| Σαφηνισθέντων δὴ τῶν πολλαπλασιασμῶν , δεικτέον ἑξῆς πῶς τε δεῖ πολλαπλασιάζειν καὶ ἔτι πῶς μερίζειν , πρῶτον ὁρισαμένους τί ἐστι | ||
| αὐτὸς θ καὶ σύνθετός ἐστι καὶ ἀσύνθετος . Ἀριθμὸς ἀριθμὸν πολλαπλασιάζειν λέγεται : οἷον ὁ θ καὶ ὁ γ : |
| , οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
| ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
| . ἀλλὰ πρῶτον εἴπωμεν διὰ τί λέγονται διαλεκτικαὶ μέθοδοι καὶ πόσαι εἰσὶ καὶ τὴν τάξιν αὐτῶν , καὶ οὕτω λέγωμεν | ||
| ἀλλ ' ἵνα μὴ παρὰ θύραν πλανᾶσθαι δοκῶμεν , ὑποδεικτέον πόσαι τέ εἰσι γραμματικαὶ καὶ περὶ τίνος αὐτῶν πρόκειται ζητεῖν |
| . καὶ ὁσάκις μὲν ὁ Κ τὸν Μ μετρεῖ , τοσαυτάκις καὶ ἑκάτερος τῶν Θ , Η ἑκάτερον τῶν Ν | ||
| συγκυρήματος : ὁσάκις γὰρ ἂν ἀστράψῃ Ζεὺς ἢ βροντήσῃ , τοσαυτάκις ἀπὸ τῆς ἀκρωρείας διὰ φόβον κυλίεται , καθὼς ἱστορεῖ |
| ε τόπους μετ ' ἀκριβείας ἵνα μὴ λάθῃ ποτὲ ὁ ἀφέτης , ὥς φησιν , ἐκπεσὼν εἰς ἀργὸν τόπον καὶ | ||
| ε ἀφετῶν ποιεῖν τὸν περίπατον ἰδίᾳ : ὁ μὲν πρῶτος ἀφέτης δηλοῖ τὸν χρόνον τῆς ζωῆς καὶ τὰς νόσους καὶ |
| ἀφαιροῦμεν ἐκ τῶν ἀριθμῶν τῶν τριῶν καὶ μονάδων ξ , μονάδας ξ καὶ ἐκ τοῦ ἀριθμοῦ τοῦ ἑνὸς καὶ μονάδων | ||
| καὶ ἀπὸ τῶν β ἀριθμῶν καὶ τῶν μ μονάδων ὁμοίως μονάδας μ : ] λοιποὶ ʂ β ἴσοι Μο ξ |
| ὁ γ συνεχὴς προσσωρευθεὶς καὶ ἐξαπλωθείς γε εἰς μονάδα καὶ συντεθεὶς τὸν Ϛ ἀποδίδωσι δεύτερον ἐνεργείᾳ τρίγωνον καὶ προσέτι σχηματογραφεῖ | ||
| δ ὁ ἀπὸ τοῦ αβ τετράγωνος , ὁ δὲ εη συντεθεὶς ἐκ δύο ἐπιπέδων ἀριθμῶν τῶν ἐκ τῶν αβ βγ |
| λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π | ||
| κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα |
| προβληθέντων . τοσαῦτα προδιαστείλαντες ἤδη λέγομεν . Πρῶτον δὴ ληπτέον πόσων στοχάζονται οἱ ἐν τοῖς διαλόγοις ἀγωνιζόμενοι καὶ διαφιλονεικοῦντες . | ||
| τῆς τοῦ Ἑρμοῦ ἐποχῆς λαβὼν τὸ τῶν μοιρῶν διάστημα σκέπτου πόσων ζῳδίων ἐστὶν ὁ τῶν μοιρῶν ἀριθμός , καὶ εἰ |
| ٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١ | ||
| μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν |
| τετάρτης ἴσον ἐστὶ τῷ ὑπὸ τῆς δευτέρας καὶ τρίτης , πολλαπλασιάζομεν τὴν τοῦ Ϛ πλευρὰν μετὰ τῆς εὑρεθείσης μέσης , | ||
| παραδείγματα τὰ καὶ ἐν τῷ προλαβόντι κεʹ ληφθέντα θεωρήματι : πολλαπλασιάζομεν αὐτὰς πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου |
| ὑπάρχειν ὁ πᾶς χρόνος λέγεται οὐδενὸς αὐτοῦ τῶν μερῶν ὑπάρχοντος ἀπαρτιζόντως . Ποσειδώνιος : τὰ μέν ἐστι κατὰ πᾶν ἄπειρα | ||
| ὁ η ἀριθμός . ὁ μὲν οὖν τρία τὸν θ ἀπαρτιζόντως μετρεῖ : τρὶς γὰρ συντεθεὶς αὐτὸν μεμέτρηκεν . ὑπερβαίνει |
| κύβου . Ἐὰν τοίνυν τοῦτον τὸν Ϟὸν τὸν λβ δηλονότι πολλαπλασιάσῃ ἀριθμὸς ὁ β πλευρὰ τῆς ἐξ ἀρχῆς δυνάμεως , | ||
| τὸν ιϚ τετράγωνον ὄντα ἐκ πλευρᾶς τοῦ δ εἴ τις πολλαπλασιάσῃ ἐφ ' ἑαυτὸν ὡς γενέσθαι σνϚ , καὶ οὗτος |
| ἤπερ γὰρ ἄλλος καλοῖτο ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ὥσπερ τὸν κδ : ὑπὸ γὰρ ἀρτίου κατὰ ἄρτιον | ||
| , ἔχων ἄρρενα μὲν τὸν περιττόν , θῆλυν δὲ τὸν ἄρτιον , ἐξ ὧν εἰσιν αἱ γενέσεις κατὰ φύσεως θεσμοὺς |
| κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
| γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
| τοῦδε τοῦ ἀγῶνος καὶ ἔλθῃ κληρωσόμενος τῶν ἐννέα ἀρχόντων καὶ λάχῃ βασιλεύς , ἄλλο τι ἢ ὑπὲρ ὑμῶν καὶ θυσίας | ||
| τοῦ ἐρωτῶντος καὶ κατέχων παρὰ σαυτῷ λέγε τὸν ἐρωτῶντα ἵνα λάχῃ καὶ εἴπῃ σοι ἀριθμόν τινα ἀπὸ τοῦ α μέχρι |
| : τοῦτον γὰρ μετρεῖ μετὰ τὸν ιε ἐφ ' ἑαυτὸν πολλαπλασιαζόμενος : πεντάκις γὰρ ε κε . τὸν δὲ τρίτον | ||
| , ὅσαι εἰσὶν ἐν αὐτῷ μονάδες , τοσαυτάκις συντεθῇ ὁ πολλαπλασιαζόμενος , καὶ γένηταί τις . Ὅταν δὲ δύο ἀριθμοὶ |
| . ὁ ἕκτος καὶ ἕβδομος τροχαϊκοὶ τρίμετροι ἀκατάληκτοι . τὸ ὄγδοον ὅμοιον τῷ τετάρτῳ . εἰσὶ δὲ καὶ ταῦτα τὰ | ||
| δίς , οὕτως ἡμισάκις ἥμισυ ἡμισάκις , ὀκτώ τε καὶ ὄγδοον : καὶ ὡς δὶς τρία ἕξ , οὕτως ἡμισάκις |
| ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
| θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
| τὴν ἄνεσιν ὁ λβ . εἰ δὲ ἀπὸ τοῦ οβ ἀφελοῦμεν τὸν κζ καὶ τὸν λβ , καταλειπόμενα ἔσται ιγ | ||
| συνθέντες τὰς τοῖς χρόνοις παρακειμένας ἡμέρας ἐν ἑκατέρῳ σελιδίῳ , ἀφελοῦμεν αὐτὰς ἀπὸ τῶν ἀπογεγραμμένων ἀπὸ Θὼθ ἡμερῶν , οἵων |
| κείσθω : ἐπὶ δὲ τὴν τοῦ ποσοῦ ἴωμεν φύσιν . Ἀριθμὸν δὴ πρῶτον ποσὸν λέγουσι καὶ τὸ συνεχὲς ἅπαν μέγεθος | ||
| τὸ ἐκεῖ ἕν , εἴπερ καὶ ἔμελλεν αἰσθητὸν εἶναι . Ἀριθμὸν δὴ δεῖ αὐτὸν εἶναι σύμπαντα : εἰ γὰρ μὴ |
| δὲ ἡ μονὰς κατὰ τὸν ἕνα θεόν : πᾶς γὰρ ἀριθμὸς νεώτερος κόσμου , ὡς καὶ χρόνος , ὁ δὲ | ||
| γὰρ ἄλλα πάντα τὸν ἀριθμὸν φαίνεται μιμούμενα , ὁ δὲ ἀριθμὸς παρ ' ἑαυτοῦ ἀρχὰς μονάδα καὶ δυάδα . ὡς |
| ἀπὸ δύσεως ἐπὶ τοὺς οἰκείους ὡριαίους χρόνους : τὸν γὰρ συναχθέντα ἀριθμὸν διεκβαλοῦμεν ἡμέρας μὲν ἀπὸ τῆς ἡλιακῆς μοίρας , | ||
| καὶ πρὸς ἑαυτὸ διαφέρον καὶ διαιρετόν , ἰδίᾳ μὲν τὰ συναχθέντα συνῆκται , οὐδεμία δὲ ἀνάγκη ἀπὸ τοῦ λόγου καὶ |
| εἴτε ἀνισάκις ἀνίσων ἀνισάκις , ἵνα σκαληνοί , δύο ὅροι εὑρίσκωνται ἀνὰ μέσον ἄλλοι ἐναλλὰξ πρὸς τοὺς ἄκρους τοὺς αὐτοὺς | ||
| καὶ πλάτους , ἐὰν μὲν καὶ οὕτως ἰσόμοιροι ἢ διάμετροι εὑρίσκωνται , τὸν αὐ - τὸν ἕξομεν χρόνον καὶ τῆς |
| κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
| μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
| μεριζόμενα μοίρας ποιήσει , ἐπεὶ καὶ μοῖραι ἐπὶ τρίτα λεπτὰ πολλαπλασιαζόμεναι τρίτα λεπτὰ ποιοῦσιν : καὶ ἁπλῶς πᾶν εἶδος παρ | ||
| λόγον ἔχειν λέγεται , ὅταν αἱ πλευραὶ αὐτῶν πρὸς ἀλλήλας πολλαπλασιαζόμεναι ποιῶσιν ἕτερον ἀριθμὸν μέσον ἀνάλογον , οἷον τοῦ ιϚ |
| ιβ καὶ ἀπὸ σνδ μη ἕως σπε ιβ Ὅταν οὖν προαιρώμεθα κατά τινα τῶν ἐπιζητουμένων ἐνιαυτῶν τὰς μέσως θεωρουμένας συζυγίας | ||
| τὸ φαινόμενον ἀπόγειον τοῦ ἐπικύκλου θεωρουμένας τῆς ἀνωμαλίας μοίρας παρατιθέναι προαιρώμεθα , ἀλλὰ διὰ τὸ προχειρότερον τὰς πρὸς τὸ περιοδικὸν |
| ἡ δεῖξις προβήσεται . Ἔστωσαν μείζονες αἱ ρ μο λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν | ||
| ἄπειρον αὐτὸν οὐ τῷ ἀδιεξιτήτῳ ἢ τοῦ μεγέθους ἢ τοῦ ἀριθμοῦ , ἀλλὰ τῷ ἀπεριλήπτῳ τῆς δυνάμεως . Ὅταν γὰρ |
| ιδʹ , ἔσονται λοιπαὶ ιβʹ ἥμισυ , ὅσαι ἀπὸ τῆς διαμετρούσης τὸν Ἥλιον μοίρας ἕως ἐπὶ τὴν σεληνιακήν . καὶ | ||
| εὑρεθῇ δωδεκατημόρια . ἐπὶ δὲ τῶν πανσελήνων γενέσεων ἀπὸ τῆς διαμετρούσης τὸν Ἥλιον μοίρας λάμβανε ὡς ἐπὶ τὴν Σελήνην καὶ |
| ἐστι τὸν ὑπὸ αου καὶ γου μετὰ συναμφοτέρου : ποιεῖ ΔΥא ρμδ # Μο α : ταῦτα ἴσα Μο κδ | ||
| δοθέντος ἀριθμοῦ , τουτέστιν ʂא γ . Μο Ϛ # ΔΥא ι [ ἴσ . ⃞ῳ ] , καὶ ϚκιϚ |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| ἐπιτρίτου λόγου χρεία , διότι τὸν πρῶτον καὶ τὸν τρίτον ἀριθμὸν συνάμφω ἐπιτρίτους χρὴ εἶναι δευτέρου καὶ τετάρτου , ἔστι | ||
| μοίρας , πολλαπλασίασον ἐπὶ τὸν ιγʹ , καὶ τὸν συναχθέντα ἀριθμὸν διέκβαλε ἀπ ' αὐτοῦ λογιζόμενος ἑκάστῳ ζῳδίῳ μοίρας λ |
| ἐσώθη . πόσης οἴεσθε χαρᾶς ἐμπλήσομεν τὴν ὅλην Σικελίαν ; πόσας ληψόμεθα δωρεάς ; ἅμα δὲ καὶ πρὸς ἀνθρώπους δίκαια | ||
| αὐτῷ κύκλου διαίρεσιν γινομένης τοῦ ἐντὸς κύκλου τομῆς , καὶ πόσας αὐτοῦ μοίρας ἀφέστηκεν ἤτοι πρὸς ἄρκτους ἢ πρὸς μεσημβρίαν |
| ἀποκρίνασθαι ” μύριοί εἰσιν ἀριθμόν , ἀτὰρ μέτρον „ γε μέδιμνος : εἷς δὲ περισσεύει , τὸν ἐπενθέμεν οὔ κε | ||
| ἀπομάκτρα , σκυτάλη , περιστροφίς , μαγίς , χοῖνιξ , μέδιμνος ἡμιμέδιμνος , ἑκτεύς , καὶ παρ ' Ἀλκαίῳ τῷ |
| μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
| τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
| ἀνδρῶν , ἐὰν ἥ τε βουλὴ δοκιμάσῃ καὶ ὁ δῆμος ἐπιψηφίσῃ , κύρια εἰς τὸν ἅπαντα εἶναι χρόνον , καὶ | ||
| ἤδη πεντακόσια καί , ὅταν τάσδε τὰς σπονδὰς ἡ σύγκλητος ἐπιψηφίσῃ , δισχίλια καὶ πεντακόσια , δώδεκα δ ' ἔτεσιν |
| ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ | ||
| . Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν |
| Μο κα ἀφελεῖν Μο θ # ΔΥ α καὶ ποιεῖν ⃞ον . ἀλλ ' ἐὰν ἀπὸ Μο κα ἀφέλω Μο | ||
| Μο β , δεήσει καὶ ΔΥ λ ʂ ε εἶναι ⃞ον : οὐκ ἔστιν δέ . ἀπάγεται οὖν εἰς τὸ |
| ὑποδιαίρεσιν ἂν πειραθείης συγχωρήσας ἀνελεῖν , εἶτα ἀνελὼν ἐπενέγκοις , πολλαπλασιάσεις τὸν λόγον δριμέως λέγων οὕτως εἰ μὲν τόδε ἐποίησας | ||
| σμγ . Ὡσαύτως καὶ εἴτε τὸν κύβον ἐφ ' ἑαυτὸν πολλαπλασιάσεις , εἴτε τὴν πλευρὰν αὐτοῦ ἐπὶ τὸν δυναμόκυβον , |
| οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
| , ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
| ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
| λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
| . ἰδοὺ γεγόνασιν ἐπιδιμερεῖς : ὁ γὰρ κε τοῦ ιε ἐπιδιμερής : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ μέρη : | ||
| πάλιν ὡς ἐν ἐπιμερέσι κατὰ τὴν οἰκειότητα τῆς δυάδος ὁ ἐπιδιμερής . εἰ δὲ οἱ πρῶτοι ἐν τριπλασίῳ λόγῳ , |
| ὥσπερ ὁ ἄνθρωπος εἶδος τοῦ ζῴου λέγεται . ἐγνωκότες οὖν ποσαχῶς λέγεται τὸ εἶδος , φέρε εἴπωμεν καὶ περὶ ποίου | ||
| ἢ τρόποις ποιεῖ τις , λέγομεν ποσαχῶς , οἷον : ποσαχῶς διαιρεῖται τὸ θνητόν ; ἢ ποσαχῶς ὀνομάζεται ὁ ἄνθρωπος |
| δεῖ οὖν τὸν ι διελεῖν εἰς τρεῖς ⃞ους ὅπως ἑκάστου ⃞ου ἡ πλευρὰ πάρισος ᾖ Μο Ϛια / . ἀλλὰ | ||
| . καὶ γίνεται ὁ συγκείμενος ἐκ τοῦ ἐμβαδοῦ καὶ τοῦ ⃞ου , ΔΥ κϚ Μο ι : ταῦτα ικις : |
| , καθ ' ἣν ἕκαστον τῶν ὄντων ἓν λέγεται . Ἀριθμὸς δὲ τὸ ἐκ μονάδων συγκείμενον πλῆθος . Μέρος ἐστὶν | ||
| μερῶν ἐπιπέδῳ σὺν τῷ ἀπὸ τοῦ προειρημένου μέρους τετραγώνῳ . Ἀριθμὸς γὰρ ὁ αβ διῃρήσθω εἰς δύο ἀριθμοὺς τοὺς αγ |
| χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
| καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
| ἀντὶ μελικράτου κέχρησο ἀπομέλιτι ὥσπερ καὶ τῷ μελικράτῳ ὀλίγον , ὁσάκις ἂν δυσχεραίνῃ ἐπὶ τὴν ἀνάπτυσιν ἐπιρροφεῖν ἐξ αὐτοῦ κελεύων | ||
| μέντοι πλεῖον τοῦ ἱκανοῦ συνάγεται , ὅθεν οὐκ ὀκνητέον , ὁσάκις ἂν πλήθους σημεῖα προσπέσῃ , συναιρεῖν αὐτὸ τῷ δεδηλωμένῳ |
| ἐπὶ δὲ πάντων περὶ τὰ ὀστᾶ ἥ τε καῦσις καὶ ξύσις καὶ ἡ ῥίνησις καὶ ἡ πρίσις εὔχρηστοι καὶ ἐπ | ||
| δὲ τῶν παρά τινας προφάσεις ψιλωθέντων ὀστῶν δύναται μὲν καὶ ξύσις , ἄχρις ἂν ἐφαιμάσσηται , μάλιστα δ ' ἁπλῶς |
| πανσελήνου ἐπὶ τὴν Σελήνην , καὶ ἐὰν μὲν ἐντὸς τῶν ρπʹ μοιρῶν εὑρεθῇ , χρῆσθαι τῷ ὑποδεδειγμένῳ τρόπῳ : ἐὰν | ||
| γωνία μεʹ μέρος ἐστὶν ὀρθῆς , ἡ ΓΔ ἄρα περιφέρεια ρπʹ μέρος ἐστὶ τοῦ κύκλου : ἡ δὲ ΔΖ περιφέρεια |
| δανειζομένου , ἐκ δὲ τῶν ὠφελούντων ἢ βλαπτόντων ἀστέρων αἱ προαγορεύσεις ἀκολούθως ἕπονται . τινὲς δὲ ἐπισκέπτουσι τὸν Ἥλιον καὶ | ||
| τῶν ἀποτελεσμάτων ἔκβασιν , καὶ ἀφ ' ὧν μάλιστα τὰς προαγορεύσεις ποιοῦνται , τέσσαρά φασιν εἶναι τὸν ἀριθμόν , ἅπερ |
| Καλλίππωι Ϙβʹ . Ἀπὸ ἰσημερίας μεθοπωρινῆς ἐπὶ χειμερινὰς τροπὰς Εὐδόξωι ἡμέραι Ϙβʹ , Δημοκρίτωι ἡμέραι Ϙαʹ , Εὐκτήμονι Ϙʹ , | ||
| , ποτῷ τε ὡς ἐλαχίστῳ χρέεσθαι , μέχρις ἂν ἑπτὰ ἡμέραι παρέλθωσιν . Καὶ ἢν μὲν οὕτως ἐθέλωσιν ἰέναι : |
| γὰρ ἐκπεσεῖται μυστικῶς : τὸ δὲ συναθροισθὲν πλῆθος συγκεφαλαιώσαντας ἀφαιρεῖν τριακοντάδας . τὸ δ ' ἐντὸς τῶν τριάκοντα λειφθὲν σκοπεῖν | ||
| ἀπὸ Αὐγούστου ἔτη πλήρη ρληʹ . ἐκ τούτων ἀφεῖλον δʹ τριακοντάδας , ἀνθ ' ὧν ἀναλαμβάνω ἑκάστου κύκλου ἀνὰ εʹ |
| καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
| τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
| Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς | ||
| μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ |
| ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
| καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
| # Μο Ϛ . καὶ γίνεται ὁ ⃞ος ΔΥ δ Μο λϚ # Μο κδ ἴσ . ΔΥ δ ʂ | ||
| α # Μο α , ἡ δὲ ὑποτείνουσα ΔΥ α Μο α . καὶ γίνεται ζητεῖν ΔΥ β ʂ β |
| , ποιῶσι τρεῖς ἀριθμοὺς ἐν ἴσῃ ὑπεροχῇ . Ἔστω ὁ ζητούμενος ʂ α . καὶ ἐὰν μὲν συντεθῇ μετὰ Μο | ||
| τὴν Ὀξυάλκου τοῦ βασιλέως θυγατέρα Δαμασαλκίδαν κανηφοροῦσαν βιασάμενος ἔφθειρεν : ζητούμενος δὲ ὑπὸ τοῦ τυράννου πρὸς κόλασιν , διὰ φόβον |
| ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
| . . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
| πάλιν τοῦ περιττοῦ τὸν μὲν πρῶτον τὸν ὑπὸ μονάδος μόνον μετρούμενον ὡς τὸν τρία , τὸν ζ , τὸν δὲ | ||
| : ὥσπερ γὰρ λέγεται καὶ τὸ μέτρον ξέστης καὶ τὸ μετρούμενον , οὕτως ἔφασκον καὶ τὰ νοητὰ καὶ τὰ αἰσθητὰ |
| , τούτωι δεύτερος τρίτου ὑπερέχει . καὶ ἐν ταύται τᾶι ἀναλογίαι συμπίπτει ἦιμεν τὸ τῶν μειζόνων ὅρων διάστημα μεῖον , | ||
| ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ μὲν τῶν διπλασίων ἡμιόλιοι , ἐκ δὲ |
| που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
| καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
| Βαβυλῶνι χρόνων ἐστὶν ιβ : αἱ ἄρα ε ∠ ʹ καιρικαὶ ὧραι ποιοῦσιν ἰσημερινὰς δ καὶ δύο πέμπτα . ἡ | ||
| ἡμικύκλιον ἑτέρου σημείου τὴν μοῖραν περιαγαγούσης , αἱ αὐταὶ ἔγγιστα καιρικαὶ ὧραι γενήσονται τῆς ἀπὸ τοῦ μεσημβρινοῦ ἀποστάσεως . ὥσπερ |
| † φεύξεσθαι ὀΐομαι αἰπὺν ὄλεθρον . τρὶς μάκαρες μέντοι καὶ τετράκις οἱ μὴ ἔχοντες μήτε κατατρώξαντες ἐνὶ σχολῇ ὅσς ' | ||
| οὖν τούτων ἐχόντων , φαμὲν οὕτως , πεντάκις παρεγένετο , τετράκις παρεγένετο , οὐ μὴν ἔτι οὕτως , πέντε παρεγένετο |
| ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
| ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
| παθητικοῖς συνεστραμμένοις καὶ εὐκόλοις μᾶλλον . Περιβολὴ δὲ αὐτάρκης προοιμίων διπλασιάσαι ὄνομα καὶ διπλασιάσαι κῶλον καὶ προτάσεως ἀπὸ αἰτίας κατασκευή | ||
| ἐπανῆλθεν ἐπὶ τὴν ἰδίαν στρατοπεδείαν . οἱ δὲ Τύριοι βουλόμενοι διπλασιάσαι τὴν ἀπὸ τῶν τειχῶν ἀσφάλειαν , ἀποστήσαντες πέντε πήχεις |
| ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
| τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
| . βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου | ||
| βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς |
| : διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ | ||
| δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος |
| διὰ τὸ πρὸς τὰς ἐσομένας ἐν τοῖς ἑξῆς ἀποδείξεις τῶν ἐκλειπτικῶν αὐτοῦ φάσεων προχειρότερον εὑρεῖν , πόσον τὸ πλεῖστον ὁ | ||
| φώτων δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς |
| ' ὃ κλίμα τις βούλεται . Περὶ μὲν οὖν τῶν ἀναφορῶν καὶ ἐν τῇ αʹ βίβλῳ ἐδηλώσαμεν , νυνὶ δὲ | ||
| ταῖς μεταξὺ διαστάσεσιν , οὐκέτι οἱ τῶν προκειμέ - νων ἀναφορῶν ἢ καταφορῶν ἢ μεσουρανήσεων χρόνοι τοὺς ἑπομένους τόπους οἴσουσιν |
| πρὸς Δηιδάμειαν μέλλων ἐπὶ τὸν πόλεμον ἐξιέναι . Τῶν δὲ ἠθοποιιῶν αἳ μέν εἰσιν ἁπλαῖ , ὅταν τις αὐτὸς καθ | ||
| καὶ γὰρ καὶ ἐγκωμιάζοντες καὶ κατηγοροῦντες καὶ ἐκκλη - σιάζοντες ἠθοποιιῶν πολλάκις δεόμεθα . γυμνάζει δὲ πρὸς τὸν ἐπιστολικὸν χαρακτῆρα |
| Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
| γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
| τὸν μαθηματικὸν εἶναι πρῶτον ἢ τὸν εἰδητικόν : εἰ δὲ μηδετέρως ἐγχωρεῖ , ἀναιρεῖται καὶ τὸ ἡγούμενον . ἀλλ ' | ||
| λέγουσί τινες , ἢ κεχωρισμένα τῶν αἰσθητῶν : ἢ εἰ μηδετέρως , ἢ οὐκ εἰσὶν ἢ ἄλλον τρόπον εἰσίν : |
| τὸ ἐπίταγμα , ἔστω τὸν ὑπὸ αου καὶ βου , προσλαβόντα τὸν γον , ποιεῖν ⃞ον , καὶ λείψαντα τὸν | ||
| ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα προσλαβόντα τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς |
| ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
| ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
| στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ | ||
| οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος |
| # β # ἔχοι , καὶ ἔτι μᾶλλον , εἰ ἑξαπλάσιον , ὡς εἶναι τῶν μεταλλικῶν # β , κηροῦ | ||
| γὰρ τοῦ ρ πρὸς τὸν κ λόγον πενταπλάσιον ἔχοντος , ἑξαπλάσιον ἔχειν τοὺς γινομένους προστιθεμένου τοῦ ἀριθμοῦ ἀπαιτήσομεν , τῆς |
| ' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν | ||
| ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς |
| πᾶν τὸ ἐπινοούμενον καὶ ὑπάρξεως μετείληφεν , ἀλλὰ δύναταί τι ἐπινοεῖσθαι μέν , μὴ ὑπάρχειν δέ , καθάπερ Ἱπποκένταυρος καὶ | ||
| καὶ νοητὴν τρίτην τινὰ δύναμιν , ἣν καὶ ἐκ τούτων ἐπινοεῖσθαι δύνασθαι , λέγων ὧδέ πως : εἰ γὰρ . |
| ἐὰν δὲ τὴν μεσουρανοῦσαν ὑπὲρ γῆς θέλωμεν λαβεῖν , τὰς καιρικὰς ὥρας πάντοτε τὰς ἀπὸ τῆς μεσημβρίας τῆς παρελθούσης μέχρι | ||
| : φησὶ γὰρ ἀναστρέψας αὐτός . ἐπειδὴ τὰ τὰς αὐτὰς καιρικὰς ὥρας ἀπέχοντα τοῦ μεσημβρινοῦ τμήματα τοῦ ζῳδιακοῦ καθ ' |
| ἅπαντες οἱ ὀνοβατοῦντες . τήν γε μὴν τῶν σκελῶν κατάπλυσιν ἀφαιροῦμεν : ὠφελεῖ μὲν γὰρ οὐδέν , βλάπτει δὲ τὰς | ||
| ἀφέτου ἔτεσιν εἴ ἐστιν ἀγα - θοποιὸς ὁ ὑπαντήτωρ ἢ ἀφαιροῦμεν ἐξ αὐτῶν εἴ ἐστι κακοποιός . καὶ τὰ οὕτω |
| δωρεάν ἁλῶ : ληφθῶ λῆξαι : παύσασθαι ἐξεταστικόν : δικαστικόν ἐπικληρῶσαι : προσνεῖμαι * * * προστάττοι παραγγέλματα , περιθείτω | ||
| πένθ ' ἑξηκονταταλαντίας εἰς ἑκάστην τῶν μεγάλων τῶν εἴκοσι συμμοριῶν ἐπικληρῶσαι , τὴν δὲ συμμορίαν ἑκάστῳ τῶν μερῶν μίαν ἑξηκονταταλαντίαν |
| καὶ πρὸ τῆς ψυχῆς , δῆλον ὅτι αἱ τῆς ψυχῆς στιγμαὶ ἐν τῷ αὐτῷ ἔσονται τόπῳ ταῖς ἐν τῷ σώματι | ||
| τῷ μεγέθει πηχυαῖα , ἐκ πάχους ἐπὶ λεπτὸν ἠγμένη : στιγμαὶ δὲ καθ ' ὅλον τὸ σῶμα εἰσὶ κιρραὶ καὶ |
| τῶν τριῶν ἐκκειμένων σὺν δύο συντεθέντες καὶ ἐπὶ τὸν λοιπὸν πολλαπλασιασθέντες ποιῶσι τρεῖς ἀριθμοὺς ἐν ἴσῃ ὑπεροχῇ . Ἔστωσαν οἱ | ||
| ἕτερον ἀριθμὸν ὅπως σὺν δύο συντεθέντες καὶ ἐπὶ τὸν λοιπὸν πολλαπλασιασθέντες , ποιῶσι τρεῖς ἀριθμοὺς ἐν ἴσῃ ὑπεροχῇ . Ἔστω |
| ἀπὸ τοῦ ΑΒ μεγέθους τὸ ΑΚ μέγεθος ἔλασσον ὂν τοῦ ἐκκειμένου ἐλάσσονος μεγέθους τοῦ Γ : ὅπερ ἔδει δεῖξαι . | ||
| τὸ Μουσεῖον ἀπιόντες αὕτη ἡ Ἄσκρη . τοῦ δὲ Ἑλικῶνος ἐκκειμένου τοῖς ἀνέμοις καὶ θαυμαστὰς μὲν ἀναπαύλας ἔχοντος ἐν θέρει |
| αη ηβ : καὶ ἐπεὶ τὸ γδ τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ | ||
| , πρῶτον διπλάσιον ἐν ἑνὶ στίχῳ , εἶτα ἐν δευτέρῳ τριπλάσιον , εἶτα τετραπλάσιον ἐν τρίτῳ καὶ μέχρι δεκαπλασίων , |
| ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
| τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
| ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι | ||
| ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν |
| ἀπὸ τοῦ ὡροσκοποῦντος ζῳδίου ἔκβαλλε , καὶ εἰς ὃ ἂν καταλήξῃ ὁ ἐνιαυτός , ἀπὸ τοῦ κυρίου τοῦ τόπου οὗ | ||
| ἔνιοι δὲ ἀπὸ τοῦ παρακόλλου Σελήνης εἰς ὃ ἂν ζῴδιον καταλήξῃ σκοποῦσι , πότερον χρηματιστικὸν ἢ ὡς ἐναλλάξ . τῇ |
| ηζθʹ κύκλου ἐπιπέδῳ : ἡ αβʹ ἄρα πρὸς ἑκατέραν τῶν ηθʹ κμʹ ὀρθή ἐστιν : ὥστε ἡ ὑπὸ τῶν κμθʹ | ||
| γὰρ τῶν ηζʹ ζθʹ ἀνὰ ἥμισύ ἐστιν ζῳδίου : ἡ ηθʹ ἄρα ζῳδίου ἐστίν , ὥστε καὶ ἡ λμʹ : |
| ὡροσκοποῦντι , εὗρον περὶ μοίρας αʹ βʹ γʹ : οὗτος ἡλιακὸς γνώμων . εἶτα ταῖς τῆς Σελήνης μοίραις κζʹ παράκειται | ||
| εἶναι δεῖ τὴν τοῦ ἡλίου διάμετρον . Εἰ γὰρ ὁ ἡλιακὸς κύκλος τοῦ τῆς γῆς κύκλου μυριοπλασίων , καὶ τὸ |
| τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ; | ||
| τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ |
| ἐνωμοτίας διμοιρίαν καὶ τὸν ἡγούμενον τούτου διμοιρίτην . Ξενοφῶν δὲ πόστον μὲν μέρος τοῦ λόχου ἡ ἐνωμοτία ἐστὶν οὐ διασαφεῖ | ||
| τῆς φιλοσοφίας πραγματείαν , ἵν ' εἰδῶμεν τί ἐστι καὶ πόστον μέρος αὐτῆς ἡ φυσικὴ διέξοδος . οἱ μὲν οὖν |
| τοῦ ΑΒ πρὸς τὸ ΒΓ δοθείς . Ἐὰν δύο μεγέθη συντεθῇ πρὸς ἄλληλα λόγον ἔχοντα δεδομένον , καὶ τὸ ὅλον | ||
| συγχέω , συγξενίζω . Πᾶσα συλλαβὴ εἰς Ν λήγουσα ἐὰν συντεθῇ μεθ ' ἑτέρας συλλαβῆς ἀρχομένης ἀπὸ τοῦ Λ ἢ |
| ἔστιν ἀριθμός , τῶν ἀριθμῶν πεφυκότων πολλαπλασιαζομένων πλέον συνάγειν ἢ συντιθεμένων : τρὶς μὲν γὰρ τρεῖς θ , τρεῖς δὲ | ||
| τίνα ὀνόματα φύσει καλά [ παραδείγματος ἕνεκα ] , ὧν συντιθεμένων καλὴν οἴεται καὶ μεγαλοπρεπῆ γενήσεσθαι τὴν φράσιν , καὶ |
| οἷον ηυ , ωυ , υι . Σύμφωνα δέ εἰσι δεκαεπτά . Ἐκλήθησαν δὲ σύμφωνα , ὅτι αὐτὰ μὲν καθ | ||
| ἐννήρεις λʹ , ἑπτήρεις λζʹ , ἑξήρεις εʹ , πεντήρεις δεκαεπτά : τὰ δ ' ἀπὸ τετρήρους μέχρι τριηρημιολίας διπλάσια |
| . Συντεθέντων γὰρ σὺν δύο καὶ ὑπὸ τοῦ λοιποῦ τρὶς πολλαπλασιασθέντων , ἀποτελεσθήσονται ρπ ζʹ , ρν ζʹ , ρκ | ||
| τοῦ τε τρίτου ὄντος τελείου καὶ τοῦ τετάρτου ὄντος γονίμου πολλαπλασιασθέντων καὶ συγκερασθέντων ἀποκυίσκεται . Τῶν οὖν ἐν τοῖς δώδεκα |
| , ἐπεὶ ὁ ἀπὸ ʂ β Μο α ⃞ος ἐστι ΔΥ δ ʂ δ Μο α , ἐὰν ὁμοίως ἀφέλω | ||
| # ʂ β˙͵δφος : καὶ πάντων τὸ Δον . γίνεται ΔΥ α ΜΥ ρδ˙͵ηφος # ʂ ͵Ϛρμδ ἴσ . ⃞ῳ |
| : ἑξάκις γὰρ ὀκτὼ σαρανταοκτώ . τὸ γὰρ ἡμίεκτον τέσσαρες χοίνικες . ⌈ ἡμιεκτέον φησὶν ὁ Στρεψιάδης τὸ ἡμίεκτον , | ||
| τὸ δὲ ἡμιεκτέον , τουτέστι τὸ δωδέκατον τῶν μηʹ , χοίνικες τέσσαρες . ἡμιεκτέου : τοῦ τετραχοινίκου . ὁ γὰρ |
| λέγω δὴ τό τε ἀψευδῶς ἐρωτᾶν τὸν ἐπιστήμονα ἐρωτῶντος τόπον ἐπέχοντα καὶ αὖθις τὸ δύνασθαι αὐτὸν ἐν ἀποκρινομένου τάξει καθεστηκότα | ||
| ἔχομεν δὲ καὶ τὸν ἀκριβῆ ἥλιον κατὰ τὸν αὐτὸν χρόνον ἐπέχοντα Παρθένου μοίραις ιε α ∠ ʹ . ἀπέστη ἄρα |
| . } οὐδὲ μὰν οὐδ ' αἰ ποτὶ μέτρον παχυαῖον ποτθέμειν λῆι τις ἕτερον μᾶκος ἢ τοῦ πρόσθ ' ἐόντος | ||
| ἀριθμόν τις περισσόν , αἰ δὲ λῆις , πὸτ ἄρτιον ποτθέμειν λῆι ψᾶφον ἢ καὶ τᾶν ὑπαρχουσᾶν λαβεῖν , ἦ |