δοθείς : ἔστιν δὲ ὁ ΑΒ Μο α , καὶ λοιπὸς ἄρα ὁ ΒΓ ἔστιν δοθείς : δοθὲν ἄρα καὶ | ||
, ὧν ὁ ΑΗ τοῦ ΔΕ ἐστι διπλασίων , καὶ λοιπὸς ἄρα ὁ ΗΓ λοιποῦ τοῦ ΕΓ ἐστι διπλασίων : |
τοιούτων οὐδέν . τὸ γὰρ αὐτὸ εἶδος τοῦ διπλασίου καὶ τριπλασίου ἔν τε τοῖς ἐλάττοσι καὶ ἐν τοῖς πλείοσιν ἀριθμοῖς | ||
►βασιλικός αʹ τιμοκρατικός βʹ ὀλιγαρχικός γʹ δημοκρατικός θʹ τυραννος Ϛʹ◄ τριπλασίου ἄρα κτλ . εἰλήφθω κατὰ τὴν μονάδα αὐτὴν ὁ |
. ἐπὶ δὲ τοῦ βʹ λήμματος ὁ ἑκατὸν τοῦ εἴκοσι πολλαπλάσιός ἐστι κατὰ τὸν ε , καὶ ὁ κ τοῦ | ||
Γ πολλαπλάσιον εἶναι . ἐπεὶ γὰρ ὁ Β τοῦ Γ πολλαπλάσιός ἐστι , μετρεῖ ἄρα ὁ Γ τὸν Β . |
οὓς κῆρες φορέουσι μελαινάων ἐπὶ νηῶν . ἀθετεῖται , ὅτι περισσός : ἐν γὰρ τῷ κηρεσσιφορήτους τὸ αὐτὸ συντόμως εἴρηκεν | ||
λοιπὸς ὁ ΓΑ ἄρτιός ἐστιν . Ἐπεὶ γὰρ ὁ ΑΒ περισσός ἐστιν , ἀφῃρήσθω μονὰς ἡ ΒΔ : λοιπὸς ἄρα |
γιγνόμενος ποιεῖ τὸν ἡμιόλιον λόγον , ἐξ ὧν ἀμφοτέρων ὁ διπλάσιος σύγκειται λόγος , τοῦ δʹ φμηὶ πρὸς τὸν βʹ | ||
τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον ἤτοι διπλάσιος ἤτοι δὶς δίς , ὅπερ ἐδήλωσεν εἰπών : τὰ |
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
: μετὰ τοὺς ἀπὸ Εὐφήμου ἑπτακαίδεκα καὶ νῦν ὁ Ἀρκεσίλαος ὄγδοός ἐστιν . παισί : τοῖς Κυρηναίοις . τῷ μὲν | ||
τὸν ἥλιόν ποτε κατὰ κορυφὴν αὐτοῖς γίγνεσθαι . ηʹ . ὄγδοός ἐστιν παράλληλος , καθ ' ὃν ἂν γένοιτο ἡ |
κινδύνου . διόπερ τῆς συνήθους τοῖς ὄχλοις ἀρεσκείας καταφρονήσας καὶ βαρύτερος ἀεὶ μᾶλλον τοῖς προστάγμασι γινόμενος ἀπέσκηψεν εἰς ὠμότητα τυραννικὴν | ||
, καὶ ἐλούσατο ψυχρῷ , καὶ ἐδείπνησε , καὶ ἐδόκεε βαρύτερος γίνεσθαι . Τῇ δ ' ὑστεραίῃ ἐπύρεξε , καὶ |
ἑκατέραν τῶν μεσουρανήσεων ἄνισος μὲν ἐπὶ τῆς ἐγκεκλιμένης σφαίρας , ἴσος δὲ ἐπὶ τῆς ὀρθῆς , τῷ τὰ ὑπὲρ γῆν | ||
δβ . λέγω , ὅτι ὁ ἀπὸ τοῦ γβ τετράγωνος ἴσος ἐστὶ τῷ ἐκ τῶν αδ , δβ ἐπιπέδῳ μετὰ |
Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
ἡ Μακεδονικὴ φάλαγξ ἐν τούτοις παρετάσσετο . Τί παρέχει ὁ οὐραγός . Περὶ τῶν ψιλῶν : πῶς αὐτοὺς δεῖ τετάχθαι | ||
καὶ ὅταν τέλος ἡ σκηνὴ ἔχῃ , ἐξάγει μὲν ὁ οὐραγός , ἔφη , ὁ τοῦ τελευταίου λόχου τὸν λόχον |
, Β , Γ : ὅπερ ἔδει δεῖξαι . Ἐὰν ἐλάχιστος ἀριθμὸς ὑπὸ πρώτων ἀριθμῶν μετρῆται , ὑπ ' οὐδενὸς | ||
δυάδος : ἔστω ʂ α Μο β . ὁ ἄρα ἐλάχιστος ἔσται Μο β # ʂ α . Καὶ ἐπειδὴ |
τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ | ||
εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ |
σκη τριακοσιοστοεξηκοστοπρώτων . Ὁμοίως καὶ ↑ τῶν ἑκατὸν Ϙβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων καὶ αὐτῶν εἰς ἑξακισμύρια ἐννακισχίλια τριακόσια ιβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , | ||
διαπορῆσαι , τίνα τρόπον ἔσται παλιγγενεσία , πάντων εἰς πῦρ ἀναλυθέντων : ἐξαναλωθείσης γὰρ τῆς οὐσίας ὑπὸ πυρός , ἀνάγκη |
τέταρτος ποιητὴς τραγῳδίας , πέμπτος Ἁλαιεὺς τέχνας γεγραφὼς ῥητορικάς , ἕκτος Ἀλεξανδρεὺς περιπατητικός . Ἥριλλος δ ' ὁ Καρχηδόνιος τέλος | ||
κακοποιῶν μόνων ποιουμένη σίνη ἢ πάθη παρέχει . Ὁ δὲ ἕκτος τόπος καὶ ὁ κύριος αὐτοῦ ὑπὸ κακοποιοῦ μόνου θεωρούμενοι |
: διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ | ||
δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος |
Κάσπιοι πεντή - κοντα καὶ διηκόσια ἀπαγίνεον τάλαντα : νομὸς πέμπτος καὶ δέκατος οὗτος . Πάρθοι δὲ καὶ Χοράσμιοι καὶ | ||
ἡμέτερός ἐστ ' , ἀλλ ' ὕβρεος : ὁ δὲ πέμπτος βοῆς : ἕκτος δὲ κώμων : ἕβδομος δ ' |
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
ὅρους καὶ λεκτέον ὅτι ὁ μόνον ὑπ ' ἀρτίου περισσάκις ἀρτιοπέρισσος , ὁ δ ' οὐδέποτε μόνον θάτερον ἀλλ ' | ||
Εὐκλείδου ῥητὸν προεκθέμενοι περὶ αὐτῶν . λέγει γὰρ οὕτως : ἀρτιοπέρισσος ἀριθμός ἐστιν ὁ ὑπ ' ἀρ - τίου ἀριθμοῦ |
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ | ||
ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους . |
τρίτος , Ἡλίου πρῶτος , χαλεπὸς λίαν . κʹ Ἀφροδίτης τέταρτος , ἀκίνδυνος κατὰ τὸ πλεῖστον : νόσοι δὲ ἐκ | ||
οὖσα ἡ λιχανὸς τέσσαρας τόνους ἀπὸ τοῦ προσληφθέντος ἀφέξει φθόγγος τέταρτος ὤν , χρωματικὴ δ ' εἴτε μαλακοῦ χρώματος εἴθ |
στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ | ||
οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος |
ἐν ἐπιφανεστάτῳ δὲ τῆς πόλεως τὸ Αἰάκειον καλούμενον , περίβολος τετράγωνος λευκοῦ λίθου . ἐπειργασμένοι δέ εἰσι κατὰ τὴν ἔσοδον | ||
μήκει συμμέτρων εὐθειῶν τετράγωνα πρὸς ἄλληλα λόγον ἔχει , ὃν τετράγωνος ἀριθμὸς πρὸς τετρά - γωνον ἀριθμόν : καὶ τὰ |
ἀπέκτεινεν καὶ ἄλλον δεύτερον ἐπὶ τοῖς αὐτοῖς , ἕως ὁ τρίτος συνεὶς παραγενομένην ἔφη πάλαι τὴν θεὸν αὐτὸν ἀναμένειν . | ||
Πτιαῦ ὁ πρῶτος , Ἀεὺ ὁ δεύτερος , Πτηβυοὺ ὁ τρίτος . ὁ γεννώμενος ἐπὶ τοῦ πρώτου ἔσται μέγας , |
τοῦ διπλασίονος τοῦ τρίτου ὑπερέχουσι μο κ . Ὁ ἄρα διπλασίων τοῦ τρίτου ἔσται Ϟ β ↑ μο κ : | ||
διπλασίου καὶ τοῦ τριπλασίου τῶν κατὰ τὸ ἑξῆς συντιθεμένων , διπλασίων μὲν αʹ βʹ δʹ ηʹ : δ ' ἐστὶ |
τῶν Γ Δ Ε ἐστιν μονάδων ρμδʹ [ ὁ Θ στερεός : ἁπλῶν οὖν μυριάδων ρμδʹ ἐστὶν ὁ ἐκ τῶν | ||
ὥστε ὁ ἐκ τῶν νʹ νʹ νʹ μʹ μʹ λʹ στερεός ἐστιν μυριάδων ξʹ διπλῶν . ιεʹ . Ἔστωσαν δὴ |
καρδιοπλήκτους , μαινομένους , ἔκφρονας . . ἓξ λόχους ] λόχος ἀνὰ ηʹ ἢ ιβʹ ἢ ιϚʹ ἄνδρας . πεντηκοντῆρας | ||
οὕτως κατὰ τὸ ἑξῆς , ἕως ἂν ὅλος ὁ δεύτερος λόχος κατὰ τὸν πρῶτον ταγῇ , καὶ ὁμοίως ὁ τέταρτος |
οἱ Γ Δ Ε , ὧν ἕκαστος ἐλάσσων μὲν ἑκατοντάδος μετρούμενος δὲ ὑπὸ δεκάδος , καὶ ἄλλοι πάλιν ὁσοιδηποτοῦν ἀριθμοὶ | ||
μετρούμενοι κοινῷ μέτρῳ . Σύνθετος ἀριθμός ἐστιν ὁ ἀριθμῷ τινι μετρούμενος . Σύνθετοι δὲ πρὸς ἀλλήλους ἀριθμοί εἰσιν οἱ ἀριθμῷ |
δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ , | ||
δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν |
ΒΓ τοῦ ΔΖ ἡμιόλιος , ὁ δὲ ΔΖ τοῦ Θ ἐπίτριτος : φημὶ τὸν ΒΓ τοῦ Θ διπλάσιον εἶναι . | ||
τὸ τρίτον αὐτοῦ , ἤγουν τὸ Γ . Ὁ Η ἐπίτριτος τοῦ Ϛʹ . Περιέχει γὰρ ὅλον τὸν Ϛʹ , |
χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων | ||
γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα |
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
ἦσαν τὰ ἐπίπεδα , ὡς ἐδείχθη . Πάλιν οὖν ἄνωθεν ἑτερομήκης ἀριθμὸς λέγεται , οὗ ἐπιπέδως σχηματογραφηθέντος τετράπλευρος μὲν καὶ | ||
τῆς εἴλης τετράγωνον ᾖ , ὁ ἀριθμὸς τῶν ἱππέων γίνεται ἑτερομήκης . Δοκεῖ δὲ τὸ ῥομβοειδὲς σχῆμα ἀναγκαιότατον παρειλῆφθαι : |
λαμπρότατα περιλάμπει πάντα τὸν κόσμον τὸν ὑπερκείμενον καὶ ὑποκείμενον : μέσος γὰρ ἵδρυται στεφανηφορῶν τὸν κόσμον , καὶ καθάπερ ἡνίοχος | ||
, ἀπὸ τοῦ Ἀφροδίτη . . . . ἀνέῳγε : μέσος παρακείμενος : ἀνοίγω ἤνῳγα , ὡς ἠνώρθουν καὶ ἠνώχλουν |
δὲ ζητουμένων ὃν μὲν ΚΥ Κ ξγ , ὃν δὲ ΚΥ Κ ιε , ὃν δὲ ΚΥ Κ γ . | ||
τοὺς τρεῖς ἰσῶσαι ʂ α : γίνονται δὲ οἱ τρεῖς ΚΥ β δא : ταῦτα ἴσα ʂ α : ὅθεν |
μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
δεξιῷ ποδὶ τοῦ Ὀφιούχου , καὶ ὅτι ὁ πέμπτος καὶ ἕβδομος σφόνδυλος ἐπ ' εὐθείας εἰσὶ τῷ ἐν μέσῳ τῷ | ||
ἤτοι κοπροφάγος . Τοιοῦτοι γὰρ οἱ ἐκεῖσε βόες . Βοῦς ἕβδομος : ἐπὶ τῶν ἀναισθήτων . Ἕβδομος δὲ , ὅτι |
Ἀπορήσειέ τις δι ' ἣν αἰτίαν ἐλάσσονα ἔταξε τὸν ρ λείψει Ϟοῦ ἑνός , μείζονα δὲ τὸν κ καὶ τὸν | ||
κζ . Εὑρεῖν δύο ἀριθμοὺς ὅπως ὁ ὑπ ' αὐτῶν λείψει ἑκατέρου ποιῇ τετράγωνον , τῶν δὲ τετραγώνων αἱ πλευραὶ |
, γίνεται ⃞ος ; Πάλιν δὲ ὁ ἀπὸ τοῦ ΒΚ ⃞ος μεταβαίνει εἰς τὸν ἀπὸ τοῦ ΗΜ ⃞ον ἐπὶ τὸν | ||
ὀρθογώνιον καὶ ⃞ον ἀριθμὸν ὅπως ὁ ἀπὸ τοῦ ἐμβαδοῦ ἀρθῇ ⃞ος , καὶ τὰ λοιπὰ Ϛκις γενόμενα ποιῇ ⃞ον . |
ΛΘ , ΘΒ . ἐδείχθη δὲ καὶ ὅλος ὁ ΜΝΞ γνώμων ὅλῳ τῷ ΓΗ ἴσος : καὶ λοιπὸν ἄρα τὸ | ||
γνώμων τετραπλάσιός ἐστι τοῦ ΖΗ τετραγώνου . ὁ ΞΟΠ ἄρα γνώμων καὶ τὸ ΖΗ τετράγωνον πεντα - πλάσιός ἐστι τοῦ |
τίνες ἂν ἰσοκρατῶς ἀπομάχεσθαι δυνηθεῖεν , ὁπότε καὶ παρεσκευασμένοις ἀγὼν ἄνισος ; ὁ τοίνυν Ἄβελ τέχνας μὲν λόγων οὐκ ἔμαθε | ||
διὰ τοῦτο δοκεῖ πλεονέκτης εἶναι . ἔστι δὲ ὁ ἄδικος ἄνισος : τοῦτο γὰρ περιεκτικὸν ὄνομα καὶ κοινόν ἐστι πᾶσι |
ἐπειδὴ ἐν τῷ λόγῳ τῶν καλῶν τι ἡμῖν ἡ σωφροσύνη ὑπετέθη , καλὰ δὲ οὐχ ἧττον τὰ ταχέα τῶν ἡσυχίων | ||
τε μετρηθῆναι . ὁ μείζων τὸν ἐλάσσονα . , ] ὑπετέθη γὰρ ἐξ ἀρχῆς ἐλάττων ὁ Δ . καὶ εἰλήφθωσαν |
α , ἔσται ιβ δא . ἔστι δὲ καὶ ὁ αος λ δא : οἵτινες # Μο ι ποιοῦσι ⃞ους | ||
τῶν τριῶν μεῖζόν ἐστιν ἑκάστου . τετάχθω οὖν ὁ μὲν αος ΔΥ α , ὁ δὲ βος ΔΥ α ʂ |
. Τίς ὁ χιλίαρχος . Τίς ἡ μεραρχία καὶ ὁ μεράρχης , τί τέλος καὶ τίς τελάρχης . Τίς ἡ | ||
, εἰς μέσον ἀριστερόν , οὗ ἄρχει ὁ μέσος ἀριστερὸς μεράρχης ἤτοι στρατηλάτης , εἰς μέσον δεξιόν , οὗ ἄρχει |
πλευρᾶς σκη τριακοσιοστοεξηκοστοπρώτων . Ὁμοίως καὶ ↑ τῶν ἑκατὸν Ϙβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων καὶ αὐτῶν εἰς ἑξακισμύρια ἐννακισχίλια τριακόσια ιβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα | ||
Ἔσται ὁ μὲν πρῶτος , ἐπεὶ ιβ δυ , ρϘβ τριακοσιοστοεξηκοστοπρώτων , ὁ δὲ δεύτερος , ἐπεὶ δυνάμεων ἑπτά , |
ὅτι αὐτῷ , καὶ φανερὸν πεποιήκατε ὅτι οὐδ ' ἂν δεκάκις ἀποθάνῃ , οὐδὲν μᾶλλον κινήσεσθε . τί οὖν πρεσβεύετε | ||
τίκτουσι δὲ πᾶσαν ὥραν τοῦ ἔτους : διὸ δὴ καὶ δεκάκις τοῦ ἐνιαυτοῦ τιθέασιν , ἐν Αἰγύπτῳ δὲ δωδεκάκις . |
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
. δῶρα λαμβάνει . . ἢ προδίδωσι φρούριον : οὗτος ταξίαρχος ἦν ἐν τοῖς Πελοποννησιακοῖς τῶν Ἀθηναίων , ὃς πίσσαν | ||
, οἱ δὲ ἔτι τούτων διπλάσιοι τάξις καὶ ὁ ἡγεμὼν ταξίαρχος μὲν πάλαι , νῦν δὲ καὶ ἑκατοντάρχης , οἱ |
ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
διπλασία τῆς ὑπάτης ἐπιτέταται καὶ ὅλως ὁ δ τοῦ ὀκτὼ ἥμισυς καὶ τοῦ τρία ἐπίτριτος , ὡς ἂν ἀδιαφόρων οὐσῶν | ||
μὲν οὖν ἀρτιάκις περισσός ἐστιν , φανερόν : ὁ γὰρ ἥμισυς αὐτοῦ περισσὸς ὢν μετρεῖ αὐτὸν ἀρτιάκις . λέγω δή |
ἀναλογίαν σώζων γεωμετρικήν , πρόλογος μὲν πρὸς τὸν ἐλάττονα , ὑπόλογος δὲ πρὸς τὸν μείζονα , οὐδέποτε δὲ πλείονες : | ||
' ἑκάτερα αὐτοῦ ἀποκρίνηται , πρὸς μὲν τὸν μείζονα ὡς ὑπόλογος , πρὸς δὲ τὸν ἐλάσσονα ὡς πρόλογος , συνημμένη |
ἔω ὥραις ἑπτὰ ∠ ʹγ ἢ ὅλαις ὀκτώ . Ὁ ἔννατος πίναξ τῆς Ἀσίας περιέχει Ἀρείαν , καὶ Παροπανισάδας , | ||
Αἰγαίου πελάγους , ὄγδοος δὲ ὁ τῆς Μαιώτιδος λίμνης , ἔννατος δὲ ὁ Ἀδρίας ἤτοι Ἰόνιος κόλπος , δέκατος δὲ |
σανη [ × – ˘˘ – × – – ] αδ ' ἐσβολ ? ? [ × × – ˘˘ | ||
τῷ ηλ τεταρτημορίῳ ἀναφέρεται , τὸ δὲ λα τεταρτημόριον τῷ αδ τεταρτημορίῳ ἀναφέρεται : ἴσον γὰρ ἀπέχει τοῦ ἰσημερινοῦ . |
ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
, τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
. Ἔσται ὁ μὲν πρῶτος μο λ , ὁ δὲ δεύτερος μο κε , ὁ δὲ τρίτος μο λε . | ||
, τῷ γὰρ ἀποτελέσματι τῆς χαλινοποιϊκῆς αὕτη ὀργάνῳ κέχρηται . δεύτερος λόγος Περιπατητικός : τὰ μέρη ἀναιρούμενα ἀναιρεῖ τὸ ὅλον |
ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ | ||
. Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν |
, τοιούτων ἐστὶ τὸ γδ τεσσάρων , οἵων δὲ τὸ γδ τεσσάρων , τοιούτων τὸ εζ τριῶν , καὶ οἵων | ||
τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ τὸ αη ἄρα τοῦ εζ ἐστι τριπλάσιον |
φιλοσοφία καὶ ἡ πρὸς ταύτην αἰδώς , καὶ διὰ τοῦτο μετριώτερός ἐστιν ὑμῖν καὶ φορητὸς ἔτι . φέρει γάρ τινα | ||
τέκτων ἢ κάπηλός τις συμπερινοστῶν τῇ στρατιᾷ . πλὴν ἀλλὰ μετριώτερός γε ὁ ἰδιώτης οὗτος ἦν , αὐτὸς μὲν αὐτίκα |
ἐπιφανείας τὴν ὄπισθεν : ὁ δὲ Κρητικὸς καὶ Περσικὸς καὶ χόριος , οὗτος δὲ τὸν αὐτὸν ἐπέχει τόπον τῆς φάλαγγος | ||
ὁ μὲν Μακεδών , ὁ δὲ Λάκων , ὁ δὲ χόριος , ὁ δ ' αὐτὸς Κρητικὸς καὶ Περσικός . |
βου , ἕξω τὸν αον . οἷον , ἔστω ὁ βος ʂ α # Μο α : ταῦτα αἴρω ἀπὸ | ||
σπθου . ἔσται ὁ μὲν αος β , ὁ δὲ βος ε , ὁ δὲ γος ι , καὶ ποιοῦσι |
τὰ ἑξῆς . . . . : καὶ περιέχει ὁ δωδέκατος λόγος περί τε Ἀκώριος τοῦ Αἰγυπτίων βασιλέως ὡς πρός | ||
: οἵ τε λοιποὶ δύο ὅ τε ἕκτος καὶ ὁ δωδέκατος κάκιστοι . Πρὸς τὸν Ἄρεα τρίγωνος ὢν ὁ Κρόνος |
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
φροντίσαι μή τι πάθωσιν . ὁ τοῦδε τοῦ ἀνδρὸς δρόμος Περσικός ἐστι : τοῦτο γὰρ δηλοῖ τὸ Περσικὸν πρέπει μαθεῖν | ||
ἂν εἰ ἔλεγεν : ὑμᾶς οὓς οὐχ εἷλε πλοῦτος ὁ Περσικός , οὐ Λακεδαιμόνιοι μεγάλα ὑπισχνούμενοι . τὸ δὲ νομίζω |
ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι | ||
ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν |
α # Μο β : ὅθεν ὁ ʂ γίνεται μονάδος δγ / . τὰ λοιπὰ δῆλα . κδ . Εὑρεῖν | ||
, ὅτι ἡ δγ μείζων ἐστὶ τῆς εα τῇ τε δγ καὶ τῇ γζ . εἰ τοίνυν δεήσει τῶν ἄκρων |
ἀπὸ μονάδος ὁποσοιοῦν ἀριθμοὶ ἐν ἴσῃ ὑπεροχῇ , ὁ σύμπας πολυπλασιασθεὶς ἐπὶ τὸν ὀκταπλασίονα τῆς ὑπεροχῆς αὐτῶν , καὶ προσλαβὼν | ||
α . Πῶς ; Ϟ α δὲ ἐπὶ Ϟ α πολυπλασιασθεὶς ποιεῖ δυ α . δυ ἄρα α ἑξαπλασίων ἐστὶν |
ΒΓ διπλῆ , ἡ δὲ ΑΕ τῆς ΕΒ διπλῆ , λοιπὴ ἄρα ἡ ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ | ||
ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν ἴση . |
ἕκαστον ἐναντιώσεις ἐν τοῖς ἔπειτα δηλωτέον . * * * Δεύτερος μετὰ Σηιανὸν Φλάκκος Ἀουίλλιος διαδέχεται τὴν κατὰ τῶν Ἰουδαίων | ||
ὅρους ἔχει καὶ δύο ἀνθορισμούς : οἷς οὐδαμῶς προσεκτέον . Δεύτερος δὲ τῶν διπλῶν ὅρων ἐστὶν ὁ κατὰ σύλληψιν , |
ἰσοτελὴς διαφέρει . μέτοικος μὲν γάρ ἐστιν ὁ ὑπόφορος , ἰσοτελὴς δὲ ὁ μὴ τελῶν τι ἢ ἄρχων . μεταβάλλεσθαι | ||
ἔλαττον : ἐτέλει δὲ ὁ μέτοικος κατ ' ἐνιαυτόν . ἰσοτελὴς δέ ἐστιν μέτοικος τετιμημένος ἐν τῷ ἴσῳ τάγματι τοῖς |
τοῖς ὁμοίοις Ϡξδ , ἅ ἐστιν Αἰγυπτιακὰ Ϡξδ καὶ νυχθήμερα σμζ λγ β με κγ μ κη ἔγγιστα , ἀνωμαλίας | ||
τοῦ ἐπικύκλου , ὃν ἔχει τὰ ͵γρκβ ∠ ʹ πρὸς σμζ ∠ ʹ , ᾧ λόγῳ ὁ αὐτός ἐστιν ὁ |
, τοῦ δὲ Δ ἐπόγδοος ὁ Ε , τοῦ Ε ἐπόγδοος ὁ Ζ , τοῦ Ζ ἐπόγδοος ὁ Η : | ||
δυνατοῦ δεῖξαι τὸ προκείμενον , ὅς ἐστι μονάδων ͵αφλϚʹ , ἐπόγδοος μὲν αὐτοῦ γίνεται ὁ τῶν ͵αψκηʹ , τούτου δὲ |
' ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας οζ β . ἐδέδεικτο δ ' ἡμῖν καὶ ἐν τῷ χρόνῳ τῆς γʹ | ||
ἐφαίνετο , ἐπεῖχεν ἂν τοῦ Τοξότου μοίρας θ μϚ . ἐδέδεικτο δ ' , ὅτι καὶ κατὰ τὴν αʹ ἀκρώνυκτον |
: οὔτω γὰρ σαφὴς ἔσται ὁ ἀριθμὸς ὁ ἐξ αὐτῶν συγκείμενος τῶν ἀντιθέσεων . τὸ τοίνυν ὑποκείμενον ἢ καθ ' | ||
τῷ στομάχῳ γειτνιῶν , ὥσπερ δ ' ἐκ κύκλων πολλῶν συγκείμενος χιτῶνας καὶ οὗτος ἔχει τέτταρας , συμπεπλεγμένος ἐκ νεύρων |
. Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς | ||
͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα |
ὑποτείνουσαν ιζ . ἔστιν οὖν τὸ ἀπὸ τῆς ὑποτεινούσης τετράγωνον σπθ . ἀλλὰ καὶ τὸ ἀπὸ τῆς καθέτου μετὰ τοῦ | ||
σπϚ Μυρίκη σπζ Μυρρίνη ἢ μυρϲίνη σπη Μῶλυ ἢ βήϲαϲα σπθ Νάρδου ϲτάχυϲ σϘ Νάρδοϲ κελτική σϘα Νάρθηξ σϘβ Νᾶπυ |
πυαλίτης , ἐπίθετος , σφάλλων , ἀγύρτης , οἶστρος , ἀνακάμπτων , δορεύς , Λάμπων , Κύκλωπες , ἐπιφέρων , | ||
γὰρ γίνεται : γελοῖος ἔσομαι , νὴ Δί ' , ἀνακάμπτων πάλιν . ἤν : χλαμὺς πάρεστιν αὕτη καὶ σπάθη |
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
μὲν αβ τοῦ γδ διπλάσιον , τὸ δὲ γδ τοῦ εζ τριπλάσιον . ἐπεὶ οὖν τὸ μὲν γδ τοῦ εζ | ||
γδ λόγου πηλικότης πολλαπλασιασθῇ ἐπὶ τὴν τοῦ γδ πρὸς τὸ εζ λόγου πηλικότητα , ποιεῖ τὴν τοῦ αβ πρὸς εζ |
καταγραφῆς Εὐθεῖα γάρ τις ἡ ΓΔ τμήματος ἑαυτῆς τοῦ ΔΑ πενταπλάσιον δυνάσθω , τῆς δὲ ΔΑ διπλῆ κείσθω ἡ ΑΒ | ||
, δῆλον : ἐπεὶ γὰρ τὸ μὲν ἀπὸ τῆς ΑΒ πενταπλάσιον τοῦ ἀπὸ τῆς ΜΝ ἐκ κέντρου οὔσης τοῦ κύκλου |
: Τοῦτο λέγει , ἢ διότι καὶ αὐτὸς διάκονος καὶ ὑπηρέτης ἦν τῶν θεῶν , ὥσπερ οὗτος Χρεμύλου : ἢ | ||
' ἄρουρα , τὴν ὁ βούκερως Βρύχων λιπαίνει , γηγενῶν ὑπηρέτης . Πολλῶν δ ' ἐναλλὰξ πημάτων ἀπάρξεται Κανδαῖος ἢ |
τοῦτο μέγιστον γίνεται . Τῶν δὲ δὴ ἄλλων Θρηίκων ἐστὶ ὅδε νόμος : πωλέουσι τὰ τέκνα ἐπ ' ἐξαγωγῇ . | ||
προσέταξέ τινι θάψαι , καὶ ὁ πόλεμος ἑνὶ ἔργῳ καὶ ὅδε παρὰ δόξαν ἐλέλυτο : τοὺς δ ' ἐξ αὐτοῦ |
αος δϚ / , ὁ βος ϚιϚ / , ὁ γος Μο Ϛ . η . Εὑρεῖν τρεῖς ἀριθμοὺς ὅπως | ||
ιζ , ὁ δὲ βος Μο α , ὁ δὲ γος ηων κε . κδ . Δοθέντα ἀριθμὸν διελεῖν εἰς |
ἑκατέρᾳ τῶν ΚΣ , ΒΟ : καὶ ἑκατέρα ἄρα τῶν ΚΣ , ΒΟ τῆς ΣΟ μείζων ἐστίν . καὶ ἐπεὶ | ||
μία ἄρα τῶν ΘΚ , ΚΛ ἑκατέρας τῶν ΨΚ , ΚΣ μείζων ἐστίν . καὶ ἐπεὶ παράλληλός ἐστιν ὁ ΒΖΓ |
ἐς μάχην ; ἀσφαλὴς γάρ ἐστ ' ἀμείνων ἢ θρασὺς στρατηλάτης . κομπὸς εἶ σπονδαῖς πεποιθώς , αἵ σε σώιζουσιν | ||
φόνον , σύ τ ' ἀντὶ πατρός , Αἰγιαλεῦ , στρατηλάτης νέος κατάστας παῖς τ ' ἀπ ' Αἰτωλῶν μολὼν |
' ἔμμεναι , εἴτε τευ ἄλλου , εὔκηλος φορέοιτο . Λόγος γε μὲν ἐντρέχει ἄλλος ἀνθρώποις , ὡς δῆθεν ἐπιχθονίη | ||
γὰρ αὐτὸς αὐτῷ ἐστιν ὁ τοῦ ΑΓ πρὸς ΓΒ . Λόγος ἄρα τοῦ ΔΖ πρὸς ἑκάτερον . , ] ὁ |
ρξβ . δῆλον οὖν , ὅτι ὁ Α τοῦ Β ὑφημιόλιός ἐστι καὶ οὐ μετρεῖ αὐτόν . ὁμοίως καὶ οἱ | ||
ὁ β τοῦ γ κοινῶς μὲν ὑποεπιμόριος , ἰδικῶς δὲ ὑφημιόλιός ἐστιν , ὡσαύτως δὲ ὁ γ τοῦ δ κοινῶς |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
† φεύξεσθαι ὀΐομαι αἰπὺν ὄλεθρον . τρὶς μάκαρες μέντοι καὶ τετράκις οἱ μὴ ἔχοντες μήτε κατατρώξαντες ἐνὶ σχολῇ ὅσς ' | ||
οὖν τούτων ἐχόντων , φαμὲν οὕτως , πεντάκις παρεγένετο , τετράκις παρεγένετο , οὐ μὴν ἔτι οὕτως , πέντε παρεγένετο |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
ἢ Κέρκωψ ὁ Μιλήσιος : ἔνθα ποτ ' ἔσται ἐμὸν ψυκτήριον , ὄρχαμε λαῶν . ΩΙΔΟΣ . οὕτως ἐκαλεῖτο τὸ | ||
Πανοπηΐδος Αἴγλης . . . ἔνθά ποτ ' ἔσται ἐμὸν ψυκτήριον , ὄρχαμε λαῶν . , Εἰ μὲν δώσετε μισθὸν |
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
μεταβάλλουσιν . ὅμοιον τῷ , Πολύποδος πολυχρόου νόον ἔσχε . Ἄλλος οὗτος Ἡρακλῆς : ἐπὶ τῶν ἰσχυρῶν καὶ κραταιῶν . | ||
στραφεὶς ἐφώνει : Πέμψον δέ μοι καὶ τὸ φιβλατώριον . Ἄλλος ὁμοίως μεγαλαυχούμενος , τελείως τε πενητεύων καὶ κατὰ τύχην |
δὲ ὑπόκειται , τοῦ δὲ δευτέρου , ἐν ᾧ ὁ κοινὸς ὅρος ἀμφοτέρων κατηγορεῖται , τοῦ δὲ τρίτου , ἐν | ||
οὐδὲ ἑαυτόν . μηθὲν ἴδιον κτῆμα νομιζέσθω φιλοσόφῳ . ὧν κοινὸς ὁ θεὸς καὶ ταῦτα ὡς πατήρ , τούτων μὴ |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
ἔτυχε δ ' οὐ μακρὰν κατεστρατοπεδευκὼς ὁ ἕτερος τῶν ὑπάτων Μενήνιος οὐκ ἐν ἀσφαλεῖ χωρίῳ : καὶ ὅτε ἡ Φαβίων | ||
πολλῷ δ ' ὕστερον χρόνῳ τῆς ἑορτῆς τῶν ὑπατικῶν εἷς Μενήνιος Ἀγρίππας ἐτελεύτησε τὸν βίον , ὁ νικήσας Σαβίνους καὶ |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β | ||
ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ |
ἀνδρὸς οὐδέν ἐστι χρήσιμον . Εὐκαταφρόνητός ἐστι σιγηρὸς τρόπος . Εἷς ἐστι δοῦλος οἰκίας ὁ δεσπότης . Ἐμπειρία γὰρ τῆς | ||
. Εἰς θεοῦ ὦτα ἦλθεν : ἐπὶ μεγάλων πραγμάτων . Εἷς ἀνὴρ , οὐδεὶς ἀνήρ . Ἐν νυκτὶ βουλήν : |
στίχος ὁ εἷςῬουβὴν „ Συμεὼν Λευί : ” καὶ ὁ στίχος ” φησίν „ ὁ δεύτερος ἄνθραξ καὶ σάπφειρος „ | ||
ὀξεῖαν φωνὴν ἀφιεῖσι διὰ τὸν πόνον . Ἔπος λέγεται πᾶς στίχος ἰαμβικὸς καὶ τροχαϊκὸς καὶ ἀναπαιστικὸς καὶ δακτυλικὸς καὶ οἱῳδήποτε |