ὑπάρχειν ὁ πᾶς χρόνος λέγεται οὐδενὸς αὐτοῦ τῶν μερῶν ὑπάρχοντος ἀπαρτιζόντως . Ποσειδώνιος : τὰ μέν ἐστι κατὰ πᾶν ἄπειρα | ||
ὁ η ἀριθμός . ὁ μὲν οὖν τρία τὸν θ ἀπαρτιζόντως μετρεῖ : τρὶς γὰρ συντεθεὶς αὐτὸν μεμέτρηκεν . ὑπερβαίνει |
τὸ ἀντικείμενον τῷ ἡγουμένῳ , τότε ὁ τοιοῦτος γίνεται δεύτερος ἀναπόδεικτος , ὡς τὸ ” εἰ ἡμέρα ἔστι , φῶς | ||
ἐστιν : περὶ γὰρ τούτων οὔτ ' ἀποδεικτικὸς οὔτ ' ἀναπόδεικτος ὑπ ' οὐδενὸς πώποτ ' εἴρηται λόγος . οὔσης |
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
ὅρους τοῦ ὅρου κατ ' εἶδος ἡμῖν παραστήσουσιν . Ἔστιν ὅρος ὅρου ἕτερος λόγος ὁ δηλῶν διὰ τί ἐστι , | ||
, ποιεῖ καὶ ὁ ὅρος , διὰ τί ἐπενοήθη ὁ ὅρος ; καὶ λέγομεν διὰ τὸ γνῶναι ἡμᾶς τὰς συστατικὰς |
. ἐπὶ δὲ τοῦ βʹ λήμματος ὁ ἑκατὸν τοῦ εἴκοσι πολλαπλάσιός ἐστι κατὰ τὸν ε , καὶ ὁ κ τοῦ | ||
Γ πολλαπλάσιον εἶναι . ἐπεὶ γὰρ ὁ Β τοῦ Γ πολλαπλάσιός ἐστι , μετρεῖ ἄρα ὁ Γ τὸν Β . |
γίνεται . Τόνος δὲ λέγεται τετραχῶς : καὶ γὰρ ὡς φθόγγος καὶ ὡς διάστημα καὶ ὡς τόπος φωνῆς καὶ ὡς | ||
τἀναντία συνισταμένῃ : ὅτε γὰρ τῷ διὰ τεσσάρων τινὸς βαρύτερος φθόγγος τῷ διὰ πέντε τοῦ ὁμοφώνου αὐτῷ κατὰ τὸ βαρύτερον |
τἆλλα κατὰ τὸ ἑξῆς εἴδη . ὑπόδειγμα δὲ πάντων εὐτάκτων πολυπλασίων σαφὲς ἕξομεν ἐὰν ἐκθέμενοι τὸν ἀπὸ μονάδος συνεχῆ ἀριθμὸν | ||
ἀρτιοπερίττων δὲ πέντε , πάσας δὲ λόγων τῶν ἐν ἀριθμοῖς πολυπλασίων καὶ ἐπιμερῶν καὶ ὑποεπιμερῶν περιέχει , πάσας δ ' |
ἡ δεῖξις προβήσεται . Ἔστωσαν μείζονες αἱ ρ μο λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν | ||
ἄπειρον αὐτὸν οὐ τῷ ἀδιεξιτήτῳ ἢ τοῦ μεγέθους ἢ τοῦ ἀριθμοῦ , ἀλλὰ τῷ ἀπεριλήπτῳ τῆς δυνάμεως . Ὅταν γὰρ |
ἰδέα οὐδέποτε ἥξει . Οὐ δῆτα . Ἄμοιρα δὴ τοῦ ἀρτίου τὰ τρία . Ἄμοιρα . Ἀνάρτιος ἄρα ἡ τριάς | ||
τοιούτοις . ἔοικε γὰρ ὁ γεωμέτρης πάντα ἀριθμὸν τὸν ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενον κατὰ ἄρτιον ἀριθμὸν ἀρτιάκις ἄρτιον ὀνομάζειν , |
ἀναλογίαν σώζων γεωμετρικήν , πρόλογος μὲν πρὸς τὸν ἐλάττονα , ὑπόλογος δὲ πρὸς τὸν μείζονα , οὐδέποτε δὲ πλείονες : | ||
' ἑκάτερα αὐτοῦ ἀποκρίνηται , πρὸς μὲν τὸν μείζονα ὡς ὑπόλογος , πρὸς δὲ τὸν ἐλάσσονα ὡς πρόλογος , συνημμένη |
συνεχείᾳ τῆς φορᾶς , ὡς ἑνὸς ὄντος ποταμοῦ διηνεκοῦς καὶ ἡνωμένου : οὕτω καὶ τῶν ἀνθρωπίνων πραγμάτων ὥσπερ ἐκ πηγῆς | ||
. Λάβοις δ ' αὐτὴν καὶ ἀπὸ τῆς φύσεως τοῦ ἡνωμένου αὐτοφυέστερον : τὸ γὰρ ἡνωμένον οὐκ ἔστι μόνον ἕν |
: τὸ δ ' ἀναισθητοῦν οὐδὲν πρὸς ἡμᾶς . . Ὅρος τοῦ μεγέθους τῶν ἡδονῶν ἡ παντὸς τοῦ ἀλγοῦντος ὑπεξαίρεσις | ||
δὲ φεύγοντος προκρίνοντος μετὰ κατασκευῆς τὸ εὐεργέτημα τοῦ ἀδικήματος . Ὅρος βίαιος κοινὸς τοῦ μὲν μηδ ' ὅλως εὐεργέτημα γεγενῆσθαι |
ΒΓ τοῦ ΔΖ ἡμιόλιος , ὁ δὲ ΔΖ τοῦ Θ ἐπίτριτος : φημὶ τὸν ΒΓ τοῦ Θ διπλάσιον εἶναι . | ||
τὸ τρίτον αὐτοῦ , ἤγουν τὸ Γ . Ὁ Η ἐπίτριτος τοῦ Ϛʹ . Περιέχει γὰρ ὅλον τὸν Ϛʹ , |
δὲ ὁ Φαρνάκεος αὐτίκα τε οὐκ ἠρέσκετο κατ ' ἀρχὰς λειπομένου Μαρδονίου ἀπὸ βασιλέος , καὶ τότε πολλὰ ἀπαγορεύων οὐδὲν | ||
στίχου μέρος ἐστὶ τὸ μῆνιν . καὶ μὴν οὐδὲ τοῦ λειπομένου , φημὶ δὲ τοῦ ἄειδε θεὰ Πηληιάδεω Ἀχιλῆος . |
ἐνοχλεῦντα ὑπολείπεσθαι , τὰ δ ' οὐδὲν λυπέοντα ἀφαιρεῖσθαι . Μέγεθος δὲ σικύης τί χρήσιμον στοχάζεσθαι χρὴ πρὸς τὰ μέρη | ||
αὐτῆς καὶ θαυμαστὸν καὶ τῶν ὑπὲρ τὰ χρήματα φύσεων . Μέγεθος οὐκ ἔχουσα παντὶ μεγέθει σύνεστι καὶ ὡδὶ οὖσα ὡδὶ |
τοῦ ἑνὸς φύσιν καὶ τὴν τοῦ σημείου καὶ παντὸς τοῦ ἀδιαιρέτου , ὅτι μήτε προστιθέμενα μήτ ' ἀφαιρούμενα τὸ ποσὸν | ||
ἔσται ἑαυτῷ ἴσος . οὕτως τὸ νοούμενον ἔλαττον , μονάδος ἀδιαιρέτου οὔσης , τὸ οὐδέν , πανταχοῦ σῴζει πρὸς τὴν |
πάλιν τοῦ περιττοῦ τὸν μὲν πρῶτον τὸν ὑπὸ μονάδος μόνον μετρούμενον ὡς τὸν τρία , τὸν ζ , τὸν δὲ | ||
: ὥσπερ γὰρ λέγεται καὶ τὸ μέτρον ξέστης καὶ τὸ μετρούμενον , οὕτως ἔφασκον καὶ τὰ νοητὰ καὶ τὰ αἰσθητὰ |
, ὅπως ἀπὸ τῶν διεζευγμένων ποιήσωσιν ἐφεξῆς τρία τετράχορδα , συστήματος ὀνόματι περιέλαβον τὸ συνημμένον , ἵν ' ἔχωσι πρόχειρον | ||
ἐπὶ τῷ τέλει τῆς μὲν στροφῆς κορωνίς . τοῦ δὲ συστήματος παράγραφος . 〛 τῶν μέχρι νῦν ὄντων ποιητῶν . |
γιγνόμενος ποιεῖ τὸν ἡμιόλιον λόγον , ἐξ ὧν ἀμφοτέρων ὁ διπλάσιος σύγκειται λόγος , τοῦ δʹ φμηὶ πρὸς τὸν βʹ | ||
τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον ἤτοι διπλάσιος ἤτοι δὶς δίς , ὅπερ ἐδήλωσεν εἰπών : τὰ |
: διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ | ||
δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος |
πλεονάκις ἔχῃ τὸν ἐλάττονα , τουτέστιν ὅταν ὁ μείζων ὅρος καταμετρῆται ὑπὸ τοῦ ἐλάττονος ἀπαρτιζόντως , ὡς μηδὲν ἔτι λείπεσθαι | ||
] ὁ μείζων ὅρος λέγεται τοῦ ἐλάττονος , ὁσάκις ἂν καταμετρῆται ὑπ ' αὐτοῦ : οἷον ἂν μὲν δίς , |
κίνησις , πᾶσα κίνησις ἀτελής : οὐ γὰρ ἦν ἡμῖν ὡρισμένος ὁ κατηγορούμενος . πάλιν δὲ ὁ τοῦδέ τινος πρὸς | ||
ὅτι πόρρω τοῦ παρόντος νῦν . Τὸ δὲ ποτὲ χρόνος ὡρισμένος ὑπὸ τοῦ παρόντος νῦν καὶ τοῦ προτέρου καὶ τοῦ |
οὓς κῆρες φορέουσι μελαινάων ἐπὶ νηῶν . ἀθετεῖται , ὅτι περισσός : ἐν γὰρ τῷ κηρεσσιφορήτους τὸ αὐτὸ συντόμως εἴρηκεν | ||
λοιπὸς ὁ ΓΑ ἄρτιός ἐστιν . Ἐπεὶ γὰρ ὁ ΑΒ περισσός ἐστιν , ἀφῃρήσθω μονὰς ἡ ΒΔ : λοιπὸς ἄρα |
ὁ ε τοῦ β διπλασιεφημιόλιος , ὁ ζ τοῦ γ διπλασιεπίτριτος , ὁ θ τοῦ δ διπλασιεπιτέταρτος , ὁ ια | ||
τοῦ μείζονος ἐπιμερὴς ἤτοι τρισεπιτέταρτος , ἀπὸ δὲ τοῦ ἐλάσσονος διπλασιεπίτριτος , ὡς ἐκ τοῦ ιϚ , ιβ , θ |
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
πᾶν τὸ ἐπινοούμενον καὶ ὑπάρξεως μετείληφεν , ἀλλὰ δύναταί τι ἐπινοεῖσθαι μέν , μὴ ὑπάρχειν δέ , καθάπερ Ἱπποκένταυρος καὶ | ||
καὶ νοητὴν τρίτην τινὰ δύναμιν , ἣν καὶ ἐκ τούτων ἐπινοεῖσθαι δύνασθαι , λέγων ὧδέ πως : εἰ γὰρ . |
ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ | ||
ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη |
οἷόν τε : κἀκεῖνο μὲν ἐπιβολὴ καὶ θίξις ἐστὶ τοῦ νοουμένου , τοῦτο δὲ ὥσπερ κίνησις περὶ αὐτὸ καὶ ἐπέλευσις | ||
ἐξ ἐκείνου γεννᾶσθαι μερικὸν Προμηθέα , Προμηθέως γοῦν τοῦ πρώτου νοουμένου νοός , ἤτοι τῆς καθόλου ψυχῆς τοῦ παντός . |
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
ἄφθονος , δεῖ δὲ ἡμῖν τέχνης ἑτέρας πρὸς βάσανον τοῦ ληφθέντος : φέρε παρακαλῶμεν τὴν τέχνην ταύτην ξυνεπιλαβέσθαι ἡμῖν τοῦ | ||
τῆς ἁφῆς ἀχθῇ παράλληλος τῇ ἀσυμπτώτῳ , ἡ διὰ τοῦ ληφθέντος σημείου ἀγομένη παράλληλος τῇ ἑτέρᾳ τῶν ἀσυμπτώτων ὑπὸ τῆς |
ἁπλῆ τίς ἐστι κατηγορία , ἡ δὲ τῶν πρός τι σύνθετος , ῥᾷον δὲ τὰ ἁπλᾶ μανθάνομεν τῶν πολυσχεδῶν ; | ||
καὶ ὁ τῇδε ἵππος ἐκ τῶν τῇδε φύσεων ἀνομοίων οὐσῶν σύνθετος ᾖ . πάντα γὰρ ταῦτα κωμῳδοῦντός ἐστι μᾶλλον ἢ |
Μέρος ἐστὶ μέγεθος μεγέθους τὸ ἔλασσον τοῦ μείζονος , ὅταν καταμετρῇ τὸ μεῖζον . Πολλαπλάσιον δὲ τὸ μεῖζον τοῦ ἐλάττονος | ||
ὅρων ὁ ἕτερος τὸν ἕτερον πλεο - νάκις ἢ ἅπαξ καταμετρῇ πληρούντως . ἄρξεται δὲ ἀπὸ τοῦ δίς , ἵνα |
τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ | ||
εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ |
πρῶτος τετράγωνος ᾖ καὶ ὁ τρίτος ἔσται τετράγωνος , καὶ μετροῦντος τετράγωνον τετραγώνου καὶ πλευρὰ πλευρὰν μετρήσει , καὶ πᾶς | ||
' ὃν μετρεῖται , καὶ ἀπὸ τοῦ μείζονος , τοῦ μετροῦντος καὶ καθ ' ὃν μετρεῖ , ἀφέλωμεν τὸν ἐλάσσονα |
ἔτυχεν , πολλαπλάσιον τὸ Ζ . Ἐπεὶ οὖν ἰσάκις ἐστὶ πολλαπλάσιον τὸ Δ τοῦ Α καὶ τὸ Ε τοῦ Β | ||
οὔτε πολλαπλάσιον ἔσται οὔτε ἐπιμόριον . ἔστω γὰρ διάστημα μὴ πολλαπλάσιον τὸ ΒΓ , καὶ γεγενήσθω , ὡς ὁ Γ |
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
σῶμα καὶ ψυχὴ συνέλθῃ ; Ἔσται γὰρ ὁ λόγος οὗτος δηλωτικὸς τοῦ ἐσομένου , οὐχ οἷος ὅν φαμεν αὐτοάνθρωπος , | ||
ἀπορηματικός ἐστι καὶ προπερισπᾶται , ἢ συλλογιστικὸς καὶ ἀποφαντικὸς καὶ δηλωτικὸς ἀληθείας ἢ ψεύδους καὶ παροξύνεται . παροξύνεται δὲ καὶ |
: ἐὰν δὲ ὡϲ ὑπὸ ϲκόλοποϲ ἐμπεπαρμένου ἢ ὡϲ ὑπὸ τρυπάνου τιτρᾶϲθαι νομίζῃ , παχέοϲ ἐντέρου τὸ εἶδοϲ τῆϲ ὀδύνηϲ | ||
καὶ τότε μᾶλλον ἡ ἐνέργεια ὀξυτέρα γινέσθω , στρεφομένου τοῦ τρυπάνου τῇ ἀρίδι , ἕως ὅτου καταβιβασθῇ ἡ ἀκμὴ εἰς |
καὶ τρίτον γένος μελῳδίας ἐναρμόνιον , ἐπειδὰν ἀπὸ τοῦ βαρυτάτου φθόγγου κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον ἡ φωνὴ προελθοῦσα | ||
οἷον σφραγῖδα σφραγῖδι ἐπιβάλλων ἐναργῆ μᾶλλον καὶ εὔδηλον , οὐδενὸς φθόγγου ἀπεχόμενος , ἀλλὰ ἔμβραχυ ποταμῶν τε μιμούμενος φωνὰς καὶ |
ἐν τῷ προειρημένῳ λόγῳ ἐλάσσων πρὸς τὸν μείζονα ἐξεταζόμενος . πολλαπλασιεπιμόριος δέ ἐστι λόγος , ὅταν ὁ μείζων ὅρος δὶς | ||
ἐλάσσονος μέρος : οἷον ὁ τῶν κϚʹ τοῦ τῶν ηʹ πολλαπλασιεπιμόριος λέγεται , ἐπειδήπερ ὁ ηʹ τρὶς καταμετρήσας τὸν κϚʹ |
Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
ἐπεὶ συνεπτυγμένως καὶ ἀθρόως τὸ ὄνομα , τῶν ὅρων εἰς ἐξάπλωσιν καὶ διασάφησιν τῆς οὐσίας δεόμεθα . ἢ οὐδὲ τὸ | ||
τὴν δόκησιν καὶ τὴν δόξαν . ὥστε τοιοῦτον εἶναι κατὰ ἐξάπλωσιν τὸ ὑπ ' αὐτοῦ λεγόμενον „ τὸ μὲν οὖν |
' ἑκάστῳ τῶν ῥυθμίζεσθαι δυναμένων . . . Τῶν δὲ ῥυθμιζομένων ἕκαστον οὔτε κινεῖται συνεχῶς οὔτε ἠρεμεῖ , ἀλλ ' | ||
καὶ σχῆμα ἐκλήθη : ὅ τε ῥυθμὸς ὡσαύτως οὐδενὶ τῶν ῥυθμιζομένων ἐστὶ τὸ αὐτό , ἀλλὰ τῶν διατιθέντων πως τὸ |
περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ | ||
ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ |
# β # ἔχοι , καὶ ἔτι μᾶλλον , εἰ ἑξαπλάσιον , ὡς εἶναι τῶν μεταλλικῶν # β , κηροῦ | ||
γὰρ τοῦ ρ πρὸς τὸν κ λόγον πενταπλάσιον ἔχοντος , ἑξαπλάσιον ἔχειν τοὺς γινομένους προστιθεμένου τοῦ ἀριθμοῦ ἀπαιτήσομεν , τῆς |
καὶ τῆς ἀναπαύσεως τὸν ἀέρα τέμνει πολύ , καὶ ὀξύτατα ὁροῦ ἐκ πολλοῦ τοῦ αἰθέρος : τῶν δὲ νεοττῶν αὐτοῦ | ||
καὶ τῆς ἀναπαύσεως τὸν ἀέρα τέμνει πολύ , καὶ ὀξύτατα ὁροῦ ἐκ πολλοῦ τοῦ αἰθέρος : τῶν δὲ νεοττῶν αὐτοῦ |
πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
. Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
τὸ φαινόμενον τῆς σελήνης ὥστε ἐφάπτεσθαι . . . τοῦ ἡλιακοῦ κατὰ τὸ Ζ σημεῖον , ἡ ΑΕ περιφέρεια ἣν | ||
ἐστὶν ὁ ΕΖΗΘ κύκλος τξ , τοιούτων ἐπὶ μὲν τοῦ ἡλιακοῦ ἀποστήματος ἔσται # α κε , ἐπὶ δὲ τῶν |
περιεχόμενον ὑπὸ δύο φθόγγων ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις | ||
οἱ τοῦ διὰ τεσσάρων ὅροι σύμφωνοι : ἀπὸ δὲ τοῦ ὀξυτέρου αὐτῶν λαμβάνεται φθόγγος σύμφωνος ἐπὶ τὸ ὀξὺ διὰ τεσσάρων |
εἰς τὸ κοινὸν ἀμφοτέρων γένος τιθέασιν . , Καὶ ὁ ὁρισμὸς εἷς ἐστίν , ὁμοίως δὲ οὐδὲ τοῦτον ἔχουσι λέγειν | ||
δυνάμει , ποιήσει τὸ διωρισμένον συνεχές , καὶ ἔσται ὁ ὁρισμὸς αὐτοῦ φθαρτικός . Πέμπτον δεῖ ζητῆσαι εἰ ὑγιῶς ἔχει |
ὁ δὲ ὁρισμὸς ἄμεσος πρότασις ἢ ὅλως πρότασις μετὰ τοῦ ὁριστοῦ : ὥστε πάλιν ἐν μιᾷ προτάσει πλείω τῶν δύο | ||
τὰς ἑκάστου τῶν ὄντων διαφοράς , καθ ' ἃς τοῦ ὁριστοῦ διαφέρει , οὐδ ' εἰ διαφέρει οἶδεν : ἀγνοῶν |
ἁπλοῦν ἐστι παρόσον οὔτε ἐκ τοῦ αὐτοῦ ἔστιν ἀξιώματος δὶς λαμβανομένου οὔτε ἐκ διαφερόντων συνέστηκεν , ἐξ ἄλλων δὲ τινῶν | ||
: καὶ πλύνεται δὲ χωριζομένου τοῦ ψαμμώδους ὡς ἀχρήστου , λαμβανομένου δὲ τοῦ λιπαρωτέρου καὶ λείου . Ἀλσίνη ἔχει παρόμοια |
ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις πλειόνων φθόγγων ἐν τῷ | ||
Ἀγωγὴ προσεχὴς ἀπὸ τῶν βαρυτέρων ὁδὸς ἢ κίνησις φθόγγων ἐκ βαρυτέρου τόπου ἐπὶ ὀξύτερον , ἀνάλυσις δὲ τοὐναντίον . τὰς |
ἐνιαυσιαίαν συμπαθῶς τῇ σελήνῃ : ὅταν γὰρ αὕτη ζῳδίου μέγεθος ὑπερέχῃ τοῦ ὁρίζοντος , ἄρχεσθαι διοιδεῖν τὴν θάλατταν καὶ ἐπιβαίνειν | ||
στοιχείων ἀμετρία , ὅταν τι τούτων κατὰ πολὺ ᾖ [ ὑπερέχῃ ] ἢ ἐλλείπῃ : διδάσκει δὲ ἐν τῷ Περὶ |
λαμπρότατα περιλάμπει πάντα τὸν κόσμον τὸν ὑπερκείμενον καὶ ὑποκείμενον : μέσος γὰρ ἵδρυται στεφανηφορῶν τὸν κόσμον , καὶ καθάπερ ἡνίοχος | ||
, ἀπὸ τοῦ Ἀφροδίτη . . . . ἀνέῳγε : μέσος παρακείμενος : ἀνοίγω ἤνῳγα , ὡς ἠνώρθουν καὶ ἠνώχλουν |
ἀξιόλογον τοῦθ ' ὅριον ἐφάνη ὁ Νεῖλος , μῆκος μὲν ἀνατείνων ἐπὶ τὴν μεσημβρίαν πλειόνων ἢ μυρίων σταδίων , πλάτος | ||
ἰσχνὸς τὸν μικρὸν ἐκτὸς ἀπάγων , ὁ δέ γε τρίτος ἀνατείνων ὅλον τὸν πόδα . ἐφεξῆς δ ' αὐτῶν σχεδὸν |
, ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον | ||
εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ |
ἱμάτια αὐτοῦ καὶ ἀναιδῶς ἔδειξε τὴν αἰδῶ αὐτοῦ . τοῦ δακτύλου ] τῆς πόσθης . καὶ γεγηρακότος δηλονότι πάλιν ὁ | ||
αὐτοὶ τῷ μέτρῳ : καὶ τὸ ηʹ γὰρ κῶλον ἀντὶ δακτύλου καὶ ἀναπαίστου προκελευσματικὸν ἔχει καὶ ἀνάπαιστον . ἐπὶ τῷ |
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
τὸ ὂν ἀγένητον ἀπολείπει : λέγει δὲ τὴν γῆν τοῦ πυκνοῦ καταρρυέντος [ ἀέρος ] γεγονέναι . . . καὶ | ||
ἄστρα καὶ τὸν ἥλιον ἐκ πυρός φησι καὶ τοῦ πρώτου πυκνοῦ συγκεῖσθαι , τὴν δὲ σελήνην ἐκ τοῦ δευτέρου πυκνοῦ |
ἐκ τῶν πέντε συγκείμενον κινεῖται , πάντως καὶ ἕκτου προσελθόντος ἀμεροῦς κινήσεται , ἰσχυροτέρων ὄντων τῶν πέντε παρὰ τὸ ἕν | ||
ὁ χρόνος εἴη διαιρετός , ἐν ᾧ κινεῖταί τι κατὰ ἀμεροῦς καὶ ἐλαχίστου , δῆλον ὡς ἐν τῷ μέρει τοῦ |
στίχος ἐξ ἐπιστατῶν καὶ πρωτοστατῶν ἐν μέσῳ λοχαγοῦ τε καὶ οὐραγοῦ συντεταγμένος . συλλοχισμὸς δ ' ἐστὶν παράθεσις λόχου ἑτέρῳ | ||
, εἶτα ἐπιστάτην , καὶ τοῦτο παρ ' ἕνα μέχρις οὐραγοῦ , καθ ' ἃ ὑπογέγραπται : Ὅτ ' ἂν |
ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
τοιαύτας παραχωρήσεις , ὥστε οὐκ ἂν εἰδείης ὅπου ἐστὶ τὸ ἀρκτικὸν κλίμα , οὐδ ' εἰ ἀρχὴν ἐστίν : εἰ | ||
διδάσκει ὡς Ἴωνες , ὅταν ἀναδιπλῶσι ῥήματα , τὸ αὐτὸ ἀρκτικὸν ποιοῦνται πρώτης καὶ δευτέρας συλλαβῆς , λαβέσθαι λελαβέσθαι , |
, καθ ' ἣν ἕκαστον τῶν ὄντων ἓν λέγεται . Ἀριθμὸς δὲ τὸ ἐκ μονάδων συγκείμενον πλῆθος . Μέρος ἐστὶν | ||
μερῶν ἐπιπέδῳ σὺν τῷ ἀπὸ τοῦ προειρημένου μέρους τετραγώνῳ . Ἀριθμὸς γὰρ ὁ αβ διῃρήσθω εἰς δύο ἀριθμοὺς τοὺς αγ |
οὗτος ὑπὸ τοῦ προσβάλλοντος ἀεὶ κύματος σκληρῶς πεπιλημένος , ὥστε ὁμογενοῦς ὄγκου καὶ μίαν φύσιν ἔχοντος διὰ τὴν μίξιν καὶ | ||
οὗτος ὑπὸ τοῦ προσβάλλοντος ἀεὶ κύματος σκληρῶς πεπιλημένος , ὥστε ὁμογενοῦς ὄγκου καὶ μίαν φύσιν ἔχοντος διὰ τὴν μίξιν καὶ |
δυνατὸν εἶναι ἐπὶ τὸ ἄνω ἄπειρον τὴν ἀρχὴν τοῦ κάτω ὡρισμένου ὑπάρχοντος , ἐπεὶ οὕτω συμβήσεται ἀναιρεῖσθαι τὸ κυρίως αἴτιον | ||
οἰκείας οὐκ ἐκπεσεῖται δεξιότητος . Τούτων δὲ σαφῶς ἀποδειχθέντων καὶ ὡρισμένου μὲν ὄντος τοῦ ποσοῦ καταληφθείσης δὲ τῆς ἰδιότητος ἀκριβῶς |
δοθέντας ἀριθμούς . Δεῖ δὴ τῶν εὑρισκομένων τὸν ἀπὸ τοῦ ἡμίσεος τοῦ συναμφοτέρου τετράγωνον τοῦ ὑπ ' αὐτῶν ὑπερέχειν τετραγώνῳ | ||
προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου καὶ ἡμίσεος ποδὸς ἀδιαφόρου . Τὸ ηʹ ἰαμβικὸν δίμετρον ἀκατάληκτον : |
προσαγορεύουσι καὶ μετροῦσι τὰ νάματα , καὶ πανήγυρις αὐτοῖς ὁ πῆχυς γίνεται . . . Δεινὸς χρηματιστὴς ἐκ τῆς κατὰ | ||
γενικῆς στάχυος , βότρυος , κέγχρυος πλὴν τῶν δύο τούτων πῆχυς πήχεως , καὶ πέλεκυς πελέκεως . ταῦτα γὰρ μόνα |
καὶ χωρίζειν . ἀρχὴ τοῦ λ λῆμα καὶ λῆμμα καὶ λεῖμμα διαφέρει . δι ' ἑνὸς μ λῆμά ἐστιν ἡ | ||
τῷ διὰ τεσσάρων , ἡ τῶν ΒΗ ὑπεροχὴ περιέξει τὸ λεῖμμα . λοιπὸν δὲ ἐπειδήπερ διὰ τεσσάρων εἰσὶν οἵ τε |
ἀναπαύεται οὐδένα χρόνον . Ὁ δὲ τριταῖος μακρότερός ἐστι τοῦ ἀμφημερινοῦ , καὶ ἀπὸ χολῆς ἐλάσσονος γίνεται : ὁκόσῳ δὲ | ||
μὲν τοιαῦτ ' ἂν εἴη οὖρα . Τοῦ δέ γε ἀμφημερινοῦ κρατοῦντος λεπτά τε καὶ λευκὰ καὶ οἷον ὑδατώδη καὶ |
ὁ γ συνεχὴς προσσωρευθεὶς καὶ ἐξαπλωθείς γε εἰς μονάδα καὶ συντεθεὶς τὸν Ϛ ἀποδίδωσι δεύτερον ἐνεργείᾳ τρίγωνον καὶ προσέτι σχηματογραφεῖ | ||
δ ὁ ἀπὸ τοῦ αβ τετράγωνος , ὁ δὲ εη συντεθεὶς ἐκ δύο ἐπιπέδων ἀριθμῶν τῶν ἐκ τῶν αβ βγ |
πούς , εἶτα βακχεῖος , εἰ δὲ βούλεταί τις , δάκτυλος : εἶτα κρητικός : μεθ ' οὕς εἰσι δύο | ||
ὑγροτέρῳ τῷ σκέλει χρῶνται : ὥσπερ ὁ μέγας τῆς χειρὸς δάκτυλος : μάλιστα γὰρ οὗτος ἐκπίπτει φύσει : οἷς μὲν |
, ὅπερ καὶ Ἀριστοτέλης προλαβὼν εἴληφε , καὶ ἔστω τὸ ὁριστὸν ἄνθρωπος . αἰτούμεθα τούτου γένος εἶναι τὸ ζῷον , | ||
τε καὶ τὸ ὁριστὸν ἀντιστρέφει πρὸς ἄλληλα , εἰ τὸ ὁριστὸν ᾗ ὁριστὸν ἀποδεικτόν , δῆλον ὅτι καὶ ὁ ὅρος |
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
ἥμισυ τρήματος τὸ διὰ πασῶν σύμφωνον ἀποτελεῖται . τριχῆ δὲ διαιρεθέντος καὶ τῶν μὲν δυεῖν μερῶν ὄντων πρὸς τῇ γλωσσίδι | ||
τῆς τοῦ κανονίου προσαγωγῆς εἰς ἓξ τοὺς ἐφεξῆς ἐπογδόους λόγους διαιρεθέντος παραφέρωμεν καθ ' ἕκαστον φθόγγον τὸ παραπλήσιον ὑπαγώγιον ἐπὶ |
δὲ ἡ μονὰς κατὰ τὸν ἕνα θεόν : πᾶς γὰρ ἀριθμὸς νεώτερος κόσμου , ὡς καὶ χρόνος , ὁ δὲ | ||
γὰρ ἄλλα πάντα τὸν ἀριθμὸν φαίνεται μιμούμενα , ὁ δὲ ἀριθμὸς παρ ' ἑαυτοῦ ἀρχὰς μονάδα καὶ δυάδα . ὡς |
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
τὰ δ ' ἄλλα ἀκατάληκτα , πλὴν τοῦ θʹ καὶ τελευταίου βραχυκαταλήκτων ἰθυφαλλικῶν . ἐπὶ τῷ τέλει κορωνίς . 〛 | ||
ὥραν , προαποθνῄσκω πολλοὺς θανάτους ὑπομένων ἀνθ ' ἑνὸς τοῦ τελευταίου . ” πολλάκις δὲ ἐδειματοῦτο καὶ διεπτόητο καὶ φρίκῃ |
γ . λέγω , ὅτι καὶ ὁ β τοῦ α ἐπιμόριός ἐστι κατὰ τὸ ὁμώνυμον μόριον τοῦ γ ἐναλλάξ , | ||
μέτρου . ἄφελε ἴσον τῷ Θ τὸν ΗΖ καὶ ἐπεὶ ἐπιμόριός ἐστιν ὁ ΔΖ τοῦ Θ , ἡ ὑπεροχὴ ὁ |
καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ . | ||
κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν |
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
προσκατηγορουμένου προτάσεων , ἀλλὰ καὶ ἐπὶ τῶν ἐξ ὑποκειμένου καὶ κατηγορουμένου συμβαίνειν ἐροῦμεν , οἷον τῆς τὶς ἄνθρωπος οὐ γεωμετρεῖ | ||
σχέσεως οὐ δύναται . Τριῶν οὖν τούτων ὄντων , ὑποκειμένου κατηγορουμένου καὶ σχέσεως , διέλωμεν χωρὶς ἕκαστον αὐτῶν : οὔτω |
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
. ἴση ἄρα ἡ ΔΞ τῇ ΔΖ . Κοινοῦ ἄρα προσληφθέντος λόγου τοῦ τῆς ΒΔ πρὸς τὴν ΔΖ , ἔσται | ||
, σύστημα δύο τόνων καὶ τοῦ λεγομένου ἡμιτονίου . εἶτα προσληφθέντος ἄλλου τόνου , τουτέστι τοῦ μεσεμβοληθέντος , ἡ διὰ |
τὴν ὥραν , ἐὰν αὐτῶν τι τῶν δώδεκα ζῳδίων θεωρῶμεν ἀνατέλλον . τὸν γὰρ γινώσκοντα , ἐν ᾧ ἐστι ζῳδίῳ | ||
τῶν ἀπλανῶν ἄστρων ἀπὸ ἑῴας φαινομένης ἐπιτολῆς ἑκάστης νυκτὸς ὁρᾶται ἀνατέλλον ἕως τῆς ἑσπερίας φαινομένης ἐπιτολῆς , τὸ ηʹ ἄρα |
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
. εἰ δὲ τοῦτο , οὐχ ὁ λόγος τοῦ ἐκτὸς παραστατικός ἐστιν , ἀλλὰ τὸ ἐκτὸς τοῦ λόγου μηνυτικὸν γίνεται | ||
ἐστι ; καὶ δῆλον ὅτι ὁ οὕτω λέγων ἀμφοτέρων ἐστὶ παραστατικός , αἰτεῖ μέντοι τὸ ἕτερον , καθότι , ὡς |
υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
ζῳδιακὸν τῶν μεγίστων εἶναι ἐν τῇ σφαίρᾳ κύκλων , καὶ διχοτομεῖσθαι τὴν σφαῖραν ὑφ ' ἑκατέρου αὐτῶν , καὶ τὸ | ||
ἀστὴρ ἐπέχει τοῦ Αἰγόκερω μοῖραν αʹ : οὐκ ἄρα δυνατὸν διχοτομεῖσθαι αὐτὸν ὑπὸ τοῦ προειρημένου κύκλου . ὁμοίως δὲ καὶ |
, Β , Γ : ὅπερ ἔδει δεῖξαι . Ἐὰν ἐλάχιστος ἀριθμὸς ὑπὸ πρώτων ἀριθμῶν μετρῆται , ὑπ ' οὐδενὸς | ||
δυάδος : ἔστω ʂ α Μο β . ὁ ἄρα ἐλάχιστος ἔσται Μο β # ʂ α . Καὶ ἐπειδὴ |
ἁλμυρὸν βαρὺ φύσει καὶ ἄτροφον ἔπειτα ἀσαπὲς καὶ ἀναλλοίωτον : καταλειπόμενον οὖν καὶ οὐ συνελκόμενον ὑπὸ τῶν ῥιζῶν οὐκ ἀναμίγνυται | ||
βουκόλος , οὗ πρόσθε μέμνηται . καλάμη δέ ἐστι τὸ καταλειπόμενον ἐκ τοῦ θεριζομένου σίτου , ποππύσδεν δὲ τὸ λεπτοτάτως |
; εἰ γὰρ μετρήσει αὐτὸν περισσάκις , ἔσται ὁ Α περισσάκις περισσός , πᾶς δὲ περισσάκις περισσὸς ἥμισυ οὐκ ἔχει | ||
τε γὰρ ἀρτίου ἀρτιάκις μετρεῖται καὶ ὁ αὐτὸς ὑπὸ ἀρτίου περισσάκις , οὐδετέρῳ δὲ τῶν προτέρων τοῦθ ' ἅμα συμβέβηκεν |
εἶναι ἡ γενικὴ ἁλτός , ἵνα εὑρεθῇ διὰ δύο συμφώνων ἐκφερομένη : ἀλλ ' ἐπειδὴ δασυνομένης τῆς εὐθείας ἔμελλε ψιλοῦσθαι | ||
ποιὰ τάσις ἐγγραμμάτου φωνῆς ὑγιοῦς κατὰ τὸ ἀπαγγελτικὸν τῆς λέξεως ἐκφερομένη μετά τινος τῶν συνεζευγνυμένων περὶ μίαν συλλαβὴν ἤτοι κατὰ |
τῇ τέχνῃ , οἷον ἐξόχως . Πλάτων γοῦν ὁ φιλόσοφος διαιρούμενος τὰς πολιτείας τὴν μὲν πρώτως ἔχειν φησίν , τὴν | ||
τοῦτο ἔστι διαφορά : ὁ μὲν γὰρ ἄρτιος εἰς ἄνισα διαιρούμενος ὁμοειδεῖς τοὺς ἀνίσους ποιεῖται , οἷον ὁ η εἰς |