη Ἐρυθρόδανον ρμθ Εὔζωμον ρν Εὐπατόριον ρνα Εὐφόρβιον ρνβ Ζειά ρνγ Ζιγγίβερι
6274090 ΞΑ
. τεμνέτωσαν ἀλλήλους κατὰ τὸ Ξ , καὶ ἐπεζεύχθωσαν αἱ ΞΑ , ΞΒ , ΞΗ , ΞΓ : ἡ μὲν
ΕΑ πρὸς ΑΔ : διελόντι , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΕΔ πρὸς ΔΑ . ἐδείχθη δὲ καί
6267466 ΖΜ
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν

Back