τίνες ἂν ἰσοκρατῶς ἀπομάχεσθαι δυνηθεῖεν , ὁπότε καὶ παρεσκευασμένοις ἀγὼν ἄνισος ; ὁ τοίνυν Ἄβελ τέχνας μὲν λόγων οὐκ ἔμαθε
διὰ τοῦτο δοκεῖ πλεονέκτης εἶναι . ἔστι δὲ ὁ ἄδικος ἄνισος : τοῦτο γὰρ περιεκτικὸν ὄνομα καὶ κοινόν ἐστι πᾶσι
6785489 πλεονεκτης
δικαιοσύνης . λέγεται τοίνυν ἄδικος ὅ τε παράνομος καὶ ὁ πλεονέκτης καὶ ὁ ἄνισος , ὥστε καὶ δίκαιος ἂν εἴη
δὲ τὸ παράνομον καὶ τὸ ἄνισον . ἐπεὶ δὲ καὶ πλεονέκτης ἐστὶν ὁ ἄδικος , ἡ δὲ πλεονεξία περὶ τί
6383890 βαρυτερος
κινδύνου . διόπερ τῆς συνήθους τοῖς ὄχλοις ἀρεσκείας καταφρονήσας καὶ βαρύτερος ἀεὶ μᾶλλον τοῖς προστάγμασι γινόμενος ἀπέσκηψεν εἰς ὠμότητα τυραννικὴν
, καὶ ἐλούσατο ψυχρῷ , καὶ ἐδείπνησε , καὶ ἐδόκεε βαρύτερος γίνεσθαι . Τῇ δ ' ὑστεραίῃ ἐπύρεξε , καὶ
6359898 ἐλασσων
Μο λ . ἐπὶ τὰς ὑποστάσεις . ἔσται ὁ μὲν ἐλάσσων Μο λ , ὁ δὲ μείζων Μο ο ,
τὸ φανερὸν ἡμισφαίριον . ἀλλ ' ἔστω ἡ ΕΖ περιφέρεια ἐλάσσων τεταρτημορίου : καὶ ἡ ΕΚ ἄρα ἐλάσσων ἐστὶ τεταρτημορίου
6348241 ἐλαττων
ἄκρου . ὅτι ἐν τοῖς Σαμίοις ἐφάνη λευκὴ χελιδὼν οὐκ ἐλάττων πέρδικος . Φερεκύδης ὁ Σύριος ὑπὸ φθειρῶν καταβρωθεὶς ἐν
ἔσται . εἰ γὰρ μή , ἔσται ἢ ἴσος ἢ ἐλάττων . ἔστω πρῶτον ἴσος . καὶ ἐπεὶ ὑπόκειται ἡ
6345660 ΝΕ
τὸ θεώρημα τῆς δὲ ΑΒ ἐξ ἑτέρας παραλλήλους διὰ τὸ ΝΕ , ΖΔ σημεῖον . Ἡ ΑΒ Ϛ , ἡ
τομέως . διὰ τὰ αὐτὰ δὴ καὶ ὁσαπλασίων ἐστὶν ἡ ΝΕ περιφέρεια τῆς ΕΖ περιφερείας , τοσαυταπλασίων ἐστὶ καὶ ὁ
6333018 καλεισθω
τῆς ΑΓ : ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν , καλείσθω δὲ ἐκ δύο ὀνομάτων : ὅπερ ἔδει δεῖξαι .
ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ , καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ
6268744 ΜΣ
ἄρα ΣΤ ἐπὶ τὸ Τ παρῆκται διὰ τὸ καὶ τὴν ΜΣ παρῆχθαι ὡς ἐπὶ τὸ Τ μᾶλλον τῶν ἄλλων ἀκτίνων
τῇ ΜΣ . καὶ δοθεῖσά ἐστιν ἑκάστη τῶν ΜΛ ΛΒ ΜΣ ΣΑ [ οὕτως καὶ ἡ ΖΗ ΔΕ καὶ ΒΛ
6259592 λοιπος
δοθείς : ἔστιν δὲ ὁ ΑΒ Μο α , καὶ λοιπὸς ἄρα ὁ ΒΓ ἔστιν δοθείς : δοθὲν ἄρα καὶ
, ὧν ὁ ΑΗ τοῦ ΔΕ ἐστι διπλασίων , καὶ λοιπὸς ἄρα ὁ ΗΓ λοιποῦ τοῦ ΕΓ ἐστι διπλασίων :
6252394 ὑπερβολη
ἡ Ζ γωνία τῇ Δ γωνίᾳ . Ἔστω ἡ τομὴ ὑπερβολή , καὶ γεγονέτω , καὶ ἔστω ἐφαπτομένη ἡ ΓΔ
ἕν . ἔστωσαν ἀντικείμεναι αἱ ΑΒΓ , ΕΖΗ , καὶ ὑπερβολή τις ἡ ΔΑΓ ἐφαπτέσθω μὲν κατὰ τὸ Α ,
6209744 ἀφορος
καὶ τὸ πνεῦμα ἐπέχει . Διὰ τί ἡ λευκὴ γῆ ἄφορος κατὰ τὸ πλεῖστον ; ὅτι κατάψυχρός ἐστιν , ἡ
θεραπηΐης ὅκως τὰ ἕλκεα μὴ μυδήσει καὶ κάκοδμα ἔσται : ἄφορος δὲ ἔσται καὶ ἢν ῥαΐσῃ , ἢν μεγάλα ᾖ
6204089 ἐλλειψις
δείκνυται : μᾶλλον μὲν οὖν ἐν τούτῳ ἐστι καὶ ἡ ἔλλειψις . Γνώσῃ δὲ τοῦτο σαφῶς ἐκ τῆς ἀναλογίας :
ὡς ἐπιτατικὸν μᾶλλον ἀνεδέξατο , ὅπερ οὐκ ἦν , ἀλλὰ ἔλλειψις τοῦ πράγματος , ὃ καὶ δέον ἦν ποιεῖν :
6190701 συμμετρος
ΕΜΠΕΠΤΑΣ , ὁ αὐτός φησι , πύρινος ἄρτος κοῖλος καὶ σύμμετρος , ὅμοιος ταῖς λεγομέναις κρηπῖσιν , εἰς ἃς ἐντίθεται
ΗΘ , ῥητή ἐστι καὶ ἡ ΑΒ ἡ τρίπηχυς καὶ σύμμετρος μήκει τῇ προτεθείσῃ πηχυαίᾳ τῇ ΗΘ : ὁ γὰρ
6098537 χαυνος
, καὶ βλακεύματα αἱ εὐήθειαι . βλάξ : μαλακός , χαῦνος , ἐκλελυμένος ἢ μωρός . βουνός : λόφος .
καὶ εἰκόνες καὶ τὰ τοιαῦτα , ὧν ἀξιοῖ τυγχάνειν ὁ χαῦνος ἑαυτόν , οὐδ ' αὐτῶν ἀνάξιος ὤν : ὁ
6041662 τετραγωνος
ἐν ἐπιφανεστάτῳ δὲ τῆς πόλεως τὸ Αἰάκειον καλούμενον , περίβολος τετράγωνος λευκοῦ λίθου . ἐπειργασμένοι δέ εἰσι κατὰ τὴν ἔσοδον
μήκει συμμέτρων εὐθειῶν τετράγωνα πρὸς ἄλληλα λόγον ἔχει , ὃν τετράγωνος ἀριθμὸς πρὸς τετρά - γωνον ἀριθμόν : καὶ τὰ
6005595 ΛΖ
. Ποιείσθω οὖν κατὰ τὸ Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ
καὶ ἡμέρας χρόνος ἐστίν , ἐν ᾧ ὁ ἥλιος τὴν ΛΖ περιφέρειαν διαπορεύεται , καὶ ἔστιν ἴση ἡ ΛΖ τῇ
5940642 βδ
τετράγωνος , τουτέστιν ὁ ε , ἴσος τοῖς ἀπὸ τῶν βδ , δγ τετραγώνοις μετὰ τοῦ δὶς ἐκ τῶν βδ
οὕτως ἔχει , καθὼς εἴρηται , φανερόν : ἡ γὰρ βδ ὑπερέχει τῆς γα τῇ γδ : ἡ δὲ γα
5939983 ὑποτεινουσα
ἐκκέντρου ὑπόκειται ξ . καὶ οἵων ἄρα ἐστὶν ἡ ΓΖ ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΖΛ ἔσται πδ
ΒΝ εὐθεῖα τοιούτων ια μδ , οἵων ἐστὶν ἡ ΕΒ ὑποτείνουσα ρκ . καὶ οἵων ἐστὶν ἄρα ἡ μὲν ΕΒ
5939596 ΛΚΜ
, κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου
, καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη
5936351 εὐχερης
φωνὴ μόνον ἀνωφελής , καὶ πρὸς ἔπαινον καὶ πρὸς ὀργὴν εὐχερής . τοῦτ ' ἔστι τὸ μετ ' ἐνδόξου προπηλακισμοῦ
Θήβας χρυσαρμάτους καὶ εὐαρμάτους καὶ λευκίππους καὶ κυανάμπυκας : τέλεον εὐχερής τις ὤν . καὶ γὰρ καὶ ἄλλας πλείους λιπαρὰς
5919131 ΖΝ
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου ,
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ
5908866 ἀτακτος
τελεία , ποτὲ δὲ τούτων | [ ποτὲ ] καὶ ἄτακτος ἀπόκρισις καὶ παραποδισμὸς πρὸς τοὺς περιπάτους ὡς ἀλλοτρίου τινὸς
, ὅπερ μᾶλλον λέγεσθαι δοκεῖ ὑπ ' αὐτοῦ , ἡ ἄτακτος κίνησις τῶν ὄντων ἐστὶν ἡ ὕλη , πρῶτον μὲν
5880747 ΕΚΛ
καὶ ἐὰν ἀγάγωμεν ἐφαπτομένην τὴν ΚΓΛ , ἔσται καὶ τὸ ΕΚΛ τρίγωνον ἰσόπλευρον . καὶ ἐὰν θέλωμεν ἁρμόσαι ἴσον τῷ
εἶναι Θυηλάς , † ἃς πρώτας θύσαι θεοῖς † . ΕΚΛ . ΔΙΑΦ . ΛΕΞ . . . , :
5874628 δυσπροσιτος
εἶναι , πάντα τὸν ἄλλον περίβολον ἀσφαλὴς ἐπιεικῶς οὖσα καὶ δυσπρόσιτος . ἔμελλε δ ' , ὃ πάσαις φιλεῖ συμβαίνειν
ἀθρόως , εἴθιζεν δὲ καὶ ἐς αἰδῶ καὶ φόβον , δυσπρόσιτος ὢν καὶ δυσχερὴς ἐς τὰς χάριτας , καὶ μάλιστα
5868327 ΕΜ
ἴση ἄρα καὶ ἡ ΒΜ τῇ ΜΘ . ὧν ἡ ΕΜ τῇ ΜΚ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ
ἐπικύκλων εὐθεῖαι , ἐπὶ μὲν τὰ ἀπόγεια αἱ ΕΗ καὶ ΕΜ , ἐπὶ δὲ τὰ περίγεια αἱ ΕΚ καὶ ΕΞ
5866724 ΖΛ
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν
5859399 ἐλλειψεις
ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι
τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν
5854528 μειζων
παρέχοντεϲ . ἐπὶ δὲ τῶν κλονωδῶν οὐδὲν τοιοῦτον , ἀλλὰ μείζων μὲν ἐπὶ τούτων ἐϲτὶν ἡ διαϲτολή , ὥϲτε τῶν
κυλίνδρῳ , εἰ δὲ μείζων ὁ ἄξων τοῦ ἄξονος , μείζων καὶ ὁ κύλινδρος τοῦ κυλίνδρου , καὶ εἰ ἐλάσσων
5851946 ΜΚ
τὸ ἀπὸ ΜΚ τοῦ ὑπὸ ΜΚΘ , τὸ ἄρα ἀπὸ ΜΚ πρὸς τὸ ἀπὸ ΚΗ μείζονα λόγον ἔχει ἤπερ τὸ
οὕτως ἡ ΝΠ πρὸς ΟΠ , ἔσται καὶ ὡς ἡ ΜΚ πρὸς τὴν ΚΑ , τουτέστιν ὡς ἡ ΜΑ μετὰ
5848237 διαγωνιος
καὶ τῆς ἀναγκαῖον μὴ εἶναι καταφάσεως οὔσης ἀπόφασίς ἐστιν ἡ διαγώνιος ἡ οὐκ ἀναγκαῖον μὴ εἶναι . διὰ τοῦτο οὖν
ῥητοῖς καὶ τοῖς μὴ ῥητοῖς , οἷον ἡ τοῦ τετραγώνου διαγώνιος ὡς μὲν ἐν ῥητοῖς λόγοις πρὸς τὴν πλευρὰν ἄλογος
5825955 ΒΜ
, καὶ παράλληλος τῇ ΖΔ ἡ ΑΜ , καὶ τῶν ΒΜ , ΜΓ μέση ἀνάλογον ἔστω ἡ ΜΗ , καὶ
: διάμετρος ἄρα ἐστὶν ἡ ΒΘ , ὀρθία δὲ ἡ ΒΜ . λέγω , ὅτι τὸ ὑπὸ ΔΑΖ ἴσον ἐστὶ
5823629 πλευρᾳ
γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν
ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν
5814956 ἀξιο
! ] ! [ . . . ἄγ ' , ἀξιο [ τοιοῦτος [ φρουρα ? [ ! ! ]
καὶ τοὺς νυγμοὺς καὶ τοὺς βορβορυγμοὺς διαφαίνεσθαι , καὶ μὴ ἀξιο - λόγως τούς τε σφυγμοὺς καὶ τὰ οὖρα ἀλλοιοῦσθαι
5810137 ἀνισοτης
, τὸ δὲ μεῖζον ὑπὸ γῆν . Ἡ δ ' ἀνισότης τῶν τμημάτων τὴν αὐτὴν παραλλαγὴν ἔχει ἐπὶ πάντων τῶν
κεφαλὴν προωθούμενος . ἐν δὲ τοῖς ἀνάντεσιν ἡ τῶν ποδῶν ἀνισότης κατὰ τὴν ἀνωμαλότητα τὴν τῶν τόπων ἀπισοῖ τὸ σῶμα
5799891 ΕΝ
Ἠγείρετο δὲ πολὺς κτύπος τούτων μαχομένων . . . ΙΔΕΙ ΕΝ ΑΙΝΟΤΑΤΩι . Τὸν καιρὸν λέγει τῆς μάχης . Ἴδει
, ] πῶς ἔλασσον τὸ Ξ στερεὸν τῆς ἐν τῷ ΕΝ κώνῳ πυραμίδος ; δείξομεν οὕτως : ἐπεὶ ὁ ΕΝ
5781855 ὁμαλος
κακοσπλάγχναις ἤτοι ὀργίλαις πλάναις , ἃς Ἰοῖ περιέβαλλε . . ὁμαλὸς ] ἥσυχος , κακῶν ἄπειρος . . ἄφοβος ]
. ἔστι δ ' ὁ προειρημένος † λειμὼν ἄνωθεν μὲν ὁμαλὸς καὶ παντελῶς εὔυδρος , κύκλωι δὲ ὑψηλὸς καὶ πανταχόθεν
5779740 ΑΝ
τῇ ΑΕ : μείζων ἄρα ἐστὶν καὶ ἡ ΑΕ τῆς ΑΝ : ὅπερ ἀδύνατον . οὐκ ἄρα τὸ κέντρον τῆς
ἐστίν . ὀρθὴ ἄρα ἡ ὑπὸ ΒΝΑ γωνία : ἡ ΑΝ ἄρα ὕψος ἐστὶ τοῦ διὰ τοῦ ἄξονος τριγώνου ,
5775567 μειων
πρὸς αἴσθησιν . Ἡ μὲν γὰρ αὐτοῦ τοῦ κόσμου περιφορὰ μείων ἐστὶ παντὸς νυχθημέρου : ἀναγκαίως , παντὶ τῷ δρόμῳ
ἡ διάνοια : ἐρημωθείσης τῆς μὲν τῶν Λακεδαιμονίων πόλεως , μείων φαίνοιτ ' ἂν ἡ δύναμις γεγονέναι τοῖς ἔπειτα :
5771554 ἀσφαλης
. ἀσφαλής : ἑδραῖος : ἀπὸ τοῦ σφάλλω σφαλὴς καὶ ἀσφαλής ' . . . . ἀσφάλαξ : παρὰ τὸ
συνάπτοντας αὐχένας τῶν ὀρῶν ἀπολείπειν τοὺς παραφυλάττοντας , ἵν ' ἀσφαλής σφισιν ἡ ἀνακομιδὴ γίγνηται . ταῦτα δ ' εἰρήσθω
5767583 γβ
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ
5764261 ἐπικινδυνος
τὰς ὠμοπλάτας , καὶ δυσελκέες γίνονται . Ἧσσον δ ' ἐπικίνδυνος τοῦ ἑτέρου οὗτος , καὶ ἐκφυγγάνουσι πλέονες . Τοῦτον
ριζʹ Κρόνου λθʹ , Σελήνης ἔνατος , Διὸς ιγʹ , ἐπικίνδυνος . ριθʹ Ἄρεως ιζʹ , ἐπισφαλής . ρκʹ Κρόνου
5752171 ΔΚ
τὴν ΜΖ : καὶ περὶ ὀρθὰς γωνίας τὰς ὑπὸ τῶν ΔΚ , ΚΒ , ΜΝ , ΜΖ αἱ πλευραὶ ἀνάλογόν
ΚΜΔ γωνίᾳ τῇ ὑπὸ ΒΜΔ ἴση : βάσις ἄρα ἡ ΔΚ βάσει τῇ ΔΒ ἴση ἐστίν . λέγω [ δή
5749569 ΕΚ
ἀπὸ τῶν ΚΖ , ΖΕ , τουτέστι τοῦ ἀπὸ τῆς ΕΚ : ἡ ΓΕ ἄρα ἐλάσσων ἐστὶ τῆς ΕΚ .
τῶν ΕΚ ΚΒ : ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ΕΚ πρὸς τὸ ἀπὸ τῆς ΚΛ , οὕτως ἡ ΕΚ
5737973 εἰκαιος
συνόντων , τῶν εἰς αὐτὸν ἰόντων ὄνειδος , ἀνδραποδώδης , εἰκαῖος , συρφετός , εὐωνότερος τῶν ἀποκεκηρυγμένων ὠνίων , τῶν
ἡ πόλις . . . Βοῦς Κύπριος : κοπροφάγος , εἰκαῖος , ἀκάθαρτος . Σημαίνει δὲ ἀτοπίαν τῶν Κυπρίων .
5737318 ΔΜ
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ
5732242 ἀμυδρος
αἱ ἀποκρίσεις , διψῶσι γλῶσσα τραχεῖα , σφυγμὸς μικρὸς καὶ ἀμυδρός : ἅτε ἔστω νενευκότος τοῦ θερμοῦ . ρϞαʹ .
μετὰ παλμῶν καὶ ἐξαναστάσεων ἀλόγων , καὶ σφυγμὸς ἀνώμαλος , ἀμυδρός , ἐκλείπων καὶ παλινδρομῶν , ἐνίοις δὲ καὶ ἀνορεξία
5731533 ἑτερομηκης
ἦσαν τὰ ἐπίπεδα , ὡς ἐδείχθη . Πάλιν οὖν ἄνωθεν ἑτερομήκης ἀριθμὸς λέγεται , οὗ ἐπιπέδως σχηματογραφηθέντος τετράπλευρος μὲν καὶ
τῆς εἴλης τετράγωνον ᾖ , ὁ ἀριθμὸς τῶν ἱππέων γίνεται ἑτερομήκης . Δοκεῖ δὲ τὸ ῥομβοειδὲς σχῆμα ἀναγκαιότατον παρειλῆφθαι :
5727017 βιαιος
ἵππους : ἡ διπλῆ , ὅτι Ζηνόδοτος γράφει κρατερωνύχεσι . βίαιος δ ' ἡ συναλοιφή . τὸ δὲ ἑξῆς ἐστίν
ἐστιν , ἀντίθεσις , μετάληψις , πρός τι , ὅρος βίαιος , ἡ θέσις , ἑτέρα μετάληψις , ἀντίληψις ,
5726008 ΜΛ
. καὶ ἐπεὶ ὡς ἡ ΜΑ πρὸς ΑΒ , ἡ ΜΛ πρὸς ΛΚ , ὡς δὲ ἡ ΜΛ πρὸς ΛΚ
ὡς ἡ ΖΗ πρὸς ΗΕ , οὕτως ἡ ΝΜ πρὸς ΜΛ . Δέδοται ἄρα . , ] ἐπεὶ οὖν δεδομέναι
5718033 περισσος
οὓς κῆρες φορέουσι μελαινάων ἐπὶ νηῶν . ἀθετεῖται , ὅτι περισσός : ἐν γὰρ τῷ κηρεσσιφορήτους τὸ αὐτὸ συντόμως εἴρηκεν
λοιπὸς ὁ ΓΑ ἄρτιός ἐστιν . Ἐπεὶ γὰρ ὁ ΑΒ περισσός ἐστιν , ἀφῃρήσθω μονὰς ἡ ΒΔ : λοιπὸς ἄρα
5714330 ἀρτιος
τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ
εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ
5708443 ΘΡ
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ ,
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
5706543 ΚΕ
, Δ γωνίαι , καὶ ἴση ἐστὶν ἡ ΓΚ τῇ ΚΕ , δοθέν ἐστιν ἑκάτερον τῶν ΓΔΚ , ΕΖΚ τριπλεύρων
, ὡς ἡ ΖΚ πρὸς τὴν ΓΔ , οὕτως ἡ ΚΕ πρὸς τὴν ΔΒ . ῥητὴ δὲ ἡ ΚΕ καὶ
5695971 ΚΔ
, οὕτως ἡ ΚΔ πρὸς ΔΘ . ὡς δὲ ἡ ΚΔ πρὸς ΔΘ , οὕτως ἡ ΚΖ πρὸς ΘΗ :
ἐπεὶ οὖν διὰ τὰς ἐφαπτομένας ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΔ , ἡ ΒΘ πρὸς ΘΔ , καὶ ἔστιν ἡ
5695764 ῥητῃ
ἐφ ' ἧς τὸ μεῖζον ὄνομα σύμμετρόν ἐστι τῇ ἐκκειμένῃ ῥητῇ , δευτέραν δέ , ἐφ ' ἧς τὸ ἔλασσον
ἄλλαι εὐθεῖαι , αἳ μήκει μὲν ἀσύμμετροί εἰσι τῇ ἐκκειμένῃ ῥητῇ , δυνάμει δὲ μόνον σύμμετροι , καὶ διὰ τοῦτο
5693895 βραδεια
κατανοεῖν τὴν τοῦ γάλακτος διάχυσιν , εἰ μήτε ταχεῖα μήτε βραδεῖα τελέως γίνεται , μέσως δέ : θεωρεῖν δὲ ταῦτα
δῆλον ὅτι ἁ ταχεῖα κίνασις ὀξὺν ποιεῖ , ἁ δὲ βραδεῖα βαρὺν τὸν ἆχον . ἀλλὰ μὰν καὶ τοῖς ῥόμβοις
5692902 ΣΗ
οἱ ΣΤ , ΡΥ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ΣΗ τῇ ΘΡ , καὶ σύμμετρός ἐστιν ἡ ΗΘ ἑκατέρᾳ
. Ἐπεζεύχθωσαν γὰρ αἱ ΔΥ , ΥΕ , ΒΣ , ΣΗ . καὶ ἐπεὶ παράλληλός ἐστιν ἡ ΔΞ τῇ ΟΕ
5680741 ΕΑ
περιφέρειαι αἱ ΑΒ , ΒΓ , ΓΔ , ΔΕ , ΕΑ ἴσαι ἀλλήλαις εἰσίν . ὑπὸ δὲ τὰς ἴσας περιφερείας
ΓΒ , τουτέστιν ὡς τὸ ὑπὸ ΕΑΓ πρὸς τὸ ὑπὸ ΕΑ ΓΒ , οὕτως τὸ ὑπὸ ΓΑΕ πρὸς τὸ ὑπὸ
5678925 ΑΙΨΑ
τὸ πολλὰ καρτερεῖν καὶ πάσχειν τοὺς συγκροτοῦντας πόλεμον . . ΑΙΨΑ ΚΕ ΠΗΔΑΛΙΟΝ . Ἤγουν ταχέως ἂν τὸ πηδάλιον μὲν
ΧΑΛΕΠΟΙΣ ΒΑΖΟΝΤ ' ΕΠΕΕΣΣΙ ΣΧΕΤΛΙΟΙ , ἤγουν ἄθλιοι . . ΑΙΨΑ ΔΕ ΓΗΡΑΣΚΟΝΤΑΣ ΑΤΙΜΗΣΟΥΣΙ ΤΟ - ΚΗΑΣ . Οἱ παῖδες
5666495 ΒΟ
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν
5665922 ἀβαθης
ἀξύμφορον . ἡ δ ' ἐφ ' ἕνα ἐπὶ μετώπου ἀβαθὴς τάξις ἐς λεηλασίας ἀνυπόπτους ἐπιτήδειος , ἢ εἴ που
αὖ μηκῦναι τὸ μέτωπον ἐς ὀκτώ , ἔσται οὐ πάντη ἀβαθὴς ἡ φάλαγξ . τὴν δὲ εἰς ὀκτὼ εἰ ἐκτεῖναι
5664572 ΤΑ
] Κ [ ] Κ ! ! ! [ ] ΤΑ ! [ ] ΠΙ [ ] ΡΙΤ [ ]
λευκοπώλῳ φέγγος ἡμέρᾳ φλέγειν . Καὶ τὰ λοιπά . . ΤΑ ΔΕ ΛΕΙΨΕΤΑΙ . Τουτέστι , τὸ τῶν κακῶν ἔσχατον
5660886 ΓΠ
ἐπεί ἐστιν , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΓΠ πρὸς ΑΟ , καί ἐστιν ἡ μὲν ΓΠ τῆς
δευτέρας καταγραφῆς , καὶ ἐπεζεύχθωσαν αἱ ΒΞ , ΞΓ , ΓΠ . ἐπεὶ οὖν αἱ ΒΞΓ τῆς ΒΓ μείζους εἰσίν
5657209 ΑΚ
ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ .
ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί
5655938 ΔΝ
τῆς ΜΠ , οὐκ ἔστιν φανερὸν ὅτι καὶ ὅλη ἡ ΔΝ ὅλης τῆς ΔΠ ἐλάσσων ἐστίν : δυνατὸν γάρ ἐστιν
καθ ' ἓν ἄρα ἐφ - άπτονται αἱ ΔΛ , ΔΝ τῆς σφαίρας . αἱ ἄρα ἀπὸ τοῦ Δ ὄμματος
5653250 ΥΘ
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ
5650846 ζη
αδ μονάδας : ὑπόκειται γάρ . ἴσος ἄρα ἐστὶν ὁ ζη τῷ κν : οἱ γὰρ τοῦ αὐτοῦ ἰσάκις πολλαπλάσιοι
κατὰ τὰς ἐν τῷ αδ μονάδας : ὑπόκειται γὰρ ὁ ζη ἐκ τῶν αδ , δβ : ἴσος ἄρα ὁ
5649103 στερητικη
ἡ μὲν καθόλου καταφατικὴ ὑπάρχουσα , ἡ δὲ ἐν μέρει στερητικὴ ἀναγκαία , οὐκ ἔσται τὸ συμπέρασμα ἀναγκαῖον ἀλλ '
τὸ δὲ ἄδικον ἀοριστία καὶ στέρησις τοῦ εἴδους , διὸ στερητικὴ πρότασις ἡ λέγουσα Σωκράτης ἄδικός ἐστι : λέγω γὰρ
5644093 βραδυς
. οὐκ ἐπὶ τῆς τοῦ σώματος κινήσεως παρείληφε τὸ “ βραδύς ” , ἀλλ ' ἐπὶ τῆς διανοίας . νῦν
μὲν τοῖς λόγοις ἐστὶν ὀξύς , ἐν δὲ τοῖς ἔργοις βραδύς . ὁ δὲ Φαρνάβαζος ἀπεκρίθη , διότι τῶν μὲν
5641374 ΗΜ
παρὰ τὴν ΗΘ εὐθεῖαν τῷ ΔΒΓ τριγώνῳ ἴσον παραλληλόγραμμον τὸ ΗΜ ἐν τῇ ὑπὸ ΗΘΜ γωνίᾳ , ἥ ἐστιν ἴση
συγκείμενον ἔχει λόγον ἐκ τοῦ ὃν ἔχει ἡ ΘΗ πρὸς ΗΜ καὶ ἐκ τοῦ ὃν ἔχει ἡ ΖΗ πρὸς ΗΛ
5636907 ἀδυνατος
ἡμᾶς ἐπιστήμη βραδεῖά ἐστι καὶ χαλεπὴ νέοις , μᾶλλον δὲ ἀδύνατος εἰς ἀγενείων καὶ μειρακίων πεσεῖν ἡλικίαν : ἀκμαζούσης γὰρ
τῶν χιτώνων . ἐπὶ τούτων ὁ μὲν τῆς ἐξολκῆς τρόπος ἀδύνατος ῥᾳδίως ἀποσπωμένων : χρὴ τοίνυν ἐπ ' αὐτῶν μετὰ
5632270 ΡΑ
͵Ϛψν πρὸς τὰ τλζ : ἀνάπαλιν ἄρα καὶ συνθέντι ἡ ΡΑ πρὸς τὴν ΑΒ μείζονα λόγον ἔχει ἢ ὃν τὰ
ἐπιπέδῳ τῷ ΖΗ τετμήσθω παραλλήλῳ ὄντι τοῖς ἀπεναντίον ἐπιπέδοις τοῖς ΡΑ , ΔΘ : λέγω , ὅτι ἐστὶν ὡς ἡ
5626497 δβ
δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ ,
δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν
5626151 ἀσυμφωνος
τοιούτων ἀνθρώπων ὅ γε μουσικὸς ἐρῴη ἄν : εἰ δὲ ἀσύμφωνος εἴη , οὐκ ἂν ἐρῴη . Οὐκ ἄν ,
τρίγωνος πλευρὰ σύμφωνος καὶ ἀβλαβής ἐστιν , ἡ δὲ τετράγωνος ἀσύμφωνος καὶ ἀνώμαλος πρὸς τὴν τῶν ἀποτελεσμάτων ἔκβασιν γίνεται .
5626063 ὀρθαιν
ὑπὸ τὸ ποιόν . οὐδ ' εἰ τὸ τρίγωνον δυοῖν ὀρθαῖν ἴσας ἔχει , συμβέβηκε δ ' αὐτῷ σχήματι εἶναι
ἀναβεβασμένοι ἵπποι : καὶ οἱ τοῖς ἀναβαίνουσι βοηθοῦντες ἀναφέρουσιν αὐτοὺς ὀρθαῖν ταῖν χεροῖν ἢ σιμαῖν ταῖν χεροῖν . καταβαίνει ,
5625197 ἀσθενης
' ἴσον . γεγραμμένων δὲ τῶν νόμων ὅ τ ' ἀσθενὴς ὁ πλούσιός τε τὴν δίκην ἴσην ἔχει , ἔστιν
σφαλερώτερος : καὶ ὁ μὲν θρασὺς ἰταμώτερος , ὁ δὲ ἀσθενὴς θρασύτερος , ὁ δὲ φιλήδονος ἀκολαστότερος . Γεωργῶν ἀνήρ
5614630 λοιπη
ΒΓ διπλῆ , ἡ δὲ ΑΕ τῆς ΕΒ διπλῆ , λοιπὴ ἄρα ἡ ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ
ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν ἴση .
5613162 ἀποτομη
, ΖΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι . [ ἀποτομὴ ἄρα ἐστὶν ἡ ΓΔ . Λέγω δή , ὅτι
ΖΘ , ΖΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ [ προσαρμόζουσα δὲ ἡ ΖΚ
5603818 ΚΒ
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ
5596929 ΠΗ
ἡ ΤΠ τῇ ΠΕ ; ἀλλ ' ἡ ΠΕ τῇ ΠΗ ἴση : ἔχει δὴ σύγκρισιν : ἔστιν γὰρ μείζων
ΛΚ ἄξων τῷ ΚΜ ἄξονι , ἴσος ἐστὶ καὶ ὁ ΠΗ κύλινδρος τῷ ΗΧ κυλίνδρῳ , εἰ δὲ μείζων ἐστὶν
5595649 χειμερινη
ι , ἡ δὲ ἰσημερινὴ λθʹ ∠ , ἡ δὲ χειμερινὴ Ϙγ ιβʹ . ιαʹ . ἑνδέκατός ἐστι παράλληλος ,
ἡ δὲ ἰσημερινὴ ξγʹ ∠ γʹ ιβʹ , ἡ δὲ χειμερινὴ ροα Ϛʹ . ιζʹ . ἑπτακαιδέκατός ἐστιν παράλληλος ,
5593979 ΑΠ
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ
5587889 λειπουσα
ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν
τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων
5584974 ΛΕ
σελήνη κατὰ τὸ Λ σημεῖον , καὶ ἐπεζεύχθωσαν μὲν αἱ ΛΕ καὶ ΛΒ , κάθετοι δ ' ἤχθωσαν ἐπὶ τὴν
καὶ ἀφῄρηται ἀπ ' αὐτῶν δεδομένα μεγέθη τὰ ΘΑ , ΛΕ . τὰ ΑΒ , ΕΖ ἄρα ἤτοι πρὸς ἄλληλα
5583246 ΝΚ
τῇ ΖΗ : καὶ τῇ ΕΔ ἄρα παράλληλός ἐστιν ἡ ΝΚ , ἡ δὲ ΜΘ τῇ ΒΛ . ἐπεὶ οὖν
ἐπὶ τῆς ἐλλείψεως σημεῖα ἐπιζευγνύουσαι παράλληλοι , καὶ ἐπιζευχθεῖσαι αἱ ΝΚ ΜΘ τεμνέτωσαν ἀλλήλας κατὰ τὸ Τ , καὶ διὰ
5578674 ΞΔ
ΛΗ μοιρῶν κγ να ἔγγιστα . ἔστιν δὲ καὶ ἡ ΞΔ μοιρῶν κγ μθ . ἀλλὰ καὶ ἡ ΜΞ τῇ
. ἔσται τοίνυν διὰ τοῦ τῆς λοξώσεως κανονίου δοθεῖσα ἡ ΞΔ περιφέρεια μοιρῶν οὖσα κγ μθ : τοσαῦται γὰρ ἐπιβάλλουσιν
5576493 αβ
χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων
γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα
5569866 ΝΠ
κατασκευασθέντων , ἐπεί ἐστιν ὡς ἡ ΕΘ βάσις πρὸς τὴν ΝΠ βάσιν , οὕτως τὸ τοῦ ΓΔ στερεοῦ ὕψος πρὸς
δεδύκασιν αἱ ΠΝ ΝΜ περιφέρειαι : ἅμα ἄρα δύνει ἡ ΝΠ περιφέρεια καὶ ἡ ΝΜ . ἐν ᾧ δὲ ἡ
5558135 κοσμικος
. Οὐράνιος ὀφθαλμός , νυκτὸς ἀνταγωνιστής , αἰθέριον κύκλωμα , κοσμικὸς ἔλεγχος , ἀκήρατος φλόξ , ἀδιάστατον φέγγος , κεχορηγημένη
ἑαυτὴν πρὸς τούτοις γεννῶσα ἐξ ἑαυτῆς , καθὰ καὶ ὁ κοσμικὸς λόγος καὶ ἡ τῶν ὄντων φύσις , καὶ πάντα
5556115 ΘΥ
τὸ ΛΥ στερεόν , τῆς δὲ ΘΖ βάσεως καὶ τοῦ ΘΥ στερεοῦ ἥ τε ΝΖ βάσις καὶ τὸ ΝΥ στερεόν
ΖΩΑ . ὁμοίως δὴ δειχθήσεται μείζων ἢ ὁμοία ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ ,
5555039 ἰσημερινη
ἐστιν , οἵων ὁ γνώμων ξ , τοιούτων ἡ μὲν ἰσημερινὴ σκιὰ κϚʹ ∠ , ἡ δὲ χειμερινὴ ξεʹ ∠
ἑξηκοστὰ Ϛʹ , ἡ δὲ θερινὴ εʹ , ἡ δὲ ἰσημερινὴ ηʹ ἐξ ἑκατέρου μέρους τοῦ ἰσημερινοῦ ἑξηκοστὰ δʹ ,
5552687 ΠΡ
ΑΒ πρὸς τὴν ΓΔ , οὕτως ἡ ΕΖ πρὸς τὴν ΠΡ , ἴση δὲ ἡ ΠΡ τῇ ΗΘ , ἔστιν
περιφερείας , ἡ δὲ κατὰ τὸ Ο βορεία παράλλαξις τῆς ΠΡ , ἡ δὲ κατὰ τὸ Μ βορεία τῆς ΛΚ
5552189 ΘΓ
τοῦ Θ ἐπὶ τὸ Ζ ἐπιζευγνυμένη εὐθεῖα ἐκβαλλομένη συμπεσεῖται τῇ ΘΓ . δυεῖν ἄρα εὐθειῶν τὰ αὐτὰ πέρατα ἔσται :
ἀπὸ ΘΓ τοῦ ἀπὸ ΕΗ : μείζων ἄρα καὶ ἡ ΘΓ τῆς ΕΗ . καί εἰσι παράλληλοι : ἡ ΕΖ
5549721 ΚΜ
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς
5548201 ὑπερβαλλουσα
οὐκ ἐπιδέχεται ὑπερβολάν , οἷον ἀρετά : οὐ γάρ ἐστιν ὑπερβάλλουσά τις ἀρετὰ καὶ ὑπερβαλλόντως τις ἀγαθός : ἁ γὰρ
δέδοικα μή σου γλῶσσα : φοβοῦμαι μὴ ἐν τοῖς κακοῖς ὑπερβάλλουσά σου ἡ γλῶσσα τὸ εὖ ἔξηχον καὶ παράφρονά σε
5548058 ῥητη
ἐδείχθη δὲ καὶ ἡ ΓΑ ἀποτομή . Ἐὰν ἄρα εὐθεῖα ῥητὴ ἄκρον καὶ μέσον λόγον τμηθῇ , ἑκάτερον τῶν τμημάτων
, καὶ τῇ Δ σύμμετρος ἔστω μήκει ἡ ΕΖ . ῥητὴ ἄρα ἐστὶ καὶ ἡ ΕΖ . καὶ γεγονέτω ὡς
5546765 ΝΑ
καὶ ὁ τοῦ ΣΤ ἄρα πόλος μεταξὺ τῶν ΕΖ , ΝΑ κύκλων ἐστίν : ὁ ἄρα ἕτερος αὐτοῦ πόλος μεταξὺ
. καί εἰσι τοῦ αὐτοῦ κύκλου : ἴση ἄρα ἡ ΝΑ περιφέρεια τῇ ΑΒ περιφερείᾳ : ὅπερ ἐστὶν ἀδύνατον .
5545531 ἀναισθητος
τῶν ἀδυνάτων . Ἄχρι κόρου : ὅτι ἄχρι κόρου ἐκεῖνος ἀναίσθητός ἐστι : καί : οὗτος ἄχρι κόρου φενακίζει .
. ὁ δὲ θεὸς οὐχ , ὥσπερ ἐνίοις δόξει , ἀναίσθητός ἐστι καὶ ἀνόητος : ὑπὸ γὰρ δεισιδαιμονίας βλασφημοῦσι :
5545065 αδ
σανη [ × – ˘˘ – × – – ] αδ ' ἐσβολ ? ? [ × × – ˘˘
τῷ ηλ τεταρτημορίῳ ἀναφέρεται , τὸ δὲ λα τεταρτημόριον τῷ αδ τεταρτημορίῳ ἀναφέρεται : ἴσον γὰρ ἀπέχει τοῦ ἰσημερινοῦ .
5539365 ΖΓ
ΖΒ , τὸ δὲ ὑπὸ ΕΖΓ μετὰ τοῦ ὑπὸ ΑΕ ΖΓ ὅλον ἐστὶν τὸ ὑπὸ ΑΖΓ . εἴχομεν δὲ καὶ
ΖΓ πρὸς τὸ ἀπὸ τῆς ΓΑ ἐστι τὸ ἀπὸ τῆς ΖΓ διαμέτρου τῆς τομῆς πρὸς τὸ ἀπὸ τῆς συζυγοῦς ἑαυτῇ
5537999 γδ
, τοιούτων ἐστὶ τὸ γδ τεσσάρων , οἵων δὲ τὸ γδ τεσσάρων , τοιούτων τὸ εζ τριῶν , καὶ οἵων
τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ τὸ αη ἄρα τοῦ εζ ἐστι τριπλάσιον

Back