| τοῦ ἑνὸς φύσιν καὶ τὴν τοῦ σημείου καὶ παντὸς τοῦ ἀδιαιρέτου , ὅτι μήτε προστιθέμενα μήτ ' ἀφαιρούμενα τὸ ποσὸν | ||
| ἔσται ἑαυτῷ ἴσος . οὕτως τὸ νοούμενον ἔλαττον , μονάδος ἀδιαιρέτου οὔσης , τὸ οὐδέν , πανταχοῦ σῴζει πρὸς τὴν |
| ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
| ' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
| ζῳδιακὸν τῶν μεγίστων εἶναι ἐν τῇ σφαίρᾳ κύκλων , καὶ διχοτομεῖσθαι τὴν σφαῖραν ὑφ ' ἑκατέρου αὐτῶν , καὶ τὸ | ||
| ἀστὴρ ἐπέχει τοῦ Αἰγόκερω μοῖραν αʹ : οὐκ ἄρα δυνατὸν διχοτομεῖσθαι αὐτὸν ὑπὸ τοῦ προειρημένου κύκλου . ὁμοίως δὲ καὶ |
| Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
| ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
| τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
| ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
| τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
| ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
| περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ | ||
| ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ |
| υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
| τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
| ἥμισυ τρήματος τὸ διὰ πασῶν σύμφωνον ἀποτελεῖται . τριχῆ δὲ διαιρεθέντος καὶ τῶν μὲν δυεῖν μερῶν ὄντων πρὸς τῇ γλωσσίδι | ||
| τῆς τοῦ κανονίου προσαγωγῆς εἰς ἓξ τοὺς ἐφεξῆς ἐπογδόους λόγους διαιρεθέντος παραφέρωμεν καθ ' ἕκαστον φθόγγον τὸ παραπλήσιον ὑπαγώγιον ἐπὶ |
| : διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί | ||
| μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν |
| καταγραφῆς Εὐθεῖα γάρ τις ἡ ΓΔ τμήματος ἑαυτῆς τοῦ ΔΑ πενταπλάσιον δυνάσθω , τῆς δὲ ΔΑ διπλῆ κείσθω ἡ ΑΒ | ||
| , δῆλον : ἐπεὶ γὰρ τὸ μὲν ἀπὸ τῆς ΑΒ πενταπλάσιον τοῦ ἀπὸ τῆς ΜΝ ἐκ κέντρου οὔσης τοῦ κύκλου |
| οὗτος ὑπὸ τοῦ προσβάλλοντος ἀεὶ κύματος σκληρῶς πεπιλημένος , ὥστε ὁμογενοῦς ὄγκου καὶ μίαν φύσιν ἔχοντος διὰ τὴν μίξιν καὶ | ||
| οὗτος ὑπὸ τοῦ προσβάλλοντος ἀεὶ κύματος σκληρῶς πεπιλημένος , ὥστε ὁμογενοῦς ὄγκου καὶ μίαν φύσιν ἔχοντος διὰ τὴν μίξιν καὶ |
| καλεῖται δὲ ἡ κατ ' ἐπιστροφὴν εἰς τὸ ἐξ ἀρχῆς ἀποκατάστασις ἐπικατάστασις . Ἡ μὲν οὖν πρώτη ἐπιστροφὴ καὶ ἡ | ||
| τῆς τοῦ ὤμου κεφαλῆς ποιησαμένης εὐχερὴς εἰς τὸ κατὰ φύσιν ἀποκατάστασις ἔσται . καταρτίζεται δὲ ὦμος ὑπὲρ τῆς δικλίδος θύρας |
| ἀπὸ τῶν αγ , γδ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , ἔτι δὲ διαιρεθῇ καὶ εἰς ἀνίσους ἀριθμούς | ||
| γβ τετραγώνῳ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , διαιρεθῇ δὲ καὶ εἰς ἀνίσους ἀριθμούς , ὁ ἐκ τῶν |
| ἐκ τῶν πέντε συγκείμενον κινεῖται , πάντως καὶ ἕκτου προσελθόντος ἀμεροῦς κινήσεται , ἰσχυροτέρων ὄντων τῶν πέντε παρὰ τὸ ἕν | ||
| ὁ χρόνος εἴη διαιρετός , ἐν ᾧ κινεῖταί τι κατὰ ἀμεροῦς καὶ ἐλαχίστου , δῆλον ὡς ἐν τῷ μέρει τοῦ |
| ' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
| , ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
| τὸ ὂν ἀγένητον ἀπολείπει : λέγει δὲ τὴν γῆν τοῦ πυκνοῦ καταρρυέντος [ ἀέρος ] γεγονέναι . . . καὶ | ||
| ἄστρα καὶ τὸν ἥλιον ἐκ πυρός φησι καὶ τοῦ πρώτου πυκνοῦ συγκεῖσθαι , τὴν δὲ σελήνην ἐκ τοῦ δευτέρου πυκνοῦ |
| ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
| ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
| τρίγωνον , καὶ αἱ πρὸς τῇ βάσει γωνίαι ἴσαι . διμοίρου δὲ ἡ πρὸς τῷ Ε : διμοίρου ἄρα καὶ | ||
| ἐπιπέδῳ κεκλιμένῳ πρὸς τὸν ὁρίζοντα , τῆς ὑπὸ ΚΜΝ γωνίας διμοίρου ὀρθῆς ὑποκειμένης . ιαʹ . Τῆς αὐτῆς δέ ἐστιν |
| ὑπάρχειν ὁ πᾶς χρόνος λέγεται οὐδενὸς αὐτοῦ τῶν μερῶν ὑπάρχοντος ἀπαρτιζόντως . Ποσειδώνιος : τὰ μέν ἐστι κατὰ πᾶν ἄπειρα | ||
| ὁ η ἀριθμός . ὁ μὲν οὖν τρία τὸν θ ἀπαρτιζόντως μετρεῖ : τρὶς γὰρ συντεθεὶς αὐτὸν μεμέτρηκεν . ὑπερβαίνει |
| εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
| λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
| , διότι μὴ πεφυκὸς ἡνώθη . τὸ δὲ ἐν κώλοις ἀσυνάρτητον τοῦτο ἀντιπαθές , ἐναντίοις ποσὶν ἡνωμένον . Τὸ βʹ | ||
| καὶ εʹ ὅμοια τῷ αʹ καὶ βʹ : τὸ Ϛʹ ἀσυνάρτητον ἐκ δύο τροχαικῶν πενθημιμερῶν συγκείμενον . ἐπὶ τῷ τέλει |
| ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
| καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
| γ . λέγω , ὅτι καὶ ὁ β τοῦ α ἐπιμόριός ἐστι κατὰ τὸ ὁμώνυμον μόριον τοῦ γ ἐναλλάξ , | ||
| μέτρου . ἄφελε ἴσον τῷ Θ τὸν ΗΖ καὶ ἐπεὶ ἐπιμόριός ἐστιν ὁ ΔΖ τοῦ Θ , ἡ ὑπεροχὴ ὁ |
| ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ | ||
| ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων |
| ἐν τῷ προειρημένῳ λόγῳ ἐλάσσων πρὸς τὸν μείζονα ἐξεταζόμενος . πολλαπλασιεπιμόριος δέ ἐστι λόγος , ὅταν ὁ μείζων ὅρος δὶς | ||
| ἐλάσσονος μέρος : οἷον ὁ τῶν κϚʹ τοῦ τῶν ηʹ πολλαπλασιεπιμόριος λέγεται , ἐπειδήπερ ὁ ηʹ τρὶς καταμετρήσας τὸν κϚʹ |
| αη ηβ : καὶ ἐπεὶ τὸ γδ τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ | ||
| , πρῶτον διπλάσιον ἐν ἑνὶ στίχῳ , εἶτα ἐν δευτέρῳ τριπλάσιον , εἶτα τετραπλάσιον ἐν τρίτῳ καὶ μέχρι δεκαπλασίων , |
| δὲ ἀπήχημα τῇ ῥωγμῇ ὑπάγουσι . τιζʹ . Ῥωγμή ἐστιν ὀστοῦ διακοπὴ ἐπιπόλαιος εὐθεῖα καὶ ἤτοι στενὴ ἢ πλατεῖα . | ||
| οἷον τὸν ἄρτον τόνδε καὶ σαρκὸς τῆσδε καὶ τοῦδε τοῦ ὀστοῦ μῖγμα εἶναι ὁμοίως τῶι παντί . , ἐδόκει δὲ |
| τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ | ||
| διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ |
| τρίγωνα ἰσόπλευρα εἶναι . ἔσται δὴ ἡ ΑΒΓΔΕ πυραμὶς μέρος εἰκοσαέδρου σχήματος . τετμήσθω μία πλευρὰ ἑνὸς τριγώνου ἡ ΖΓ | ||
| , οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό τε τοῦ |
| ΒΓ τοῦ ΔΖ ἡμιόλιος , ὁ δὲ ΔΖ τοῦ Θ ἐπίτριτος : φημὶ τὸν ΒΓ τοῦ Θ διπλάσιον εἶναι . | ||
| τὸ τρίτον αὐτοῦ , ἤγουν τὸ Γ . Ὁ Η ἐπίτριτος τοῦ Ϛʹ . Περιέχει γὰρ ὅλον τὸν Ϛʹ , |
| , ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
| λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
| ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
| τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
| ὀργανικὰ οὐ προσποιούμενοι τὸ σύνθετον . Ἔστι δ ' οὐκ ἀντιδιαίρεσις τὸ σύνθετον πρὸς τὸ ἁπλοῦν εἶναι , ἀλλὰ κατὰ | ||
| τὰ μέν ἐστι λογικά , τὰ δὲ ἄλογα . ” ἀντιδιαίρεσις δέ ἐστι γένους εἰς εἶδος τομὴ κατὰ τοὐναντίον , |
| . διὰ τοῦτο γραμμὴ μὲν ἄνευ ἐπιπέδου καὶ τοῦτο χωρὶς στερεοῦ θεωρεῖται , ἐν δὲ τῷ τελείῳ μεγέθει πάντα χρὴ | ||
| οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλ ' ὡς ἡ ΒΜ βάσις πρὸς |
| ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
| βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
| τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
| μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
| δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ | ||
| ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ |
| τοῦ διπλασίονος τοῦ τρίτου ὑπερέχουσι μο κ . Ὁ ἄρα διπλασίων τοῦ τρίτου ἔσται Ϟ β ↑ μο κ : | ||
| διπλασίου καὶ τοῦ τριπλασίου τῶν κατὰ τὸ ἑξῆς συντιθεμένων , διπλασίων μὲν αʹ βʹ δʹ ηʹ : δ ' ἐστὶ |
| τῶν ἁρμονικῶν λέγουσι βαρύτατον μὲν τὸν ὑποδώριον τῶν τόνων , ἡμιτονίῳ δὲ ὀξύτερον τούτου τὸν μιξολύδιον , τούτου δ ' | ||
| ἄλλο τι λεγόμενον συνημμένων , εὐθὺς τὴν ἑαυτοῦ τρίτην ἔχον ἡμιτονίῳ διεστῶσαν ἀπὸ τῆς μέσης , εἶτα μετὰ τόνον τὴν |
| ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ ἴαμβος πενθημιμερής . δʹ ἀπὸ | ||
| χοριαμβικὸν † δίμετρον . τὸ ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ |
| πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
| . Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
| οὔτε δίτονον πρὸς διτόνῳ τεθήσεται οὔτε τόνος ἐπὶ τὸ βαρὺ διτόνου , ὥστε λείπεται τὸ πυκνόν . φανερὸν δὴ ὅτι | ||
| πρὸς αὐτῷ κατ ' οὐδέτερον τῶν τόπων οὔτε τόνος . διτόνου γὰρ οὕτω τιθεμένου ἤτοι βαρύτατος πυκνοῦ ἢ ὀξύτατος πεσεῖται |
| Α σημεῖον , πρὸς τὴν ἐν τῇ ἑτέρᾳ σφαίρᾳ ὁμοιοταγῆ πυραμίδα τριπλασίονα λόγον ἔχει , ἤπερ ἡ ὁμόλογος πλευρὰ πρὸς | ||
| ΑΔΕ βάσιν , οὕτως ἡ ΑΒΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα . καὶ συνθέντι πάλιν , ὡς ἡ ΑΒΓΔΕ βάσις |
| τμημάτων ὁ μηνίσκος . ἔσται οὖν ἐλάττων ὁ μηνίσκος τοῦ τριγώνου τοῖς ὑπὸ τοῦ ἑξαγώνου ἀφαιρουμένοις τμήμασιν . ὁ ἄρα | ||
| καταγίνεται , ὡς γεωμετρία ἀποδεικνύουσα ἀεὶ τὰς τρεῖς γωνίας τοῦ τριγώνου δυσὶν ὀρθαῖς ἴσας εἶναι , ἢ ὡς ἐπὶ τὸ |
| μὲν καθόλου ληφθέντος τοῦ δὲ ἐπὶ μέρους καὶ ἐν τούτῳ περιεχομένου . δέδεικται γάρ , ὅτι , εἰ εἴη συλλογισμός | ||
| τῶν ἱερῶν ἀφυλάκτων ὄντων ἤδη καὶ συμφέρον . φυσικῶς οὖν περιεχομένου τῷ συμφέροντι τοῦ δυνατοῦ , ἀναγκαίως καὶ ὑποτέτακται αὐτῷ |
| ὅσα πρὸς τῷ τελείῳ προσέλαβε μέρος ποδός , οἷον ἐπὶ ἰαμβικοῦ εἶμ ' ὧτε πυσσάκω λυθεῖσα : τοῦτο μὲν οὖν | ||
| μιᾶς λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ , |
| τετράκις ὀκτάκις ἢ τρὶς πεντάκις δωδεκάκις ἢ κατά τινα ἄλλην ἀνισότητα τοιαύτην . τὰ δὲ τοιαῦτα στερεὰ σχήματα λέγεται σκαληνὰ | ||
| , καὶ ταύτην τὴν διὰ τὴν βλάβην ἢ τὴν ἀδικίαν ἀνισότητα [ λέγει ] γινομένην ἐπανορθοῦν πειρᾶται καὶ ἐς τὸ |
| ἁλμυρὸν βαρὺ φύσει καὶ ἄτροφον ἔπειτα ἀσαπὲς καὶ ἀναλλοίωτον : καταλειπόμενον οὖν καὶ οὐ συνελκόμενον ὑπὸ τῶν ῥιζῶν οὐκ ἀναμίγνυται | ||
| βουκόλος , οὗ πρόσθε μέμνηται . καλάμη δέ ἐστι τὸ καταλειπόμενον ἐκ τοῦ θεριζομένου σίτου , ποππύσδεν δὲ τὸ λεπτοτάτως |
| ὑπολόγου γίνεται ἕξ , ὧν διπλάσιός ἐστιν ὁ ιβ πρῶτος πολυπλασιασμός . ἐπὶ τὴν ΑΒ κάθετον . , . ] | ||
| ὅτι ἡνίκα ἐν τοῖς ἀριθμοῖς τὴν ἐπί πρόθεσιν λέγομεν , πολυπλασιασμός ἐστιν , οἷον πέντε ἐπὶ πέντε εἰκοσιπέντε , καὶ |
| περιεχόμενον ὑπὸ δύο φθόγγων ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις | ||
| οἱ τοῦ διὰ τεσσάρων ὅροι σύμφωνοι : ἀπὸ δὲ τοῦ ὀξυτέρου αὐτῶν λαμβάνεται φθόγγος σύμφωνος ἐπὶ τὸ ὀξὺ διὰ τεσσάρων |
| ἡμᾶς μεσότητι προσκείμενον τῆς κατὰ τὸ πρᾶγμα μεσότητος ἀφίστησι . προστεθὲν δὲ ἐπὶ πᾶσι τὸ ὡρισμένον λόγῳ τῶν τε κακιῶν | ||
| τὴν τοῦ στερεοῦ φύσιν ἑνὸς δεῖ τοῦ βάθους , ὃ προστεθὲν τριάδι γίνεται τετράς . ὅθεν καὶ μέγα χρῆμα συμβέβηκεν |
| ἐντεῦθεν : τοῦ ἐγκεφάλου τρεῖς κοιλίας ἔχοντος , ἐμπροσθίαν , ὀπισθίαν καὶ μέσην , ἑπτὰ νεύρων συζυγίαι προέρχονται ἐξ αὐτῶν | ||
| : τὰς πλευρὰς οἷόν περ βατίς , τὰν δ ' ὀπισθίαν ἔχησθ ' ἀτενὲς οἷόν περ βάτος , τὰν δὲ |
| κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ | ||
| , ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ |
| περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας | ||
| λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα |
| τὴν βάσιν : οἷον εἰ ἐκκειμένου μὲν ἑνὸς δακτύλου , διμέτρου δὲ ἀναπαιστικοῦ κατὰ μέσον πέσοι σπονδεῖος , ἄδηλον πότερα | ||
| δέ ἐστι παρὰ Ἀρχιλόχῳ ἀσυνάρτητον ἐκ δακτυλικοῦ πενθημιμεροῦς καὶ ἰαμβικοῦ διμέτρου ἀκαταλήκτου ἀλλά μ ' ὁ λυσιμελής , ὠταῖρε , |
| ἀναπαύεται οὐδένα χρόνον . Ὁ δὲ τριταῖος μακρότερός ἐστι τοῦ ἀμφημερινοῦ , καὶ ἀπὸ χολῆς ἐλάσσονος γίνεται : ὁκόσῳ δὲ | ||
| μὲν τοιαῦτ ' ἂν εἴη οὖρα . Τοῦ δέ γε ἀμφημερινοῦ κρατοῦντος λεπτά τε καὶ λευκὰ καὶ οἷον ὑδατώδη καὶ |
| ἦν πρῶτον τὸ διπλάσιον , εἶτα τὸ ἐπιμόριον καὶ τὸ ἐπιμερὲς καὶ τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ | ||
| ε : τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον |
| ٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١ | ||
| μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν |
| τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
| πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
| τὴν ἐν τοῖς ἀγῶσι νίκην : μίμημα γάρ ἐστι τοῦ αὐλητικοῦ ἐνδοσίμου . Τὴν Συρακουσίων δεκάτην : Δήμων Συρακουσίους εὐδαιμονήσαντάς | ||
| μὲν οὖν ταύτας λέγουσι τὰς διαφοράς . Περὶ δὲ τοῦ αὐλητικοῦ τὸ μὲν φύεσθαι δι ' ἐννεατηρίδος , ὥσπερ τινές |
| τρόπον ἀπὸ μὲν τοῦ μείζονος ἀρχομένων ὅρου συνίσταται ἀναλογία ἐν ἐπιμερέσι λόγοις δισεπιτρίτοις : οἷον θʹ Ϛʹ δʹ : ἐκ | ||
| γίνονται γεωμετρικαί , ἀλλὰ καὶ ἐν ἐπιμορίοις εἴδεσιν ἅπασι καὶ ἐπιμερέσι καὶ μικτοῖς , καὶ τὸ ἐξαίρετον ἰδίωμα τῆς μεσότητος |
| περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
| τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
| , ἀφ ' οὗ μὴ προῆλθεν . Ἔτι τὸ διακεκριμένον διακεκριμένου διακέκριται , ὡς τὸ ἕτερον ἑτέρου ἕτερον . Εἰ | ||
| μὲν τοῦ συνεχοῦς τὸ μετρεῖν λέγεται , ἐπὶ δὲ τοῦ διακεκριμένου τὸ ἀριθμεῖν . . ἄρνες μὲν οἱ νέοι , |
| πόρισμά τι ἐκ τῶν εἰρημένων συνάγει . ἔστι δὲ τοιοῦτον πόρισμα ὅτι φανερὸν γέγονεν ἐκ τῶν εἰρημένων ὡς μία κατάφασις | ||
| τῇ εἰς ἀδύνατον ἀπαγωγῇ συνανεφάνη . τὸ δὲ νῦν προκείμενον πόρισμα διδάσκει ἡμᾶς , ὅτι περὶ ἓν σημεῖον τόπος εἰς |
| ταῦτα μὲν οὖν περὶ τῆς πρώτης πλοκῆς . Τὸ δὲ ἀντίστροφον αὐτῇ τοῦτό ἐστι , πότε δυνατὸν τὰ ἅμα λεγόμενα | ||
| . . . ς ' ] ὁ Νεῖλός σε . ἀντίστροφον ] τὴν ἐξ ἀμφοτέρων τῶν μερῶν ἑλισσομένην , ὅ |
| σύνδεσμος οὐκ ἔστιν ἐκ τοῦ ῥα : ὁ γὰρ ῥα ἐγκλιτικός ἐστι καὶ ὑποτακτικός , ὁ δὲ ἀρ οὐκ ἔστιν | ||
| τρίτου προσώπου δυϊκαῖς παρείπετο τὸ μόνως ἐγκλίνεσθαι , οὔτε ὁ ἐγκλιτικός , εἴγε ἀδύνατον εὐθείας πτώσεως ἐγκλιτικὴν εὑρέσθαι ἀντωνυμίαν . |
| μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
| ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
| καὶ ὁρίζει τὰ πρόσωπα , ῥητέον . Πᾶσα ἀντωνυμία ἢ δεικτική ἐστιν ἢ ἀναφορική , αἱ κατὰ πρῶτον καὶ δεύτερον | ||
| δεικτικὴ τούτου . Λαβὼν ὅτι ἀπόδειξίς ἐστι τοῦ ὅτι ἔστι δεικτική , ἔχων δὲ ὅτι καὶ ὁ ὁρισμὸς καὶ ἡ |
| τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
| . Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
| ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
| ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
| πλασματικὰ πολλὰ συλλέξας καὶ διάφορα ἕτερα εἰς τὸ τέλος τοῦ ἕκτου λόγου καταντήσεις . . Δημοσθένου ] | κατὰ [ | ||
| οὐ πολλοῦ χρόνου ἐπὶ μέγα ἐχώρησαν δυνάμεως . Τέλος τοῦ ἕκτου λόγου Νικολάου Δαμασκηνοῦ . . . : Ὅτι Κύψελος |
| πάθεσι καὶ κακίαις , ἢ καὶ ἕνεκα τοῦ ἀμέτρου καὶ περιττοῦ ; καὶ πότερον διὰ τὰς τοῦ γηγενοῦς χρείας ἢ | ||
| ἐπὶ τοῖς ὑγιαίνουσιν ἡδονῆς , ἀλλ ' ὥς τινος ἐκκρινομένου περιττοῦ , ὁ κάμνων ἀναισθήτως ἔχει . εἰ δὲ χρονίσαν |
| μένειν , ὡς ἡ ἀπορία . Εἰ δὲ ἐν τῷ προεληλυθέναι μένειν λέγοι τις , ἐπίτασιν λέγοι ἂν καὶ οἷον | ||
| ξενοπαθοῦντα τῇ ψύξει διὰ τὸ ἀκμὴν ἀπὸ θερμῆς καὶ συνεχοῦς προεληλυθέναι τῆς μήτρας . ὁ δὲ | οἶνος διὰ τὴν |
| ἐγένετο ἢ οὐκ ἐγένετο , ὀφείλομεν θεωρεῖν πρὸς τὸ ἀντιφατικῶς συναχθὲν συμπέρασμα . ὁ δέ γε Ἐφέσιος οὕτως ἑρμηνεύει τὸ | ||
| εἰς τὸ μεσουράνημα ἐμπέσῃ ὁ ἀναβιβάζων , ἀπολύειν δεῖ τὸ συναχθὲν πλῆθος ἀπὸ τοῦ μεσουρανήματος , ἐὰν μὲν ἡμερινὴ ἡ |
| ἰδέα οὐδέποτε ἥξει . Οὐ δῆτα . Ἄμοιρα δὴ τοῦ ἀρτίου τὰ τρία . Ἄμοιρα . Ἀνάρτιος ἄρα ἡ τριάς | ||
| τοιούτοις . ἔοικε γὰρ ὁ γεωμέτρης πάντα ἀριθμὸν τὸν ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενον κατὰ ἄρτιον ἀριθμὸν ἀρτιάκις ἄρτιον ὀνομάζειν , |
| ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
| : ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
| τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
| εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
| ἐπιδηλοῖ , τῷ δὲ διτόνῳ τὴν σφοδρὰν αὐτῆς καὶ ἄθρουν αὐτοκινησίαν . ἔν γε μὴν τῷ παντὶ τὸ μὲν ἐναρμόνιον | ||
| ἐπὶ τῆς ψυχῆς τὴν ἀπὸ τοῦ κινοῦντος καὶ κινουμένου προσιέμεθα αὐτοκινησίαν , ἁπλῆν δέ τινα κίνησιν οὐσιώδη αὐτὴν ἑαυτῆς οὖσαν |
| ἵνα ἁρμόσῃ ἐπὶ κλειδῶν καταγεισῶν . πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , | ||
| ' ὧν καὶ ἡ σειρά . πολύρομβος ἐπὶ μονοκώλου . Περιειλήσαντες τὴν ἀρχὴν τῷ πέρατι τοῦ κώλου ἄγομεν τὴν ἐπείλησιν |
| τε διμέτρου ἀκαταλήκτου καὶ τοῦ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ πενθημιμεροῦς . καὶ ἐν ἐκθέσει τὸ σύνηθες διστίχιον . φροντίζειν | ||
| τῷ γʹ τῆς ἐπῳδοῦ . τὸ ηʹ μικτὸν ἐκ τροχαίου πενθημιμεροῦς καὶ δακτυλικοῦ πενθημιμεροῦς . τὸ θʹ ἰαμβέλεγος , ὑπερτιθεμένου |
| λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
| ' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
| τὸ δὲ στερεὸν σχῆμα καὶ τὸ σῶμα , καθάπερ τὸ πυραμοειδές , κατὰ τὴν τετράδα τάττεται . τοῖς γὰρ τρισὶ | ||
| ἀπορεῖται δὲ τοῦτο , διὰ τί τὸ τῆς φλογὸς σχῆμα πυραμοειδές ἐστι : καί φησι Δ . μὲν περιψυχομένων αὐτῶν |
| ἔτυχεν , πολλαπλάσιον τὸ Ζ . Ἐπεὶ οὖν ἰσάκις ἐστὶ πολλαπλάσιον τὸ Δ τοῦ Α καὶ τὸ Ε τοῦ Β | ||
| οὔτε πολλαπλάσιον ἔσται οὔτε ἐπιμόριον . ἔστω γὰρ διάστημα μὴ πολλαπλάσιον τὸ ΒΓ , καὶ γεγενήσθω , ὡς ὁ Γ |
| ⊂ , πλάτος δὲ τρήματος α ⊂ πάχος δὲ ἡμίσους τρήματος καὶ ἔτι ὀγδόου : τοὺς δὲ μεσοστάτας μῆκος ἔχοντας | ||
| τῷ μεταξὺ διαστήματι τῶν τροχῶν , κεχωρισμένων δὲ τοῦ μέσου τρήματος . οὗτοι οἱ κάλοι εἴρονται : εἶθ ' ὅταν |
| μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
| μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
| ἐπὶ Τάραντα ἀπὸ ἄλλου ἀκρωτηρίου νοτιωτέρου τῆς Κασσιόπης ὃ καλοῦσι Φαλακρόν . μετὰ δὲ Ὄγχησμον Ποσείδιον καὶ Βουθρωτὸν ἐπὶ τῷ | ||
| : Δυστυχῆ . ῥυσὸν : Ῥυτίδας ἔχοντα . μαδῶντα : Φαλακρόν . νωδόν : Ἐστερημένον ὁδοῦ . . ἐστερημένον ὀδόντων |
| σφαίρας τοῦ ἀπὸ τῆς ΖΘ καθέτου ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου . τριπλάσιόν ἐστιν . μζʹ . Ἔστω τρίγωνον ἰσόπλευρον | ||
| πέντε ἡ τοῦ εἰκοσαέδρου , ὑπὸ δὲ τεσσάρων ἡ τοῦ ὀκταέδρου , ὑπὸ δὲ τριῶν ἡ τῆς πυραμίδος . δῆλον |
| # β # ἔχοι , καὶ ἔτι μᾶλλον , εἰ ἑξαπλάσιον , ὡς εἶναι τῶν μεταλλικῶν # β , κηροῦ | ||
| γὰρ τοῦ ρ πρὸς τὸν κ λόγον πενταπλάσιον ἔχοντος , ἑξαπλάσιον ἔχειν τοὺς γινομένους προστιθεμένου τοῦ ἀριθμοῦ ἀπαιτήσομεν , τῆς |
| ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
| λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
| ὀρθαῖς αἱ γωνίαι ἴσαι , δευτέρως δὲ καὶ ὅτι τοῦ σκαληνοῦ , πολλοστῶς δὲ καὶ ἐσχάτως καὶ ὅτι τοῦδε τοῦ | ||
| ἴδιον τῆς αὐτοῦ μεσότητος εἰς ταύτην συγκεφαλαιοῦται , ἀλλὰ καὶ σκαληνοῦ ἡ πρωτίστη σωμάτωσις μέχρις αὐτῆς στερεοῦται , αʹ βʹ |
| καταληκτικοῦ , ὃς γίνεται δάκτυλος . Τὸ γʹ ἀντισπαστικὸν διπλοῦν Φερεκράτειον : σύγκειται γὰρ ἐκ βʹ κώλων Φερεκρατείων , ὧν | ||
| τὸ ζʹ τροχαικὸν δίμετρον ὅμοιον τῷ εʹ . τὸ ηʹ Φερεκράτειον λεῖπον μιᾷ συλλαβῇ . τὸ θʹ ἰαμβικὸν δίμετρον ὑπερκατάληκτον |
| ὁ ε τοῦ β διπλασιεφημιόλιος , ὁ ζ τοῦ γ διπλασιεπίτριτος , ὁ θ τοῦ δ διπλασιεπιτέταρτος , ὁ ια | ||
| τοῦ μείζονος ἐπιμερὴς ἤτοι τρισεπιτέταρτος , ἀπὸ δὲ τοῦ ἐλάσσονος διπλασιεπίτριτος , ὡς ἐκ τοῦ ιϚ , ιβ , θ |
| ἐστι ψυχῆς : ἄψυχα δὲ αὐτὰ λέγομεν ὡς πρὸς τὴν μερικὴν ψυχὴν ἀφορῶντες : ἐπειδὴ γὰρ οὐχ ὁρῶμεν ἔχοντα αὐτὰ | ||
| τῇ ἡμετέρᾳ τῇ μερικῇ : ψυχὴν γὰρ εἴωθε πολλάκις τὴν μερικὴν καλεῖν : πόνον δὲ αὐτὴν πονεῖν διὰ τὴν μαρμαρυγὴν |
| , διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
| , οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
| . Εἰ δὲ πονηρὸς ὁ πλουτήσας , τὴν μὲν πονηρίαν προηγουμένην καὶ ὅ τι τὸ αἴτιον τῆς πονηρίας , προσληπτέον | ||
| πότερον ἐφ ' αὑτῇ ; ἀλλ ' ἀδιανόητόν ἐστιν : προηγουμένην γάρ τινα ὑφεστάναι δεῖ οὐσίαν τοῦ ἀγαθοῦ , ἧς |
| ' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν | ||
| ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς |
| ἁπλοῦν ἐστι παρόσον οὔτε ἐκ τοῦ αὐτοῦ ἔστιν ἀξιώματος δὶς λαμβανομένου οὔτε ἐκ διαφερόντων συνέστηκεν , ἐξ ἄλλων δὲ τινῶν | ||
| : καὶ πλύνεται δὲ χωριζομένου τοῦ ψαμμώδους ὡς ἀχρήστου , λαμβανομένου δὲ τοῦ λιπαρωτέρου καὶ λείου . Ἀλσίνη ἔχει παρόμοια |
| ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις πλειόνων φθόγγων ἐν τῷ | ||
| Ἀγωγὴ προσεχὴς ἀπὸ τῶν βαρυτέρων ὁδὸς ἢ κίνησις φθόγγων ἐκ βαρυτέρου τόπου ἐπὶ ὀξύτερον , ἀνάλυσις δὲ τοὐναντίον . τὰς |
| ἐννέα , καὶ ἡ ἐπῳδὸς κώλων ἐννέα . τὸ αʹ ἐγκωμιολογικὸν δίμετρον καταληκτικόν . τὸ βʹ προσοδιακὸν δίμετρον ἀκατάληκτον ἐκ | ||
| ἡ στροφὴ καὶ ἀντίστροφος κώλων ὀκτώ . τὸ αʹ Πινδαρικὸν ἐγκωμιολογικὸν , τὴν τελευταίαν συλλαβὴν μεταθὲν εἰς τὴν πρώτην . |
| δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
| τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |