ζη τῷ κν . ἔστι δὲ καὶ ὁ θη τῷ νξ ἴσος : ἑκάτερος γάρ ἐστιν ὁ ἀπὸ τοῦ γβ | ||
βδ τετράγωνος ὁ κλ , ἀπὸ δὲ τοῦ δγ ὁ νξ , ἐκ δὲ τῶν βδ , δγ ἑκάτερος τῶν |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
[ [ ] ! [ ] ! [ ! ] λμ ? [ ] ! [ ! ] ! [ | ||
κλ , ἐκ δὲ τῶν δβ , βγ ἑκάτερος τῶν λμ , μν , ἀπὸ δὲ τοῦ βγ ὁ νξ |
δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ , | ||
δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν |
φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα | ||
δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη |
αὐτὸν καὶ τὸν πα ἀριθμὸν , ὅς ἐστιν ὄγδοον τοῦ χμη . εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη | ||
γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ |
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν | ||
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον |
χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων | ||
γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα |
εἴη ὁ μηνίσκος τῷ εὐθυγράμμῳ . ὅτι δὲ οὗτος ὁ μηνίσκος ἐλάττονα ἡμικυκλίου τὴν ἐκτὸς ἔχει περιφέρειαν , δείκνυσι διὰ | ||
ΕΚ ΚΒ ΒΗ τμημάτων . τούτων οὕτως ἐχόντων ὁ γενόμενος μηνίσκος οὗ ἐκτὸς περιφέρεια ἡ ΕΚΒΗ ἴσος ἔσται τῷ εὐθυγράμμῳ |
α # Μο β : ὅθεν ὁ ʂ γίνεται μονάδος δγ / . τὰ λοιπὰ δῆλα . κδ . Εὑρεῖν | ||
, ὅτι ἡ δγ μείζων ἐστὶ τῆς εα τῇ τε δγ καὶ τῇ γζ . εἰ τοίνυν δεήσει τῶν ἄκρων |
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι | ||
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν |
λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ ἴσ . ʂ Ϛ # ΔΥ α , καὶ γίνεται | ||
ποιεῖν ἴσ . ⃞ῳ , καὶ ʂ β Μο α ἴσ . κύβῳ . καὶ γίνεται ζητεῖν τετράγωνον κύβου βπλ |
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ | ||
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ |
πυρίκαυτα φλεγμῆναι κωλύει ὕδατι θερμῷ ἀνεθεῖϲα . ἔϲτι δὲ καὶ τραυματικὴ ὀξυμέλιτι λυομένη . Τελλῖναι ταριχηραὶ καυθεῖϲαι καυϲτικὴν ἐργάζονται τέφραν | ||
γεγονότος , μόνου μὲν τοῦ δέρματος διακεκομμένου ἡ κοινὴ δοκιμαζέσθω τραυματικὴ ἀγωγὴ ἡ μικρῷ πρόσθεν εἰρημένη : τετρωμένου δὲ τοῦ |
πα , ρ , ρκα , ρμδ , ρξθ , ρϘϚ , σκε : ὁ δὲ τῶν ἑτερομηκῶν ἀπὸ δυάδος | ||
σκε : ἡ δὲ ΓΒ ιδ : τὸ ἀπὸ ταύτης ρϘϚ : ἡ δὲ ΒΑ ιγ καὶ τὸ ἀπὸ ταύτης |
Κατὰ μὲν γὰρ Μερόην τῆς Αἰθιοπίας ἕνδεκα ὡρῶν εἶναι ἡ θερινὴ νὺξ ἱστορεῖται , κατὰ δὲ Ἀλεξάνδρειαν δέκα , κατὰ | ||
τροπή , ἐν αἰγοκέρῳ δὲ χειμερινή , ἐν καρκίνῳ δὲ θερινὴ καὶ ἐν ζυγῷ φθινοπωρινή . στερεὰ δὲ ὑπειλήφασι ταῦρόν |
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ | ||
αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ |
πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ | ||
. τὸ ἄρα ὑπὸ τῶν ΝΜΞ ἴσον ἐστὶ τῷ ὑπὸ ΔΜΕ . ἔστιν ἄρα ὡς ἡ ΜΝ πρὸς ΜΔ , |
. δρακοντία ἤτοι ἀρκολάχανον . δορύκνιον ἤτοι στρύχνον ὀνομαζόμενον . Ἐρυθρόδανον ἤτοι ῥιζάριν τῶν βαφέων . ἐρινεὸς ὁ τῆς ἀγρίας | ||
Ἕρπυλλοϲ θερμαίνει , ὥϲτε καὶ οὖρα καὶ καταμήνια κινεῖν . Ἐρυθρόδανον καταμήνιά τε κινεῖ καὶ τὰ περὶ τὸ δέρμα ἀπορρύπτει |
τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης | ||
ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ |
καὶ ὁρίζει τὰ πρόσωπα , ῥητέον . Πᾶσα ἀντωνυμία ἢ δεικτική ἐστιν ἢ ἀναφορική , αἱ κατὰ πρῶτον καὶ δεύτερον | ||
δεικτικὴ τούτου . Λαβὼν ὅτι ἀπόδειξίς ἐστι τοῦ ὅτι ἔστι δεικτική , ἔχων δὲ ὅτι καὶ ὁ ὁρισμὸς καὶ ἡ |
ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
, τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
αἵ γε ἀπὸ τοῦ Ρ ὄμματος ἀκτῖνες προσπίπτουσαι κατὰ τὰς ΡΖ , ΡΣ πεσοῦνται . ὥστε ὁρᾶται ὑπὸ μὲν τῆς | ||
ΡΖ , ΖΚ , ΡΣ , ΣΚ . οὐκοῦν αἱ ΡΖ , ΡΣ καθ ' ἓν ἐφάπτονται τῆς σφαίρας . |
ταῦτα ἴσα ΔΥ α Μο α . κοινὴ προσκείσθω ἡ λεῖψις , καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια : λοιποὶ ʂ | ||
ταῦτα ἴσα ʂ α Μο κ . κοινὴ προσκείσθω ἡ λεῖψις , καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια . λοιποὶ ʂ |
υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
ἐστὶν ἡ Ηβ τῇ εΞ περιφερείᾳ . κοινὴ ἀφῃρήσθω ἡ εβ : λοιπὴ ἄρα ἡ Ηε λοιπῇ τῇ βΞ ἐστιν | ||
γ , αδ , γ , δε , γ , εβ ἐπιπέδοις . Ἔστω γὰρ ἐκ μὲν τῶν γ , |
ἡ ΓΖ , καὶ ὁ ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΖΕΗ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΒ τῇ ΒΓ | ||
τῶν Ε Γ ἀνεστάτωσαν ὀρθαὶ τῷ ἐπιπέδῳ τοῦ κύκλου αἱ ΖΕΗ ΓΛ , καὶ ἑκατέρα μὲν τῶν ΕΘ ΓΛ ἑξαγώνου |
γαϲτρόϲ , ϲπαράττουϲι μάτην ἐπὶ κεναῖϲ ναυτίαιϲ μηδενὸϲ ἐμουμένου . Πνεύμονοϲ γνωρίϲματα . Οὐ μόνον δὲ ἡ κοιλία διψώδειϲ καὶ | ||
ἐκ ϲτόματοϲ ἕλκει ρμβ Ὅϲα γάλα γεννᾷ καὶ κινεῖ ρμγ Πνεύμονοϲ καὶ θώρακοϲ καθαρτικά ρμδ Περὶ ὑποκαπνιϲμῶν ρμε Κενωτικὰ λεπτῶν |
δευτέραν ἔκλειψιν ἀπεῖχεν ἡ σελήνη τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας σνα νγ : καὶ ἐνθάδε γὰρ ὁ ἀπὸ τῆς ἐποχῆς | ||
τῶν πετρῶν σμη Λεοντοπόδιον ἢ λεοντοπέταλον σμθ Λεπίδιον σν Λευκόϊον σνα Λεύκη τὸ δένδρον σνβ Λιβανωτόϲ σνγ Λιβάνου αἰθάλη σνδ |
ποταμοῦ κελάδοντος Ἀράξεω Φάσιδι συμφέρεται ἱερὸν ῥόον , οἱ δὲ συνάμφω Καυκασίην ἅλαδ ' εἰς ἓν ἐλαυνόμενοι προρέουσιν : δείματι | ||
γὰρ ἂν ἐφαρμόττοι τῷ δὶς γενέσθαι τὴν παλίρροιαν κατὰ τὸν συνάμφω χρόνον , τὸν ἐξ ἡμέρας καὶ νυκτός , ἢ |
πζ εἰ πρεσβεύσω τὰ πρὸς θεόν πη εἰ βουλευτὴς ἔσομαι πθ εἰ λανθάνει μου ὁ δρασμός Ϙ εἰ ἀπαλλάσσομαι τῆς | ||
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων πθ ιϚ , οἵων ἐστὶν ὁ περὶ τὸ ΓΖΛ ὀρθογώνιον |
ἴασις γίνεται τοῖς καυσουμένοις : ὀνομάζουσι δὲ αὐτὸ χιονόμελι . Ῥόδα καλά , εἰ ἐγχωρεῖ ὀρεινά , ἐξωνυχισμένα κόψας , | ||
αἷϲ ἡ μαϲτίχη τμγ Ὅπωϲ δεῖ καίειν τὴν ῥητίνην τμδ Ῥόδα τμε Ῥοδοδάφνη τμϚ Ῥόα πᾶϲα τμζ Ῥοῦϲ τμη Ῥύποϲ |
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
. γὰρ δοτικὴ μακροκατάληκτος οὐδέποτε ὀξύνεται : αἱ γὰρ ὀξυνόμεναι βραχυκατάληκτοι , καὶ διὰ τοῦτο μᾶλλον τὸ ἐμίν Δωρικὸν ἀνάλογονὁμότονοί | ||
[ ] [ ] . φέρε ] ναί . τρίμετροι βραχυκατάληκτοι βʹ . καταγαγὼν ὁ Ζεὺς τὸν πατέρα αὐτοῦ Κρόνον |
αδ μονάδας : ὑπόκειται γάρ . ἴσος ἄρα ἐστὶν ὁ ζη τῷ κν : οἱ γὰρ τοῦ αὐτοῦ ἰσάκις πολλαπλάσιοι | ||
κατὰ τὰς ἐν τῷ αδ μονάδας : ὑπόκειται γὰρ ὁ ζη ἐκ τῶν αδ , δβ : ἴσος ἄρα ὁ |
. . . . . . . . . . ρμϚ λα Ϛʹ Ἔλδανα . . . . . . | ||
. . . . . . . . . . ρμϚ ∠ ʹ κε ∠ ʹ Ἀγαναγόρα . . . |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
ἐπογδόῳ , τὸ δ ' ἐπίτριτον διὰ τεσσάρων ἐκ δυεῖν ἐπογδόων καὶ τοῦ διεσιαίου λείμματος : καταπυκνωτέον αὐτὰ τοῖς ἐπογδόοις | ||
ἴσῳ δὲ ὑπερεχομένην . ἡμιολίων δὲ διαστάσεων καὶ ἐπιτρίτων καὶ ἐπογδόων γενομένων ἐκ τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν |
, ἰοῦ ξυϲτοῦ ⋖ γ , λίθου ϲχιϲτοῦ , λεπίδοϲ ἐρυθρᾶϲ , λυκίου Ἰνδικοῦ , ὀμφακίου ἀνὰ ⋖ α , | ||
πεπειραμένον . χαλκίτεωϲ κεκαυμένηϲ ⋖ κ καδμίαϲ ⋖ ι λεπίδοϲ ἐρυθρᾶϲ ⋖ ε πεπέρεωϲ ⋖ α , χρῶ ξηρῷ , |
αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ | ||
ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους . |
καὶ ἐὰν μέσου ἡμέρας ἡ θερινὴ τροπὴ γένηται , αἱ προγεγενημέναι ἡμέραι τε καὶ νύκτες ἀπὸ τροπῶν χειμερινῶν ταῖς μετὰ | ||
ἔσται πασῶν τῶν ἐν τῷ ἐνιαυτῷ νυκτῶν , αἱ δὲ προγεγενημέναι νύκτες καὶ ἡμέραι τοῦ ἡλίου πορευομένου ἀπὸ τροπῶν θερινῶν |
: διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ | ||
δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος |
. . . . . . . . . . ρξζ ∠ ʹ ιδ ∠ ʹ Δωρίου ποταμοῦ ἐκβολαί . | ||
β τηρήσεων χρόνος περιέχει ἔτη μὲν Αἰγυπτιακὰ υθ καὶ ἡμέρας ρξζ ἔγγιστα , ἀνωμαλίας δ ' ἀποκαταστάσεις ὅλας σνε , |
. . . . . . . . . . ρλη ιζ Βαρδαμάνα . . . . . . . | ||
ἐν πυρετοῖϲ ἐκ τῶν Φιλαγρίου ρλζ Ἡ διὰ κωδυῶν ἀντίδοτοϲ ρλη Ὀμφακομέλιτοϲ ϲκευαϲία ρλθ Ῥοδομέλιτοϲ ϲκευαϲία ρμ Ὑδροροϲάτου ϲκευαϲία ρμα |
, ὁ δὲ τῷ μεγίστῳ τῶν ἀσυνθέτων διαστημάτων ὀξύτερος τῷ διτόνῳ θηλύτερος : οἱ δὲ μέσοι λογιζέσθωσαν ὡς ἐπαμφοτερίζοντες . | ||
βαρὺ καὶ ἐπὶ τὸ ὀξὺ τεθήσεται . Τόνος δὲ πρὸς διτόνῳ ἐπὶ τὸ ὀξὺ μόνον τίθεται . τιθέσθω γὰρ ἐπὶ |
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
, ἡ δὲ τοῦ ἑτέρου ἀπὸ διαφορᾶς ʂ β καὶ ʂא α ∠ ʹ . καὶ μένει ὁ ἀπὸ ἑκατέρου | ||
δὲ πολλαπλασιαζόμενος ἀριθμὸς ἔστω ἀριθμοστῶν κυβικῶν ὁσωνδήποτε : ἔστω δὴ ʂא η . ἐπὶ μὲν οὖν τὴν ΔΥ α πολλαπλασιάσαντες |
τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
δυνάμεωϲ : τῷ λεπτομερεῖ δὲ τῆϲ οὐϲίαϲ ἀνωδύνωϲ καίει . Κόνυζα διττή . Κόνυζα καὶ ἡ μείζων καὶ ἡ μικροτέρα | ||
τῶν τιθυμάλλων καὶ σχεδὸν ἤδη τῆς καλουμένης σηπτικῆς δυνάμεως . Κόνυζα καὶ ἡ μείζων καὶ ἡ μικροτέρα δριμείας καὶ πικρᾶς |
λείψω λείψανον . καὶ γὰρ ἔσπενδον ἐπὶ τῶν τεθνεώτων . Λειχήν : παρὰ τὸ λείχω . καὶ γάρ φασιν , | ||
ἄκρα καὶ ἰχῶρα ἀφίησι πελιδνὸν καὶ δυσώδη . σϞζʹ . Λειχήν ἐστι τραχύτης ἐπιφανείας μετὰ πολλοῦ κνησμοῦ . σϞηʹ . |
. . . . . . . . . . ρμβ ∠ ʹ κβ ∠ ʹ : Καὶ πρὸς τῷ | ||
. . . . . . . . . . ρμβ κη αἱ πηγαὶ τῆς ἐκτροπῆς . . . . |
. ἐπὶ τὰς ὑποστάσεις : ἔσται ὁ μὲν τρίγωνος Μο ρνγ , ὁ δὲ τετράγωνος Μο ͵Ϛυ , ὁ δὲ | ||
, οἵων δ ' αἱ β ὀρθαὶ τξ , τοιούτων ρνγ λ : ὥστε καὶ λοιπὴ μὲν ἡ ὑπὸ ΖΔΚ |
εἰς τὰ ὦτα γυναῖκες ρλαʹ . Ἐλαίου σαλκᾶ σκευασία πολυτελὴς ρλβʹ . Φουλιάτου σκευασία ρλγʹ . Σπεκάτου σκευασία ρλδʹ . | ||
Περικλέα , οὐκ ἐναντία λέγων τοῖς ἐν Γοργίᾳ εἰρημένοις . ρλβʹ Λελοιδορήκαμεν τὴν τῶν λόγων τέχνην Λέγει δὲ τὴν δημώδη |
. . . . . . . . . . ρϚ νβ ∠ ʹ ἀπὸ δὲ τούτου ῥεῖ ὅ τε | ||
ἐπὶ τὴν δευτέραν ἔτη μὲν Αἰγυπτιακὰ περιέχει γ καὶ ἡμέρας ρϚ καὶ ὥρας κγ , μοίρας δὲ τῆς φαινομένης τοῦ |
αʹ . Προφυλακτικὰ πάντων κοινῇ τῶν ἰοβόλων . βʹ . Κοινὴ θεραπεία πάντων τῶν ὑπό τινοϲ ἰοβόλου πληγέντων ἢ δηχθέντων | ||
καὶ τὸ στερεὸν τὰ ͵αφλϚ τῶν ρϘβ . τρία τέταρτα Κοινὴ προσκείσθω ἡ ὑπὸ ΔΥΟ , καὶ γίνονται αἱ τρεῖς |
ἐνίοις οὐ ψωριῶσι , καθάπερ οὐδὲ περὶ τὴν Αἰνείαν . Ἁλίσκεται δὲ συκῆ μάλιστα καὶ σφακελισμῷ καὶ κράδῳ . καλεῖται | ||
τῷ Περὶ παθῶν , . , . . . . Ἁλίσκεται : καταλαμβάνεται , κρατεῖται . εἴρηται εἰς τὸ Ἁλῶ |
σανη [ × – ˘˘ – × – – ] αδ ' ἐσβολ ? ? [ × × – ˘˘ | ||
τῷ ηλ τεταρτημορίῳ ἀναφέρεται , τὸ δὲ λα τεταρτημόριον τῷ αδ τεταρτημορίῳ ἀναφέρεται : ἴσον γὰρ ἀπέχει τοῦ ἰσημερινοῦ . |
ῥίζα διαφορεῖ καὶ ἀποκρούεται . Ἡμιονῖτις στύφει μετὰ πικρότητος . Ἠριγέρων ψύχει , διαφορεῖ . Ἰσόπυρον ἢ φασήλιον ῥύπτει , | ||
ἔχειν τι . Ἡμιονῖτις στύψεως ἅμα σὺν πικρότητι μετέχει . Ἠριγέρων δύναμιν ψυκτικήν τε ἅμα καὶ μετρίως διαφορητικὴν ἔχει . |
. καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι | ||
μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ |
ἑκατέρας τῶν ΑΖ καὶ ΑΓ ὑποτεινουσῶν ἡ μὲν ΖΘ γίνεται πϚ η # , ἡ δὲ ΓΘ ὁμοίως ρϚ λθ | ||
. . . . . . . . . . πϚ μζ Τέλαιβα πόλις . . . . . . |
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι | ||
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον |
πολλὰ δὲ καὶ ἄλλα ἐστὶ στύφοντα πᾶσιν ὄντα γνώριμα . Εὔζωμον , μάραθρον , ἄνηθον , σμύρνιον ὁμοίως , σέλινον | ||
Ἐπίθυμον ρμε Ἐρέβινθοϲ ρμϚ Ἕρπυλλοϲ ρμζ Ἐρύϲιμον ρμη Ἐρυθρόδανον ρμθ Εὔζωμον ρν Εὐπατόριον ρνα Εὐφόρβιον ρνβ Ζειά ρνγ Ζιγγίβερι ρνδ |
αἰτεῖν τοὺς θεούς ; Καὶ μάλα , ὦ Σώκρατες . Ἐπιστήμη ἄρα αἰτήσεως καὶ δόσεως θεοῖς ὁσιότης ἂν εἴη ἐκ | ||
ἐν ποιότητι ἢ τοῦ ἐν μεγέθει καὶ τοῖς ἑξῆς . Ἐπιστήμη μὲν οὖν πᾶσα ἐκ πεπερασμένων ἀρχομένη [ τῶν ἰδίων |
. Κυδαθηναιεύϲ : Ὑπ . ἐν τῷ ὑπὲρ τοῦ Ἱππέως κλ . . Τριακάϲ : τοῖς τετελευτηκόσιν ἤγετο ἡ τριακοστὴ | ||
τὰς ἐν τῷ γδ μονάδας . ἐμέτρει δὲ καὶ τὸν κλ κατὰ τὰς ἐν ἑαυτῷ μονάδας : ὅλον ἄρα τὸν |
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
ὅτι τὸ ἀπὸ τῆς ΚΛ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΘΖΛ . ἤχθω γὰρ διὰ τοῦ Λ τῇ ΒΓ παράλληλος | ||
ΛΖΑ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ |
. . . . . . . . . . Ϙγ γοʹ λζ δʹ Τιβρακάνα . . . . . | ||
πη θ πθ οβ Ϙ ιγ Ϙα πα Ϙβ ιβ Ϙγ νζ Ϙδ κθ Ϙε κε ϘϚ πθ Ϙζ οζ |
, ζιγγιβέρεως , ἑλενίου , νίτρου ἀνὰ ⋖ η . Κηρωτὴ στομαχική . Ἀψινθίου , ἀλόης , μαστίχης , στύρακος | ||
περιωδυνίας . τούτῳ ἐχρησάμην καὶ ἐπὶ σπλάγχνων χρονίως φλεγμαινόντων . Κηρωτὴ ἐπὶ πλεῖστον δοκιμασθεῖσα πρὸς τὰς φλεγμονὰς τῶν ποδῶν , |
τῶν πόλων τῶν παραλλήλων . λέγω , ὅτι καὶ ὁ ΒΘΔ κύκλος διὰ τῶν πόλων ἐστὶ τῶν παραλλήλων , τουτέστιν | ||
ὑπὸ ΛΑΓ , ἥ ἐστιν ἴση συναμφοτέραις ταῖς ὑπὸ ΒΑΓ ΒΘΔ . καὶ ἔστι τοῦτο καθολικώτερον πολλῷ τοῦ ἐν τοῖς |
τοὺς στίχους ὡς κεῖνται . Τὸ δὲ ΤΟΙΣΙΝ Δ ' ΟΥΡΑΝΟΘΕΝ , οὐ σολοικόν ἐστιν , ἀλλὰ περιληπτικὸν , ἤγουν | ||
Ἡρακλεῖ . . ΚΑΔ ' Δ ' ΑΡ ΑΠ ' ΟΥΡΑΝΟΘΕΝ . Ὅμηρος μὲν ἐπὶ Σαρπηδόνος μέλλοντος τελευτᾷν , εὐλόγως |
ἐν τῷ ὑπὸ γῆν αὐτὴν διελεύσεται : ὥστε καὶ τὴν εγʹ : τοῦ ἄρα ἡλίου τὴν εγʹ περιφέρειαν διαπορευομένου ἐν | ||
, τὸ δʹ ἄστρον ἀνατέλλον : τοῦ ἄρα ἡλίου τὴν εγʹ περιφέρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν , τὸ δʹ |
κατ ' ἀνδρῶν δῆτ ' ἐνοικήσει στέγην ; καὶ πῶς ἀκραιφνὴς ἐν νέοις στρωφωμένη ἔσται ; τὸν ἡβῶνθ ' , | ||
: κἂν γὰρ εἰς τὸ παρὸν ἐλλείπῃ , σώζεται γοῦν ἀκραιφνὴς εἰς τὰ μέλλοντα . Αἱ μὲν κατ ' ὄψιν |
τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ | ||
. ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ |
τῶν θερμαινόντων , εἴ τιϲ ἔξωθεν αὐτῷ χρῆϲθαι βούλοιτο . Κόκκοϲ Κνίδιοϲ . Καθαίρει μὲν καὶ αὐτόϲ : δριμείαϲ δέ | ||
Ὑποκυϲτίϲ σδ Κιϲθὸϲ ἢ λήδων σε Κιϲϲόϲ σϚ Κνῆκοϲ σζ Κόκκοϲ κνίδιοϲ ση Κόκκοϲ βαφική σθ Κοκκυμηλέαϲ ὁ καρπόϲ Κοκκύμηλον |
λεπτομερέϲτερόν ἐϲτι τοῦ κοινοῦ καὶ διὰ τοῦτο καὶ διαφορητικόν . Κίϲθοϲ ἢ κίϲθαροϲ . Ϲτυπτικὸϲ ὁ θάμνοϲ ἐϲτὶν εἰϲ τοϲοῦτον | ||
ῥώννυϲι καὶ τονοῖ μιγνυμένη τοῖϲ ἐπιτηδείοιϲ ἐπιθέμαϲιν ἢ ἀντιδότοιϲ . Κίϲθοϲ ἢ λήδων . Ἐν τοῖϲ θερμοτέροιϲ χωρίοιϲ οὗτοϲ ὁ |
τοῦ κ καὶ τῆς πλευρᾶς τοῦ σ , ὅπερ ἐστὶ σπβ ν κ , μέσον ὡς ὑπὸ ῥητῶν δυνάμει μόνον | ||
Μηλέα περϲική σοθ Μηλέα ἀρμενιακή σπ Μηλέα μηδική σπα Μῆλα σπβ Μῆον σπγ Μορέα σπδ Μύκητεϲ σπε Μυωτίϲ σπϚ Μυρίκη |
τὸ κατὰ τὴν ἀνωμαλίαν ἀπέχειν τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ρπα ιβ . συνάγεται δὲ καὶ ἡ ἀπὸ τῆς δευτέρας | ||
ροη Καννάβεωϲ ὁ καρπόϲ ροθ Κάπνιοϲ ἢ καπνόϲ ρπ Κάππαριϲ ρπα Κάρδαμον ρπβ Καρδάμωμον ρπγ Καρῶον ρπδ Καϲϲία ρπε Καρύα |
λείμματος , τὸ δὲ διὰ πέντε ἐκ τριῶν τόνων καὶ λείμματος , τὸ δὲ διὰ πασῶν ἐκ τοῦ διὰ πέντε | ||
καὶ ἐπὶ τοῦ διὰ τεσσάρων τοῦ συνεστῶτος ἐκ τόνου καὶ λείμματος καὶ τόνου , οἷον τοῦ ἀρχομένου ἀπὸ προσλαμβανομένου καὶ |
ξυστῆρος γινέσθω ὁμαλῶς ἰσοβαθής , καὶ πάλιν μετὰ τὴν ξύσιν ἐγκρινέσθω ἡ μικρῷ πρόσθεν δεδηλωμένη θεραπεία . Ἐν πρώτοις διαστείλασθαι | ||
δοκιμαζέσθω . λιπάσματος μὲν οὖν ὄντος ἢ ἐπιπολαίου φθορᾶς , ἐγκρινέσθω ξύσις , οὐχ ἵνα μόνον ἡ ἐπιλιπὴς οὐσία ξυσθῇ |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
καὶ ἔστω ἀνατολικὰ μὲν μέρη τὰ ζηʹ δυτικὰ δὲ τὰ βγʹ : λέγω ὅτι ὁ ζγʹ κύκλος αἰεὶ διὰ μὲν | ||
διὰ μὲν τῆς ζηʹ περιφερείας ἀνατέλλει , διὰ δὲ τῆς βγʹ δύσεται . Εἰλήφθω γάρ τινα σημεῖα ἐπὶ τῆς ζγʹ |
ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα | ||
λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ |
καὶ ἐμπλαϲτικῆϲ δυνάμεωϲ : καὶ δηλονότι καὶ τραχυτήτων ἰατικῆϲ . Κονία . Τὸ οἷον περίπλυμα τῶν τεφρωθειϲῶν ὑλῶν οὕτωϲ ὀνομάζεται | ||
δυνάμεωϲ , καὶ δῆλον , ὅτι καὶ τραχύτηταϲ ἰᾶται . Κονία τὸ οἷον περίπλυμα τῆϲ τέφραϲ ὀνομάζεται . ῥυπτικωτάτη δὲ |
, ἡ δεκάτη Κρόνου , ἡ ἑνδεκάτη Διός , ἡ δωδεκάτη Ἄρεως : [ ἡ ] ἡμέρα αʹ Ἡλίου , | ||
ἕτεροι δὲ Σκιροφοριῶνος τῆι αὐτῆι ἡμέραι . . . : δωδεκάτη μὲν ἔην μηνὸς Θαργηλιῶνος . . . νὺξ δ |
. καὶ λοιπὴ ἄρα ἡ μὲν ΓΕ περιφέρεια μοιρῶν ἐστιν ρξα ζ , ἡ δ ' ὑπ ' αὐτὴν εὐθεῖα | ||
. . . . . . . . . . ρξα νότ . α γʹ . Νῆσοι δὲ φέρονται κατὰ |
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . . | ||
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ |
λε καὶ εἶχον τῶν γ τὸ μέγιστον κοινὸν μέτρον . Καθολικὴ μέθοδος , ὅτι τριῶν ἀριθμῶν ἐκκειμένων τὸ μέγιστον αὐτῶν | ||
, παγχρύσεός εἰμι κολοσσός : ἐξώλης εἴη Κυψελιδῶν γενεά . Καθολικὴ προσωιδία , . . . . . . . |
διεχρήσατο , τὸ δὲ λειπόμενον προσθεῖναι τὴν αἰχμάλωτον βούλεται . ΕΠΙ ΤΗι ΚΑΤΑΣΤΑΣΕΙ Δ ' Η ΒΟΥΛΗΣΙΣ . Τῶν γὰρ | ||
πάντα τὰ κατὰ τὸν βίον πληροῦσα . . ΟΙ ΜΕΝ ΕΠΙ ΚΡΟΝΟΥ . Ὅτι μὲν οἱ ἀπὸ χρυσοῦ γένους ἄνθρωποι |
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς | ||
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν . |
τῇ ΟΛ καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΗΕΖ ἴση τῇ ὑπὸ ΛΟΝ . ἐπεὶ οὖν εὐθειῶν τῶν | ||
ὑπὸ ΘΕΖ ἴση ἐστίν . ὀρθὴ ἄρα ἑκατέρα τῶν ὑπὸ ΗΕΖ , ΘΕΖ γωνιῶν . ἡ ΖΕ ἄρα πρὸς τὴν |
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
. καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . , , | ||
μεταξὺ τῶν τροπικῶν ια ἔγγιστα , οἵων ἐστὶν ὁ μεσημβρινὸς πγ . εὔληπτα δὲ αὐτόθεν ἐκ τῆς προκειμένης παρατηρήσεως γίνεται |
ἓν τῶν ἐπιταγμάτων . Καὶ ἐπεὶ ὁ μὲν αος ἐστι ηιγ / , ὁ δὲ βος Μο γ ∠ ʹ | ||
τουτέστιν ηκδ / : ἔχομεν δὲ καὶ τὸν μὲν αον ηιγ / , τὸν δὲ βον Μο γ ∠ ʹ |
γλαυκώϲεωϲ Δημοϲθένουϲ . γλαύκωϲιϲ λέγεται διττῶϲ : ἡ μὲν γὰρ κυρίωϲ γλαύκωϲιϲ μεταβολή ἐϲτι πρὸϲ τὸ γλαυκὸν καὶ ξηρότηϲ καὶ | ||
καὶ ἡ Ἔϲδρα ἀντίδοτοϲ οὐδὲν ἧττον τῶν εἰρημένων . Ἡ κυρίωϲ πλευρῖτιϲ φλεγμονὴ τοῦ τὰϲ πλευρὰϲ ὑπεζωκότοϲ ὑμένοϲ ἐϲτίν , |
Κοκκύμηλον σι Κολοκάϲιον σια Κόλλα σιβ Κολοκύνθη σιγ Κόμαροϲ σιδ Κόμμι σιε Κονία σιϚ Κόνυζα διττή σιζ Κορίανον ἢ κόριον | ||
φοίνικες οἱ πίονες , καὶ γίνεται κλυσμὸς ἀπὸ τούτων . Κόμμι ἢ τραγάκανθα ὁμοῦ τινι τῶν εἰρημένων ἕψεται . ἢν |