ἐπιδίτριτος , καὶ αὕτη πρὸς τὸ τμῆμα τὸ πρὸς αὐτῇ πέμπτων θ ὂν ὡσαύτως ἐπιδίτριτος , πρὸς μέντοι τὴν ἑτέραν | ||
ἐλάσσονος . Ἔστω γὰρ ἰσοσκελὲς τρίγωνον τὸ ΒΔΕ ἔχον τεσσάρων πέμπτων τὴν πρὸς τῷ Ε περιειλημμένην κύκλῳ οὗ κέντρον τὸ |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ | ||
ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους . |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
πορθεῖσθαι ἀπὸ τῶν σῶν παίδων , ἁλωθήσεται δὲ ὑπὸ τῶν τετάρτων ἀπὸ σοῦ : ἔστι δὲ ὁ Πύρρος . ἅμα | ||
πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ διπλασιεπιτετραμεροῦς πέμπτων ἐν ἐννάτῳ |
πανσελήνου ἐπὶ τὴν Σελήνην , καὶ ἐὰν μὲν ἐντὸς τῶν ρπʹ μοιρῶν εὑρεθῇ , χρῆσθαι τῷ ὑποδεδειγμένῳ τρόπῳ : ἐὰν | ||
γωνία μεʹ μέρος ἐστὶν ὀρθῆς , ἡ ΓΔ ἄρα περιφέρεια ρπʹ μέρος ἐστὶ τοῦ κύκλου : ἡ δὲ ΔΖ περιφέρεια |
ὁ ὀκτάκις ιʹ , οἵτινές εἰσιν ὁ ηʹ κδʹ μηʹ πʹ . τετράγωνοί εἰσιν οἱ ἐκ τῶν κατὰ τὸ ἑξῆς | ||
σταδίους ρνʹ ] . Ἀπὸ Ἄνδρου εἰς λιμένα Γαυρίου σταδίους πʹ . Ἀπὸ Γαυρίου ἐπὶ [ τὸ Παιώνιον ] ἀκρωτήριον |
Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας | ||
ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον . |
ποταμοῦ κελάδοντος Ἀράξεω Φάσιδι συμφέρεται ἱερὸν ῥόον , οἱ δὲ συνάμφω Καυκασίην ἅλαδ ' εἰς ἓν ἐλαυνόμενοι προρέουσιν : δείματι | ||
γὰρ ἂν ἐφαρμόττοι τῷ δὶς γενέσθαι τὴν παλίρροιαν κατὰ τὸν συνάμφω χρόνον , τὸν ἐξ ἡμέρας καὶ νυκτός , ἢ |
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι | ||
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς |
, τουτέστιν τριπλῆ , ἐπὶ τὸν Ε , τουτέστιν τὰ ͵βωπʹ , γενομένη ποιεῖ τὸν ἐκ τῶν στερεῶν ἀριθμὸν τῶν | ||
τξʹ , θέρμα φμʹ , κεράτια δὲ ͵απʹ , χαλκοῦς ͵βωπʹ , νομίσματα μεʹ . Τὸ τριβλίον τὸ αὐτὸ μέτρον |
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ , | ||
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ , |
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
: ὁ ι πάλιν πρὸς τὸν Ϛ ἐπιμερής ἐστι καὶ ἐπιδίτριτος : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ τρίτα . | ||
πρὸς τὸ τμῆμα τὸ πρὸς αὐτῇ πέμπτων θ ὂν ὡσαύτως ἐπιδίτριτος , πρὸς μέντοι τὴν ἑτέραν πλευρὰν εἴκοσι πέμπτων οὖσαν |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
ἐπογδόῳ , τὸ δ ' ἐπίτριτον διὰ τεσσάρων ἐκ δυεῖν ἐπογδόων καὶ τοῦ διεσιαίου λείμματος : καταπυκνωτέον αὐτὰ τοῖς ἐπογδόοις | ||
ἴσῳ δὲ ὑπερεχομένην . ἡμιολίων δὲ διαστάσεων καὶ ἐπιτρίτων καὶ ἐπογδόων γενομένων ἐκ τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν |
γὰρ πέντε κε . καὶ ὁ λ ἄρα τοῦ κε ἐπίπεμπτός ἐστιν , ὡς ἔχει ἡ ΑΒ πρὸς τὴν ΒΓ | ||
γὰρ πέντε κε . καὶ ὁ λ ἄρα τοῦ κε ἐπίπεμπτός ἐστιν , ὡς ἔχει ἡ ΑΒ πρὸς τὴν ΒΓ |
. . . . . . . . πζ δʹ λβ δʹ Ἄρδεα . . . . . . . | ||
καὶ ἡ μὲν ἐπὶ τῆς ΕΗ περιφέρεια τοιούτων ἐστὶν λθ λβ , οἵων ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ |
πα , ρ , ρκα , ρμδ , ρξθ , ρϘϚ , σκε : ὁ δὲ τῶν ἑτερομηκῶν ἀπὸ δυάδος | ||
σκε : ἡ δὲ ΓΒ ιδ : τὸ ἀπὸ ταύτης ρϘϚ : ἡ δὲ ΒΑ ιγ καὶ τὸ ἀπὸ ταύτης |
٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١ | ||
μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν |
ὁ δὲ τετράγωνος ὁ ἀπὸ τοῦ ἡμίσους τοῦ πλήθους ἐστὶ Ϡʹ : τὸ δὲ τῶν γ κʹ ἐννακοσιοστόν ἐστιν ο | ||
Ἰλιακοῦ πολέμου ἔτεσι τκβʹ . ὅτι δὲ πρός που ἔτεσι Ϡʹ ἢ καὶ ͵α προάγει ὁ Μωσῆς τῆς τοῦ Ἰλίου |
τρίτη διεζευγμένων ἐναρμόνιος τρίτη διεζευγμένων χρωματικὴ καὶ διάτονος ἐναρμόνιος διεζευγμένων χρωματικὴ διεζευγμένων διάτονος διεζευγμένων νήτη διεζευγμένων τρίτη ὑπερβολαίων ἐναρμόνιος τρίτη | ||
μέσων χρωματική μέσων διάτονος μέση τρίτη συνημμένων ἐναρμόνιος τρίτη συνημμένων χρωματικὴ καὶ διάτονος συνημμένων ἐναρμόνιος συνημμένων χρωματική συνημμένων διάτονος νήτη |
τοῦ Ἀκάμαντος , τὴν Κύπρον εὐώνυμον ἔχοντι εἰς Πάφον στάδιοι τʹ : πόλις ἐστὶ κειμένη πρὸς μεσημβρίαν : ἔχει δὲ | ||
ἔχει καὶ ὕδωρ . Ἀπὸ Παλαιᾶς ἐπὶ τὸν Φιλεοῦντα στάδιοι τʹ . Ἀπὸ Φιλεοῦντος ἐπὶ τὰ Ἄκρα . . . |
τῆς γῆς ἑξηκοστῶν μὲν λʹ σταδίων μυριάδων δὲ ιβʹ καὶ ͵Ϛ . καλοῦνται δὲ οἱ μὲν ἐπὶ τοῦ αὐτοῦ ἡμισφαιρίου | ||
ἀρχῆς στερεόν , αἱ ἄρα μυριάδες ρʹ ἐπὶ τὰς μονάδας ͵Ϛ γενόμεναι ποιοῦσιν μυριάδας ξʹ διπλᾶς , ὥστε ὁ ἐκ |
. Προστιθέμενοι οἱ δ ἀριθμοὶ μὲν ταῖς υ μονάσι ταῖς λειπούσαις ἀριθμοὺς δ , γίνονται υ μονάδες τέλειαι , εἰ | ||
μέρη τοῦ Ὑδροχόου γινομένη πρότερον ἔσται ταῖς εἰς ὅλας ἡμέρας λειπούσαις ὥραις Ϛ . ζητητέον ἄρα , ποῦ καὶ πότε |
καὶ διλοχίτης ὁ τούτου ἡγούμενος : οἱ δὲ τέσσαρες λόχοι τετραρχία , καὶ ὁ τούτου ἡγούμενος τετράρχης τεσσάρων καὶ ἑξήκοντα | ||
διλοχία καὶ πόσων ἀνδρῶν καὶ τίς ὁ διλοχίτης . Τί τετραρχία καὶ τίς ὁ τετράρχης καὶ ὁπόσων ἀνδρῶν . Τί |
ὀβολοὺς μηʹ , θέρμους οβʹ , κεράτια ρμδʹ , χαλκοῦς τπδʹ , νομίσματα Ϛʹ . καλεῖται δὲ ἡ # τετρασάριον | ||
καυθέντων καὶ σβεσθέντων ὕδατι καὶ διηθηθέντος τοῦ ὕδατος , ⋖ τπδʹ , τοῦτ ' ἔστι λι δʹ , κηροῦ ⋖ |
# η , τερεβινθίνης # η , πεπέρεως λευκοῦ κόκκους ρξ . τὸ ὕπερον ἀλείφων γλευκίνῳ κόπτε . Ἰσχιαδικοὺς ἐν | ||
∠ ʹ ἡ δὲ ὡς ἐπὶ τὰ Κάσια ὄρη ἐκτροπὴ ρξ μθ ∠ ʹ ἡ δὲ ἐν τούτοις πηγή . |
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . . | ||
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ |
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
τῷ Ϛ : ἑξάκις γὰρ ϘϚ φοϚ καὶ ἑξάκις ρν ἐννακόσιοι . ὥστε ἡ εἰκοσιτεσσαράπους καὶ ἡ τριακοντάπους μήκει μὲν | ||
] πάντες πεζοὶ μὲν μύριοι καὶ ἑξακισχίλιοι , ἱππεῖς δὲ ἐννακόσιοι , οἱ δ ' Ἀντιγόνου χωρὶς τῶν ἐλεφάντων πεζοὶ |
. ἰδοὺ γεγόνασιν ἐπιδιμερεῖς : ὁ γὰρ κε τοῦ ιε ἐπιδιμερής : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ μέρη : | ||
πάλιν ὡς ἐν ἐπιμερέσι κατὰ τὴν οἰκειότητα τῆς δυάδος ὁ ἐπιδιμερής . εἰ δὲ οἱ πρῶτοι ἐν τριπλασίῳ λόγῳ , |
υπʹ , νομίσματα ζʹ ʂ . Τὸ τάλαντον ἄγει λίτρας ρκεʹ , νομίσματα ͵θ . Ἔστι δὲ ὁ κύαθος # | ||
[ ἐκ στίχων ] ἀναπαιστικῶν τετραμέτρων καταληκτικῶν ⌈ καὶ ἀκαταλήκτων ρκεʹ , ὧν τελευταῖος διὰ τοὺς ἵππους τοὺς κοππατίας καὶ |
, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
ἐστὶν τοῦ κορυφαίου , οἷον τοῦ βασιλέως , ἡ δὲ παρανήτη πλησίον μᾶλλον τῆς μέσης : ἔστι δὲ ἡ μέση | ||
παραμέση τρίτη διεζευγμένων παρανήτη διεζευγμένων διάτονος νήτη διεζευγμένων τρίτη ὑπερβολαίων παρανήτη ὑπερβολαίων διάτονος νήτη ὑπερβολαίων . Ἐν δὲ χρώματι οἵδε |
αὐτὸν καὶ τὸν πα ἀριθμὸν , ὅς ἐστιν ὄγδοον τοῦ χμη . εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη | ||
γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ |
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα | ||
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ |
, λιβάνου οὐγγίας β ὀβολοὺς δ , ἀριστολοχίας στρογγύλης ῥίζης οὐγγίας β γράμματα ιστ , ἀλόης οὐγγίας δύο καὶ ἡμίσειαν | ||
, λάμβανε κολοφωνίας δραχμὰς μη , πιτυΐνης καὶ κηροῦ ἀνὰ οὐγγίας η , ἐλαίου οὐγγίας δ , καὶ τοῦ κεκαυμένου |
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ | ||
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ |
παρυπάτη μέσων , μέσων ἐναρμόνιος , μέσων χρωματική , μέσων διάτονος , μέση , τρίτη συνημμένων , συνημμένων ἐναρμόνιος , | ||
τὸ ὑπατῶν , οἷον ὑπάτη ὑπατῶν , παρυπάτη ὑπατῶν , διάτονος ὑπατῶν ἢ λιχανὸς ὑπατῶν , οὐδὲν γὰρ διαφέρει ὁποτερωσοῦν |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
, ἐπὶ μὲν τῶν περιττῶν ἐκθέσεων ὁ μέσος τῶν ἄκρων ὑποδιπλάσιος ἦν , ἐπὶ δὲ τῶν ἀρτίων ἴσοι οἱ μέσοι | ||
σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος |
ἐστιν Αἰγυπτιακὰ ͵αι καὶ νυχθήμερα σνθ κβ ν νϚ ιϚ κζ ν ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις υογ , ὁ δὲ | ||
τὰ μὲν ἄλλα ὡσαύτως τῷ πρώτῳ , ἐπὶ στίχους δὲ κζ καὶ σελίδια δ διὰ τὸ τὴν μὲν ἐκ τοῦ |
ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα | ||
λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ |
υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος , | ||
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ |
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος | ||
κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος |
τρεῖς αἱ προστεθεῖσαι καὶ τρεῖς αἱ προηγησάμεναι . τεσσάρων ὅρων προστεθέντων προστίθενται τέσσαρες σχέσεις ταῖς ἓξ καὶ γίνονται δέκα . | ||
τὸ ἧπαρ : ἐν ὅλῳ δὲ τῷ σώματι πρόσφυσις τῶν προστεθέντων τῆς τροφῆς ἔσται μορίων . εἰ δ ' ἄσιτος |
δαφνίδων ἐπίθεμα πθʹ . Περὶ ἀποστήματος ἐν μήτρᾳ , Ἀρχιγένους ρʹ . Ὅπως δεῖ ἐνεργεῖν περὶ τὸ στόμιον τῆς μήτρας | ||
μάρπω , τὸ καταλαμβάνω γίνεται μαρπεῖν , καὶ ἀποβολῇ τοῦ ρʹ μαπέειν κατ ' ἐπέκτασιν . Καὶ τὸ ΒΑΙΝΟΥΣΕΩΝ δὲ |
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α , | ||
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι |
ρξβ . δῆλον οὖν , ὅτι ὁ Α τοῦ Β ὑφημιόλιός ἐστι καὶ οὐ μετρεῖ αὐτόν . ὁμοίως καὶ οἱ | ||
ὁ β τοῦ γ κοινῶς μὲν ὑποεπιμόριος , ἰδικῶς δὲ ὑφημιόλιός ἐστιν , ὡσαύτως δὲ ὁ γ τοῦ δ κοινῶς |
τρίγωνον , καὶ αἱ πρὸς τῇ βάσει γωνίαι ἴσαι . διμοίρου δὲ ἡ πρὸς τῷ Ε : διμοίρου ἄρα καὶ | ||
ἐπιπέδῳ κεκλιμένῳ πρὸς τὸν ὁρίζοντα , τῆς ὑπὸ ΚΜΝ γωνίας διμοίρου ὀρθῆς ὑποκειμένης . ιαʹ . Τῆς αὐτῆς δέ ἐστιν |
τὰ ἀπὸ ΓΕ καὶ τρία τὰ ἀπὸ ΖΕ ἴσα ἐστὶν δεκαπέντε τοῖς ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ κύκλου τοῦ | ||
χαραγμάτων : πέντε καὶ πέντε δέκα γὰρ , καὶ πέντε δεκαπέντε , ὅπως ἀναβιβάζονται ταῦτα τὰ γραμματίτζια μέχρι τῶν ἐνενήκοντα |
ἐπέχουσι διάστημα , αἱ δὲ Ϙʹ τριῶν , αἱ δὲ ξʹ δύο , ὧν ὁ γʹ κείμενος μέσος πρὸς μὲν | ||
. νθʹ . Πῶϲ ἄν τιϲ ἰάϲαιτο κατιϲχνωθέντα μόρια . ξʹ . Διάγνωϲιϲ ἀρίϲτηϲ κράϲεωϲ . ξαʹ . Διάγνωϲιϲ τῶν |
. ἓξ τάλαντα περιόντα τῶν ἑπτὰ ταλάντων , καὶ εἴκοσι μναῖ τῶν τετταράκοντα μνῶν . οὐ γὰρ ἂν δύναιτο ἀποδεῖξαι | ||
προτελέσωσιν εἰς τὴν ἀφορμήν : ᾧ μὲν γὰρ ἂν δέκα μναῖ εἰσφορὰ γένηται , ὥσπερ ναυτικόν , σχεδὸν ἐπίπεμπτον αὐτῷ |
ἑαυτόν : πεντάκις εʹ , κεʹ . ὁμοῦ ὅλα , μʹ . ὁ μʹ ἀριθμὸς πεπολλαπλασιάσθω ἐπὶ τὸ ἐμβαδὸν τοῦ | ||
∠ ʹʹ Φόρος Ποπιλίου λθʹ ∠ ʹʹδʹʹ μαʹ δʹʹ Καπύη μʹ μαʹ Ϛʹʹ Ἀβέλλα μʹ γʹʹ μαʹ Ϛʹʹ Ἀτέλλα μʹ |
πάλιν ποίησον τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς | ||
μδ λδ , ἡ δ ' ἐπὶ τῆς ΓΘ μοιρῶν ρκε κϚ ι . ἀκολούθως δὲ καὶ ἡ μὲν ὑπὸ |
φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα | ||
δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη |
Ἀντωνίνου Φαωφὶ ιʹ : εἰσὶ σμγʹ , καὶ γίνονται ὁμοῦ υλβʹ . ἀφαιρῶ τὰς τξʹ , λοιπαὶ οβʹ : ταύτας | ||
. . . . . . . . . τπδʹ υλβʹ υπϚʹ φιβʹ φοϚʹ χμηʹ ψκθʹ λεῖμμα βπλάσιον τοῦ αʹ |
καὶ ἡ ὑπὸ ΒΕΓ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων ρν κϚ , οἵων εἰσὶν αἱ δύο ὀρθαὶ τξ . | ||
μεμφόμενος τῆς πόλεως κάθαρσιν [ . ] . οὗτος ἔζησεν ρν ἔτη , τὰ δὲ Ϙ ἐκαθεύδησεν . καὶ παροιμία |
τὰ πέρατα ἐπέχει μοίρας ιδʹ γοʹʹ μβʹ ∠ ʹʹ καὶ ιϚʹ μγʹ καὶ ἡ Ἰδουβέδα , ἧς τὰ πέρατα ἐπέχει | ||
χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν καθαρὸν δίμετρον ἀκατάληκτον , καθαρὰν ἰαμβικὴν ἔχον τὴν |
προσκείσθωσαν αἱ ΕΖ , ΓΔ : ὅλη ἄρα ἡ ΑΕΖ περίμετρος ὅλης τῆς ΑΓΔ περιμέτρου ἐλάττων ἐστί . μείζων ἄρα | ||
διήχθω τις ἡ ΔΕ . ὅτι ἐστὶν ὡς ἡ ΑΒΓ περίμετρος τοῦ κύκλου πρὸς τὴν ΒΖΕ περιφέρειαν , οὕτως ὁ |
τρίτης συζυγίας ἐστὶ τὰ τνʹ , ἀφέλω σκθʹ , λείπω ρκαʹ καὶ ἴσχω τὸν τέταρτον . ὁμοῦ οὖν τῶν τεσσάρων | ||
παρὰ τὰ ͵βφμα , γίνονται Ϙη δʹ ιαʹ λγʹ μδʹ ρκαʹ τξγʹ . Ἔτεμον σφαῖραν εἰς μέρη τέσσαρα καὶ εὑρέθη |
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ | ||
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ |
μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
μέσων χρωματική μέση τρίτη συνημμένων παρανήτη συνημμένων χρωματική νήτη συνημμένων παραμέση τρίτη διεζευγμένων παρανήτη διεζευγμένων χρωματική νήτη διεζευγμένων τρίτη ὑπερβολαίων | ||
λιχανός . Ἑρμοῦ δὲ τὸ μεταίχμιον Ἀφροδίτης καὶ Ἡλίου κατέχοντος παραμέση . περὶ ὧν ἀκριβέστερον καὶ μετὰ γραμμικῶν καὶ ἀριθμητικῶν |
καὶ ἀναδρομῆς μήτρας , Ἀσπασίας οδʹ . Περὶ ἐμπνευματώσεως μήτρας οεʹ . Περὶ ὑδρωπιώσης μήτρας οϚʹ . Περὶ μύλης , | ||
ἐπελογισάμεθα πάλιν διὰ δύο τῶν ὑποκειμένων . ἔτους μὲν γὰρ οεʹ κατὰ Χαλδαίους Δίου ιδʹ ἑῷος ἐπάνω ἦν τοῦ νοτίου |
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς | ||
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς |
. ἐπὶ τὰς ὑποστάσεις : ἔσται ὁ μὲν τρίγωνος Μο ρνγ , ὁ δὲ τετράγωνος Μο ͵Ϛυ , ὁ δὲ | ||
, οἵων δ ' αἱ β ὀρθαὶ τξ , τοιούτων ρνγ λ : ὥστε καὶ λοιπὴ μὲν ἡ ὑπὸ ΖΔΚ |
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
ἐστιν ὁμοῦ πέντε , τετράκις ποιῶ τὰ ρκʹ , γίνεται υπʹ , μερίζω παρὰ τὸν εʹ καὶ ἔχω μέρος ἓν | ||
. Σικύου ἀγρίου ῥίζης ⋖ φοϚʹ , σκίλλης καθαρᾶς ⋖ υπʹ , ἀσφοδέλου ῥίζης ⋖ ρμδʹ , ἐλαίου ῥαφανίνου ⋖ |
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
: ἑξάκις γὰρ ὀκτὼ σαρανταοκτώ . τὸ γὰρ ἡμίεκτον τέσσαρες χοίνικες . ⌈ ἡμιεκτέον φησὶν ὁ Στρεψιάδης τὸ ἡμίεκτον , | ||
τὸ δὲ ἡμιεκτέον , τουτέστι τὸ δωδέκατον τῶν μηʹ , χοίνικες τέσσαρες . ἡμιεκτέου : τοῦ τετραχοινίκου . ὁ γὰρ |
νίτρου . . . . . . . δραχ . ϘϚʹ θείου . . . . . . . δραχ | ||
. ρϘβʹ στυπτηρίας ὑγρᾶς . . . . δραχ . ϘϚʹ νίτρου . . . . . . . δραχ |
ἡ δὲ ἰσημερινὴ μγʹ ∠ γʹ , ἡ δὲ χειμερινὴ ργ γʹ . ιβʹ . δωδέκατός ἐστιν παράλληλος , καθ | ||
ρ Πάϲτιλλον χολῆϲ καθαρτικόν ρα Βουκελλάτον καθαρτικόν ρβ Φλέγματοϲ καθαρτικόν ργ Μελαγχολικοῦ χυμοῦ καθαρτικόν ρδ Κοινὸν καθαρτήριον ρε Ἀλοηδάρια διὰ |
ιεʹ , ὁλκὰϲ ριβʹ ʂ . Ἡ λίτρα ἔχει ὁλκὰϲ Ϙʹ . Τὸ δὲ δηνάριον ἔχει γράμματα δʹ . Τὸ | ||
ᾗ ὅρμος ναυσὶ , στάδιοι σʹ , μίλια κϚʹ , Ϙʹ Ϛʹ . Ὀδησσὸν κτίζουσι Μιλήσιοι , ὅτε Ἀστυάγης ἦρχε |
, τὰ δὲ πέρατα ἐπὶ μασχάλην ἀπαθῆ . Κεφ . οθʹ . Ἡ μεσότης ὑπὸ μασχάλην βραχίονος πεπονθότος αἱ ἀρχαὶ | ||
τῶν ρηʹ ἐτῶν νδʹ καὶ τὰς ἐλαχίστας κεʹ : γίνονται οθʹ . τῷ δὲ Ἄρει τῆς αὐτῆς αἱρέσεως ὄντι ἡ |
εἰς Αἰγινήτην , πολίχνιον καὶ ποταμὸν , στάδια ρκʹ , μίλια ιϚʹ . Ἀπὸ δὲ Αἰγινήτου εἰς Κίμωλιν κώμην , | ||
Ἀπὸ δὲ Σαγγαρίου ποταμοῦ εἰς Ὕπιον ποταμὸν στάδια ρπʹ , μίλια κδʹ . Οὗτος ὁ ποταμὸς ἔχει ἐφ ' αὑτῷ |
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
͵γψκϚʹ . . : Δευτέρου τόμου Μανεθῶ . Δωδεκάτη δυναστεία Διοσπολιτῶν βασιλέων ἑπτά . αʹ Σεσόγχοσις Ἀμμανέμου υἱὸς ἔτη μϚʹ | ||
τόμου Μανεθῶ βασιλεῖς ϘϚʹ . : Ἐννεακαιδεκάτη δυναστεία βασιλέων εʹ Διοσπολιτῶν . αʹ Σέθως ἔτη νεʹ . βʹ Ῥαμψὴς ἔτη |
. Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς | ||
͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα |
νζʹ Κρόνῳ δίδωσιν , εἶτα Ἑρμῇ οϚʹ , εἶτα Ἀφροδίτῃ πβʹ , εἶτα Διὶ οθʹ , εἶτα Ἄρεϊ ξεʹ , | ||
Συρακουσίων ἐπικρατησάντων τοὺς αὐτὴν ἔχοντας κατέστραπτο : εἶτα ἐν τῇ πβʹ Ὀλυμπιάδι , μεταξὺ τοῦ χρόνου , καθ ' ἣν |
. . . . . . . . . Ϙθ νζ ∠ ʹ ἀφ ' ὧν ῥέουσιν ὅ τε Ῥυμμὸς | ||
ιθ ὀκταετηρίσιν , ὅπερ ἐστὶν ἔτη ρνβ , ἐμβόλιμοι ἄγονται νζ : ἐν δὲ τῷ αὐτῷ χρόνῳ κατὰ τὴν ἐννεακαιδεκαετηρίδα |
, πενταπλάσιος δὲ ὁ τῶν ἄκρων . κἂν τετραπλάσιος , ἐπιτριμερὴς τετάρτων , ἑπταπλάσιος δὲ ὁ τῶν ἄκρων καὶ ἑξῆς | ||
μετὰ δὲ τοῦτον ὁ τρία πρὸς τῷ ὅλῳ ἔχων κληθήσεται ἐπιτριμερὴς εἰδικῶς , καὶ μετὰ τοῦτον ἐπιτετραμερής , εἶτα ἐπιπενταμερής |
καὶ μέγεθος μεγέθει , οὕτω καὶ ῥοπὴ ῥοπῇ : οἷον μνᾶ πρὸς μνᾶν καὶ πρὸς τάλαντον ἴση ῥηθείη καὶ ἄνισος | ||
νήσων μία Ἄνδρος . . . . μνῶν ] ἡ μνᾶ ἐστι μέγιστον τῶν τοῦ ταλάντου μερῶν , ὡς εἰς |
ἢ τετράρχῃ ἐναντιωθῇ , σωφρονιζέσθω . εἰ δὲ πεντάρχης ἢ τετράρχης τῷ ἰδίῳ δεκάρχῃ , ὁμοίως . εἰ δὲ δεκάρχης | ||
δὲ καὶ βασιλέες καὶ δυνάσται στρατὸν ἄγοντες , Δηιόταρος μὲν τετράρχης Γαλατῶν τῶν ἑῴων , Ἀριαράθης δὲ Καππαδοκῶν βασιλεύς . |
ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
Σικελία . ἔστι δ ' αὐτῆς ἡ περίμετρος σταδίων ὡς τετρακισχιλίων τριακοσίων ἑξήκοντα : τῶν γὰρ τριῶν πλευρῶν ἡ μὲν | ||
Διονύσιος μυρίους καὶ τρισχιλίους , ὁ δὲ Ἱερώνυμος ἐλάττονας τῶν τετρακισχιλίων . . . , : Ἐκ τούτου μάχης ἄλλης |
ἔσται μοιρῶν η λα , ἡ δὲ ΕΜ ὅλη ιδ μγ . ὥστε καὶ ἡ ἀπὸ τοῦ βορείου πέρατος τοῦ | ||
. . . . . . . . . ξγ μγ Γήλακα ἢ Σήλκα . . . . . . |
γιγνόμενος ποιεῖ τὸν ἡμιόλιον λόγον , ἐξ ὧν ἀμφοτέρων ὁ διπλάσιος σύγκειται λόγος , τοῦ δʹ φμηὶ πρὸς τὸν βʹ | ||
τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον ἤτοι διπλάσιος ἤτοι δὶς δίς , ὅπερ ἐδήλωσεν εἰπών : τὰ |
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
, ἡ ΕΔ γ νβ κβ , ἡ ΕΖ α νϚ ια , τὸ ἀπὸ τῆς ΕΖ γ μδ νη | ||
. νϚ μα ∠ ʹ Αἰσήπου ποταμοῦ ἐκβολαί . . νϚ μα γʹ Πάριον . . . . . . |
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
ἐν τῷ ἡγουμένῳ ὤμῳ τοῦ Ὠρίωνος ἑσπέριος ἀνατέλλει . ὡρῶν ιδ ∠ ʹ : ὁ ἐπὶ τῆς κεφαλῆς τοῦ ἡγουμένου | ||
ἡ πλευρὰ β μθ μβ , τοῦ δὲ ιη δ ιδ λγ . Οἷον ἐπὶ ὑποδείγματος ἔστωσαν σύμμετροι εὐθεῖαι ἔχουσαι |
β , μέλιτοϲ # Ϛ , ϲάπωνοϲ # β . Ἀμμωνιακοῦ θυμιάματοϲ λι . α , νίτρου Ἀλεξανδρινοῦ # Ϛ | ||
χαμαιλέοντοϲ ἥδε : λιθαργύρου # α # β , ἁλὸϲ Ἀμμωνιακοῦ ⋖ α , χαμαιλέοντοϲ μέλανοϲ ῥίζηϲ # δ , |
ἀναγεγράφθω κύκλος οὗ ἡ περίμετρος λγ : γίνεται αὐτοῦ τὸ ἐμβαδὸν πϚ ∠ ʹ ηʹ . καὶ ὁμοίως ἀφαιρῶ τὰ | ||
το - μέως δοθέντος , ἀφέλωμεν τὸ τοῦ ΑΓΘ τριγώνου ἐμβαδὸν δοθέν , ἕξομεν λοιπὸν τὸ περιεχόμενον τμῆμα ὑπό τε |