ἠγμένης τῆς διαμέτρου νόησον τὸ ἕτερον ἡμικύκλιον ἐπὶ τὸ ἕτερον ἐφαρμοζόμενον . λέγω , ὅτι ἴσον ἐστίν . εἰ γὰρ
συμπεσεῖν ἀλλήλοις ἐντὸς τοῦ σχήματος , καὶ ἑκάτερον αὐτῶν [ ἐφαρμοζόμενον τῷ διὰ τῆς ΑΒ ἐπιπέδῳ ] διελεῖν τὸ βάρος
5221696 τμημα
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ
5214498 εὐθυγραμμον
τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις
τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον
5123545 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
5059720 διχοτομια
γὰρ ὄντος τοῦ ΑΕΓ , οὗ διάμετρος ἡ ΑΓ , διχοτομία δὲ τὸ Ε , καὶ κέντρον τὸ Ζ ,
λαιὸν εὐώνυμον λέγεται κέρας καὶ οὐρά . αὕτη δὲ ἡ διχοτομία τοῦ μήκους ὀμφαλὸς προσαγορεύεται καὶ στόμα καὶ ἀραρός .
4998221 διαμετρου
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ
4987566 ἐσοπτρον
διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι
διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι
4893580 νοηθησεται
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ
4864713 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
4844424 γραψει
, εἰ δὲ περὶ ὃ γράφει οὐχ ἕστηκεν , πῶς γράψει τὸ γράφον ; πάντα μὲν οὖν τὰ ἐν τῇ
ὡς οὐκ ὢν ἐκ τῶν νόμων καθαρὸς τὸ σῶμα , γράψει δ ' ἐν τοῖς ψηφίσμασιν εὐχὰς ὑπὲρ τῆς πόλεως
4816422 ἐφαψεται
, καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἀγομένη ἐφάψεται τῆς τομῆς . ἤχθω γὰρ ἐφαπτομένη ἡ ΔΖ ,
ἡ ἀπὸ τοῦ γενομένου σημείου ἐπὶ τὸ ληφθὲν σημεῖον ἐπιζευγνυμένη ἐφάψεται τῆς τομῆς . ἔστω παραβολή , ἧς διάμετρος ἡ
4773091 ΛΠΜ
περιγεγράφθω περὶ τὴν ΛΜ καὶ τὸ Π τμῆμα κύκλου τὸ ΛΠΜ : ἔσται δὴ ἡ πρὸς τῷ Π γωνία ἡ
ΑΞ ἐστὶ διπλῆ . Πάλιν ἐπεὶ διπλῆ ἐστιν ἡ μὲν ΛΠΜ τῆς ΜΠ , ἡ δὲ ΚΛ τῆς ΠΟ ,
4741211 λειουσθω
τῆς καλουμένης ⋖ ν , ἐλαίου # Ϛ . ὄξει λειούσθω τὰ ξηρὰ ἐν ἡμέραις πολλαῖς , καὶ οὕτως ἐπιχείσθω
δὲ ποιεῖ ὀμ - φάκινον μετὰ κόμμεως : ἕκαστον δὲ λειούσθω ἀφεψήματι ῥόδων ἢ τῷ χυλῷ ἢ τινὶ παραπλησίῳ ,
4715370 ἀποτεληται
ἡμίσους λάμπεται , ἵνα καὶ τὸ ἀπορρέον αὐτῆς σκίασμα κωνοειδὲς ἀποτελῆται , τὸ δὲ ἐπὶ θάτερα ἀντεκβαλλόμενον ἐπ ' εὐθὺ
δὴ πρὸς μεσημβρίαν τοῦ διὰ μέσων ἡ κατὰ πλάτος παράλλαξις ἀποτελῆται : ποιήσωμεν δὲ πάλιν ὡς μὲν τὴν ΔΘ πρὸς
4708096 ΘΚΖΗ
ΘΚΛ , τριῶν δὲ παραλληλογράμμων τῶν ΚΖΓΛ , ΛΓΗΘ , ΘΚΖΗ . καὶ φανερόν , ὅτι ἑκάτερον τῶν πρισμάτων ,
δειχθήσεται . ὅτι μὲν οὖν ἰσόπλευρόν τε καὶ παραλληλόγραμμον τὸ ΘΚΖΗ τετράπλευρον , δῆλον : ὅτι δὲ καὶ ἰσογώνιον ,
4705889 τεταρτημοριον
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ
4674303 εὐθυγραμμῳ
κγʹ πρόβλημά ἐστι σύστασιν ἀπαιτοῦν γωνίας ἴσης ἄλλῃ δοθείσῃ γωνίᾳ εὐθυγράμμῳ πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ δοθέντι
τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ ,
4671513 μενουσης
, δέδοικα μὴ ἀλῶσιν ἀπατηθέντες , τῆς ἑτέρας ἀμίδος λεπτῆς μενούσης : ἀλλ ' αὐτοῖς μὲν ἀρκούσης ἴσως τῆς ἀπαιδευσίας
καὶ ἀνακράζει , οὕτω τε ἀφίπτανται πᾶσαι , τῆς μιᾶς μενούσης , ἥπερ αὐτὰς ἥγνισεν ἀθροι - σθείσας : τὰς
4671170 ἀντιστρεφειν
ὡρισμένην , ἐν ᾗ δὲ τὰ κακὰ ἀόριστον , καὶ ἀντιστρέφειν ἔλεγον τὰ καλὰ καὶ ὡρισμένα . εἴ τι γὰρ
καὶ ἡγούμενον καὶ ἀντιστρέψῃ , δοκεῖ ἐλέγχειν διὰ τὸ οἴεσθαι ἀντιστρέφειν τὴν ἀκολούθησιν . ὅταν γὰρ τοῦδε ὄντος ἐξ ἀνάγκης
4655847 αγβʹ
: ποιήσει δὴ τομὴν κύκλον . Ἔστω αὐτοῦ ἡμικύκλιον τὸ αγβʹ : ἐὰν δὴ μενούσης τῆς αβʹ εὐθείας περιενεχθὲν τὸ
συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς , καὶ
4635232 ἡμικυκλιον
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ
4613065 ἰσοπλευρον
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν ,
4580055 κομισομεθα
λιπανθὲν ἢ τερηδονισθέν , ἁπλοτομήσαντες μεγάλῃ διαιρέσει πᾶν τὸ ὀστοῦν κομισόμεθα . εἰ δ ' εἰς μέσον ἄρθρον ἡ σύριγξ
διὰ παρακολλητικῆς ἀγωγῆς , εἰ πάσας ἐκ βάσεως τὰς χοιράδας κομισόμεθα , ἢ κατὰ συσσάρκωσιν , ἐὰν ὑπολειπόμεναι βάσεις τινὲς
4540107 ὁρωμενῳ
φαίνεται καὶ τὰ ἀριστερὰ δεξιὰ καὶ τὸ εἴδωλον ἴσον τῷ ὁρωμένῳ , καὶ τὸ ἀπόστημα τὸ ἀπὸ τοῦ ἐνόπτρου ἴσον
τὸ μεσαίτατον τῆς βάσεως τῷ τῆς ὄψεως κώνῳ προσβάλλειν τῷ ὁρωμένῳ . διά τοι τοῦτο καὶ ῥαφίδος εἰ τύχοι παρακειμένης
4532617 διχοτομουμενον
τὸν δὲ μεσημβρινὸν ὀρθὸν προσαρμόσομεν τῷ κατὰ τὴν βάσιν ὁρίζοντι διχοτομούμενον μὲν ὑπὸ τῆς φαινομένης ἐπιφανείας αὐτοῦ , δυνάμενον δὲ
Σάμῳ ξόανον συμφώνως τῇ τῶν Αἰγυπτίων φιλοτεχνίᾳ κατὰ τὴν κορυφὴν διχοτομούμενον διορίζειν τοῦ ζῴου τὸ μέσον μέχρι τῶν αἰδοίων ,
4524732 ἀποτελεσθειη
τῆς κατὰ πῆξιν τῆς Σελήνης στάσεως . τὰ δὲ αὐτὰ ἀποτελεσθείη καὶ τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ
τὸ αἷμα καὶ καθαρὸν ὑπὸ τῆς αἱματοποιητικῆς δυνάμεως τοῦ ἥπατος ἀποτελεσθείη , τότε καὶ οὖρον τοιοῦτον γίνεται : εἰ δὲ
4506856 γδʹ
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο
4498382 βασεως
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν :
4491153 καταμετρουν
εἰς ὃ ἂν διαιρεθῇ τὸ ποσὸν ὁπωσοῦν , εἴτε εἰς καταμετροῦν μέρος εἴτε καὶ μή : ἀεὶ γὰρ τὸ ἀφαιρούμενον
ἔστω τὸ Ε : καὶ τὸ μὲν ΑΒ τὸ ΖΔ καταμετροῦν λειπέτω ἑαυτοῦ ἔλασσον τὸ ΓΖ , τὸ δὲ ΓΖ
4490110 διαμετρον
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ ,
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης ,
4489733 ΛΚΝ
τῇ ΑΝ ἐστιν ἴση : καὶ γωνία ἄρα ἡ ὑπὸ ΛΚΝ γωνίᾳ τῇ ὑπὸ ΛΑΝ ἐστιν ἴση . ἀλλὰ ἡ
ποιήσει παράλληλον τὴν ΝΞ τῇ ΗΘ . ἐπεὶ οὖν τὸ ΛΚΝ τρίγωνον τέμνεται ὑπὸ παραλλήλων ἐπιπέδων τῶν ΑΒΓΔ , ΛΝΞΜ
4475603 συμπιπτουσαι
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ
4460078 παραλληλεπιπεδῳ
ὅλον ἄρα τὸ ΓΜ στερεὸν παραλληλεπίπεδον ὅλῳ τῷ ΓΝ στερεῷ παραλληλεπιπέδῳ ἴσον ἐστίν . Τὰ ἄρα ἐπὶ τῆς αὐτῆς βάσεως
δὴ ἀπὸ τῆς δοθείσης εὐθείας τῆς ΑΒ τῷ δοθέντι στερεῷ παραλληλεπιπέδῳ τῷ ΓΔ ὅμοιόν τε καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον
4455295 τριγωνον
τὸ χωρίον πρὸς τὸ τρίγωνον λόγον ἕξει δεδομένον . ἔστω τρίγωνον ὀξυγώνιον τὸ ΑΒΓ , ὀξεῖαν ἔχον γωνίαν δεδομένην τὴν
μαθημάτων : καὶ γὰρ ὁ γεωμέτρης διὰ τί μὲν τὸ τρίγωνον ἔχει τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας ζητεῖ ,
4455085 παρατιθεμενης
, μετὰ δὲ ταῦτα καὶ διὰ τῆς ὑπ ' αὐτοῦ παρατιθεμένης ἡλιακῆς ἐκλείψεως , ποτὲ μὲν ὡς μηδὲν αἰσθητόν ,
ὑπὸ τοῦ βαρυτέρου , τῆς αὐτῆς κατατομῆς ἐφ ' ἑκατέρου παρατιθεμένης . Νοείσθω γὰρ τὸ προκείμενον σχῆμα περιέχον ὅλον τὸ
4440460 πεπερασμενης
συμβήσεται . Εὐθείας δοθείσης ἐν ἐπιπέδῳ καθ ' ἓν σημεῖον πεπερασμένης εὑρεῖν ἐν τῷ ἐπιπέδῳ κώνου τομὴν τὴν καλουμένην παραβολήν
ἀλλότριον , φάσεως οὔσης , ὡς εἴρηται , καὶ ἢ πεπερασμένης ἢ ἀπεράντου , ἀλλ ' οὐκ ἐν τῷ ζητεῖν
4427634 ΛΜΝ
ΛΜΝ γνώμων ἐστὶ καὶ τὸ ΓΚ τετράγωνον : ὁ ἄρα ΛΜΝ γνώμων καὶ τὸ ΓΚ τετράγωνον διπλάσιά ἐστι τοῦ ΑΚ
ΑΒ πρὸς ΑΛ , καὶ τῇ ΑΓ παράλληλος ἤχθω ἡ ΛΜΝ , καὶ ἐπὶ τῆς ΛΜΝ σημεῖον εἰλήφθω τὸ Μ
4421166 αβʹ
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ
4419099 ἐπιστητον
, ἀλλ ' ἵνα ὅτι οὐ ταὐτὸ καὶ ἓν ἑκατέρᾳ ἐπιστητόν . ἀλλὰ πρῶτον μὲν ἵν ' ὑπερβολὴν δείξῃ τῆς
ἀγαθόν ἢ ὅτι ἀγαθόν , ἵνα ᾖ μείζων μὲν ἄκρος ἐπιστητόν , ᾗ ἀγαθόν , μέσος δὲ ἀγαθόν , ἔσχατος
4408960 συνδυσεται
δʹ τὸ μʹ δύνει , ἅμα δὲ ἀνατέλλει , ὥστε συνδύσεται τῶν ἡγουμένων τινὶ τοῦ δʹ . Συνδυνέτω τῷ ξʹ
ἀνατέλλοντος ὁ ἥλιος ὢν πρὸς τῷ αʹ δύσεται : καὶ συνδύσεται τῷ ἡλίῳ τὸ αʹ ἄστρον καὶ ἔσται τοῦ αʹ
4405812 προσνευειν
χελώνης , μακρότερον τῶν ζυγῶν καθ ' ὃ μέρος θέλομεν προσνεύειν τὴν χελώνην . κατὰ μέσους τοὺς ὀρθοστάτας τούτοις ἄλλα
πᾶν τὸ προσλαμπόμενον αὐτῆς ἡμισφαίριον ἅμα καὶ ἡμῖν τότε πᾶν προσνεύειν , ὅταν δὲ οὕτως διαμετρηθῇ ὥστε εἰς τὸν τῆς
4399640 τεμνειν
σὺν ὄγκοις ψυχροῖς τῶν φλεγματικῶν . χρὴ δὲ προλεπτύνειν καὶ τέμνειν τοὺς παχεῖς καὶ γλίσχρους χυμοὺς καὶ τοὺς πόρους ,
οὖσα θεωρεῖται ἡ διαφορά : τὰ μὲν γὰρ ἔχει τὸ τέμνειν μετὰ τοῦ δύνασθαι πάνυ θερμαίνειν , τινὰ δὲ τέμνειν
4374275 ἐκλαβειν
πρότερον . τὸ δὲ ταῦτα δὲ ἀνάγκη ἀντιστρέφειν διττῶς ἔστιν ἐκλαβεῖν : ἢ γὰρ τούτοις συντάξαι δεῖ ἢ τοῖς ἐφεξῆς
μόνον ] συμπλεκτικὸν τῆς περιβολῆς . λάβοιτε ] ὁριστικῶς δεῖ ἐκλαβεῖν τὸ λάβοιτε ἵν ' ᾖ : ὅτι οὐκ ὀφείλετε
4365769 ἐκβαλλομενης
Β ἐπιζευγνυμένη εὐθεῖα ὡς ἡ ΒΟ , μετὰ τῆς ΟΕ ἐκβαλλομένης ἐπὶ τὸ ἀντικείμενον ἡμικύκλιον τοῦ ἐκκέντρου τῷ ἐπικύκλῳ ,
. Δύο δοθεισῶν εὐθειῶν πεπερασμένων πρὸς ὀρθὰς ἀλλήλαις τῆς ἑτέρας ἐκβαλλομένης ἐπὶ ταὐτὰ τῇ ὀρθῇ γωνίᾳ εὑρεῖν ἐπὶ τῆς προσεκβληθείσης
4355456 ΗΖΝ
μείζων ἐστὶν τῆς ὑπὸ ΗΖΚ . ἔστω δὴ ἡ ὑπὸ ΗΖΝ . ἐπεὶ οὖν , ἐν ὅσῳ χρόνῳ τὴν ΚΗ
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΞΓΔ , ΗΖΝ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΚΓΛ
4346650 τετραγωνον
δὲ τρία τῶν τεσσάρων πρῶτα . καὶ ἄλλως : πᾶν τετράγωνον εἰς δύο τρίγωνα ὀρθογώνια διαιρεῖται : ὥστε ἀναιρουμένου τοῦ
ʂ α . λοιπόν ἐστι καὶ τὸν ἀπὸ τοῦ ἐλάσσονος τετράγωνον τῆς ὑπεροχῆς αὐτῶν εἶναι Ϛπλ . : ΔΥ ἄρα
4343887 ΒΗΔ
ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ :
ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς
4338383 ἐμβαδον
ἀναγεγράφθω κύκλος οὗ ἡ περίμετρος λγ : γίνεται αὐτοῦ τὸ ἐμβαδὸν πϚ ∠ ʹ ηʹ . καὶ ὁμοίως ἀφαιρῶ τὰ
το - μέως δοθέντος , ἀφέλωμεν τὸ τοῦ ΑΓΘ τριγώνου ἐμβαδὸν δοθέν , ἕξομεν λοιπὸν τὸ περιεχόμενον τμῆμα ὑπό τε
4337583 ἐπικυκλος
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα
4335576 διαστηματι
κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ
γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ
4331934 ΓΔΛ
, τὸ ὑπὸ Η , ΔΛ πρὸς τὸ δὶς ὑπὸ ΓΔΛ : ὡς ἄρα τὸ ἀπὸ ΚΛ πρὸς τὸ ὑπὸ
ΔΛ εὐθείας περιφέρεια τοιούτων ρκ , οἵων ὁ περὶ τὸ ΓΔΛ ὀρθογώνιον κύκλος τξ , ἡ δ ' ἐπὶ τῆς
4331385 καταμετρειν
ἀκριβοῦς σημείου , τὸν ἀγχίνουν χρεὼν σκοποῦντα ταῖς ἀποστάσεσι τούτων καταμετρεῖν τὰ νοσήματα . Καὶ πέψεσι μὲν οὖν ἀκριβέσι τῶν
ἐκκυλιόμενόν τε τῇ ἀνὰ μέρος ἄλλων καὶ ἄλλων εὐθειῶν θέσει καταμετρεῖν τὴν ἐπίπεδον . εἰ δὴ καὶ κατ ' εὐθεῖαν
4321659 ἀπολαβωμεν
ἀλλ ' Ἀθήναζε παρέχειν ἀνέπαφα ἡμῖν , ἕως ἂν ἡμεῖς ἀπολάβωμεν τὰ χρήματα ὅσα ἐδανείσαμεν . καί μοι ἀναγίγνωσκε τὴν
δὴ κἂν τὴν ΞΡ ἴσην ἑκατέρᾳ τῶν ΞΟ , ΞΠ ἀπολάβωμεν καὶ ἐπιζεύξωμεν τὴν ΟΡ , δείξομεν , ὅτι καὶ
4317077 ρξβʹ
αὐτὰ φαίνεται καὶ ἀποφαίνει τὸ ἀποτέλεσμα συμφώνως αὐτοῖς γινόμενον . ρξβʹ . Οὐ πρόδηλα αἴτιά ἐστιν ὅσα οὐκ ἐξ ἑαυτῶν
Θὼθ ἕως τῆς ιγʹ τοῦ Μεχὶρ ρξγʹ καὶ ἔξωθεν προσέθηκα ρξβʹ , ὁμοῦ τκεʹ : ταύτας ἀπέλυσα ἀπὸ Κριοῦ ἀνὰ
4314955 ἀποκατασταθῃ
μενούσης τῆς ΒΔ τὸ ΑΒΓ τμῆμα περιενεχθὲν εἰς τὸ αὐτὸ ἀποκατασταθῇ , ἔσται σφαιρικὴ ἐπιφάνεια , πρὸς ἣν αἱ πρὸς
τὴν ὀρθὴν γωνίαν τὴν Κ περιενεχθὲν εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ , ὅθεν ἤρξατο φέρεσθαι , ἡ μὲν ΒΓ καθ
4292552 μεσουρανουντι
πλευρὰν σχηματίζεσθαι τῷ κατὰ κορυφῆς κέντρῳ , λέγω δὴ τῷ μεσουρανοῦντι ζῳδίῳ . καὶ τὸν μὲν ἕκτον τόπον ἐνεργέστερον εἶναι
ἕκτον τόπον ἐνεργέστερον εἶναι συμβέβηκεν , ὅτι σύμφωνός ἐστι τῷ μεσουρανοῦντι κέντρῳ . προηγεῖσθαι γὰρ αὐτὸ ἠθέλησαν τῶν λοιπῶν κέντρων
4289278 ἐνεχθησεται
κύκλου καὶ τοῦ ἰσημερινοῦ , πλείονα χρόνον ὑπὲρ τὸν ὁρίζοντα ἐνεχθήσεται τοῖς πρὸς μεσημβρίαν ἢ τοῖς πρὸς ἄρκτον οἰκοῦσιν .
ἄνωθεν ἀρχὴν μόνην ἀποτέμοις τοῦ μυός , ἐπὶ τὸ πέρας ἐνεχθήσεται , καὶ εἰ τὴν κάτω τελευτήν , ἐπὶ τὴν
4282082 κωνικην
τὴν ] ὀρθὴν γωνίαν εὐθείας περιστρεφόμενον τὸ τρίγωνον ποιεῖ τὴν κωνικὴν ἐπιφάνειαν ἡ ΘΛ [ ἀπὸ τοῦ ] Θ τῆς
ἄπειρον αὔξεται τῆς γραφούσης εὐθείας εἰς ἄπειρον προσεκβαλλομένης , καλῶ κωνικὴν ἐπιφάνειαν , κορυφὴν δὲ αὐτῆς τὸ μεμενηκὸς σημεῖον ,
4274406 σκιασμα
ἐχούσης . τὴν δὲ σελήνην ἐμπίπτουσαν εἰς τὸ τῆς γῆς σκίασμα : ὅθεν καὶ ταῖς πανσελήνοις ἐκλείπειν μόναις , καίπερ
γῆς . Ἀεὶ δὲ τὸ ἐμπίπτον αὐτῆς μέρος εἰς τὸ σκίασμα τῆς γῆς ἀφώτιστον γίνεται τοῦ ἡλίου διὰ τὴν ἐπιπρόσθησιν
4262838 καλεισθω
τῆς ΑΓ : ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν , καλείσθω δὲ ἐκ δύο ὀνομάτων : ὅπερ ἔδει δεῖξαι .
ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ , καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ
4256024 ἡλιακης
ἡ ὑπὸ ΑΕΒ γωνία τὰς διπλασίονας ἔγγιστα περιέχῃ μόνης τῆς ἡλιακῆς ἀνωμαλίας μοίρας δ μϚ , καὶ ἐπιζευχθείσης ἐπὶ τῆς
φοῖνιξ καὶ τοῖς πατρῴοις ἔθεσι χρῆται , ὥστε ὑπὸ τῆς ἡλιακῆς μόνης αὐγῆς , πατρός τε καὶ μητρὸς χωρίς ,
4252609 ἀκολουθησομεν
. ὡς λογικῶν ἡμῶν ἄρξον δεικνὺς ἡμῖν τὰ συμφέροντα καὶ ἀκολουθήσομεν : δείκνυε τὰ ἀσύμφορα καὶ ἀποστραφησόμεθα . ζηλωτὰς ἡμᾶς
φοβεῖσθαι μᾶλλον ἢ σύμπαντας τοὺς ἄλλους ; ᾧ εἰ μὴ ἀκολουθήσομεν , δια - φθεροῦμεν ἐκεῖνο καὶ λωβησόμεθα , ὃ
4250848 συναπτονται
συνεχὲς μὲν ποσόν ἐστιν οὗ τὰ μόρια εἰς ἕνα ὅρον συνάπτονται , ὥσπερ ἐπὶ τοῦ τοίχου : οὗτος γὰρ συνεχὲς
γραμμῇ καὶ τὸ ἄλλο τῇ γραμμῇ καὶ διὰ τῆς γραμμῆς συνάπτονται ἀλλήλοις . δυνάμει γὰρ τῇ τομῇ καθυπεβλήθησαν , οὐ
4248486 τμηματα
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ
4248292 αἰτιατῳ
τί ἦν εἶναι , ὅπερ δὴ καὶ ἅμα ἐστὶ τῷ αἰτιατῷ , ὡς εἶναι κατὰ τὸν χρόνον ὁμόγονα ἀλλήλοις τὸ
χωρὶς τοῦ μηδὲ εὐαγὲς εἶναι οἴεσθαι τὸ αἴτιον ἐν τῷ αἰτιατῷ περιέχεσθαι [ τῷ ] μηδὲ τὰ δένδρα τοὺς ἐτησίους
4244544 ἰσοσκελες
, οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ βάσει γωνίας . τούτων
. Καὶ μηδενὸς δὲ δεηθέντες καὶ ἡμεῖς ἄλλως συστήσομεν τρίγωνον ἰσοσκελὲς ὁμοίως μείζονα ἢ ἐλάττονα ἔχον τὴν βάσιν , εἰ
4232328 κεντρον
γωνίας ἀπό τινος ὁρωμένου ἀφεθῇ τις εὐθεῖα , πρὸς τὸ κέντρον τοῦ ἐνόπτρου πεσεῖται . Οὐκέτι ὁρᾶται . , ]
ἐξ ἀμοιβῆς γὰρ ἄλλοτε ἄλλῃ συγκοιμῶνται . μέτρον : γράφεται κέντρον : ζῆλος . Περί : ἕνεκα . ὀλέκονται :
4227939 ἐφαρμοσαι
ἐσχάτη συναφὴ τῶν προελθόντων : βουληθεὶς δὲ αὐτῷ συναφθῆναι καὶ ἐφαρμόσαι , συνήγαγεν τὴν ἑαυτοῦ γνῶσιν εἰς ἓν συναίρεμα γνώσεων
ἢ αὐτὸς πλασάμενος οἰηθῇς εἶναι καλόν , τούτῳ ζητεῖς διάνοιαν ἐφαρμόσαι καὶ ζημίαν ἡγῇ , ἂν μὴ παραβύσῃς αὐτό που
4227763 κανονιον
ἐν τῷ γʹ καὶ δʹ σελιδίῳ κατὰ τὸ τῶν προσνεύσεων κανόνιον . ἐὰν μὲν οὖν βορειότερον ᾖ τὸ κέντρον τῆς
τῶν τῆς διαμέτρου δωδεκάτων εἰσενεχθέντων εἰς τὸ ἐπὶ πᾶσι βραχὺ κανόνιον καὶ τὰ ιβʹ τῶν ὅλων ἐμβαδῶν εὑρήσομεν ἐκ τῶν
4218395 προβλημα
διὰ μέσων μὲν τῶν παρεμβολῶν ἦν ποταμός , ὃν ἀμφότεροι πρόβλημα τῶν πολεμίων ἐπεποίηντο , φῆμαι δὲ κατεῖχον ἐπὶ τῶν
καὶ μὴ ἀπηρτημένον ποιήσῃς τὸν λόγον : διέλωμεν οὖν τὸ πρόβλημα , ἵνα σαφὴς ἡ διαίρεσις γένηται . Πληγάς τις
4216553 συριγγουται
κατὰ δὲ τὰ ὑπεσταλμένα καὶ συνεγγίζοντα τοῖς μηροῖς περιελοῦμεν : συριγγοῦται γὰρ ῥᾳδίως , εἰ μὴ περιαιροῖτο ἐκ πλάτους .
ἐς τὸν ἀρχὸν διασήψῃ . Ἐπὴν δὲ τοῦτο γένηται , συριγγοῦται , καὶ ἰχὼρ ῥέει , καὶ κόπρος ῥεῖ δι
4207368 τομης
τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ
ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ
4203676 ΞΓΔ
ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα
κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα
4199782 συναπτειν
τὴν Ἀκαρνανίαν φησὶν ἀπὸ τῶν ἑσπερίων μερῶν : ταύτην γὰρ συνάπτειν πρώτην τοῖς Ἠπειρωτικοῖς ἔθνεσιν . ἀλλ ' ὥσπερ οὗτος
Θεόπομπος βραχεῖαν μέν , εὐερκῆ δέ : καὶ σκέλει διπλέθρωι συνάπτειν πρὸς τὸν λιμένα , καὶ διὰ ταῦτ ' οὖν
4198771 λειψεως
ἀριθμοῦ καὶ μο β ὑπάρξεως ἐπὶ Ϟ καὶ μο β λείψεως ποιεῖ δυ α ↑ μο δ . Πῶς ;
μο λϚ , καὶ κοινῆς προσκειμένης τῆς τῶν κδ ἀριθμῶν λείψεως καὶ τῆς μιᾶς μονάδος , γενήσεται κζ ἀριθμοὶ ἴσοι
4197674 παραλληλογραμμον
ΒΖ ] τῇ ΓΖ , καὶ τὸ [ ΔΕΒΖ ] παραλληλόγραμμον , καὶ ἡ διάμετρος ἴση [ τῷ ] διαστήματι
δέ : καὶ τοῦ ΓΚ ἄρα παραλληλογράμμου πρὸς τὸ ΛΖ παραλληλόγραμμον λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΑΒΓ τριγώνου
4194716 συνανατελλετω
τοῦ ἡλίου ἀνατέλλοντος κατὰ τὸ αʹ ἄστρα τινὰ τῶν ἀπλανῶν συνανατελλέτω τὰ βʹ αʹ δʹ , τὸ μὲν αʹ ἐπὶ
δύσεως ἐπὶ τὰ πρὸς ἄρκτους ἔστω τὸ εʹ , καὶ συνανατελλέτω μὲν τῷ ζʹ , συνδυνέτω δὲ τῷ γʹ :
4189721 ἐκτεινειν
' ἀβλαβοῦς τῆς τοῦ βραχίονος πρὸς τὸν πῆχυν διαρθρώσεως , ἐκτείνειν καὶ κάμπτειν δύνανται , κἂν τελέως ἐνήργουν ἑκάτεροι ,
τὸν λόγον , ἀλλὰ περὶ τῶν χρόνων , τοὺς μὲν ἐκτείνειν κελεύων , τοὺς δὲ συνάγειν , τοὺς δὲ ἴσους
4188297 ῥομβοειδες
ἑτέρων ὄντα προπέπτωκεν εἰς τὸ Ἀτλαντικὸν πέλαγος , καὶ γίνεται ῥομβοειδὲς τὸ τῆς χώρας σχῆμα , τῶν μειζόνων πλευρῶν ἑκατέρου
ῥόμβος δὲ τὸ ἰσόπλευρον μέν , οὐκ ὀρθογώνιον δέ , ῥομβοειδὲς δὲ τὸ τὰς ἀπεναντίον πλευράς τε καὶ γωνίας ἴσας
4183814 ἀποφαναι
μέντοι γε τοῦ εἰπεῖν οἷον ὅτι ἀναγκαῖον ἢ φάναι ἢ ἀποφάναι ἐδήλωσεν ὅτι οὐ δυνατόν ἐστι συμψεύσασθαι τὴν ἀντίφασιν ,
εἰ δὲ μηδὲν ἄλλο ὑπάρχει τὸ ἀληθὲς φάναι ἢ ὅπερ ἀποφάναι ψεῦδος ὑπάρχει , ἀδύνατον ἅπαντα ψευδῆ εἶναι : ἀνάγκη
4182666 ἀφισταμενον
ἑνός , εἴη ἂν ὃ λέγει : δεῖ δέ σε ἀφιστάμενον τοῦ προκειμένου ἀφίστασθαι ὅτι ἀνωτάτω , οἷον εἰ μέλλεις
ἔχων τυγχάνῃ . Ἢν δὲ καὶ πρὸς πολεμίους γιγνώσκῃς αὐτὸν ἀφιστάμενον , τί ποιεῖς ; Κατακαίνω , ἔφη : τί
4174927 ἀνισα
ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων
4170154 διαδησαι
' ἀνάγκης τινός , ἐπισκοπεῖσθαι δύο ταῦτα : τὴν μὲν διαδῆσαι , καθ ' ὃ μάλιστα μέρος ὁ τῆς ἀρτηρίας
ἐμβολῆς , ἢν εἰς τὸ ἔσω ὀλίσθῃ : στρωτῆρα χρὴ διαδῆσαι μεταξὺ δύο στύλων ὕψος ἔχοντα σύμμετρον . προσεχέτω [
4167682 νοησωμεν
τὰ ἄλλ ' οὕτως κατὰ τὸν αὐτὸν λόγον ἔχει . νοήσωμεν δὴ τούτοις ἑπόμενον εἶναι τὸν τοιόνδε λόγον , ἁπάντων
δεῖ προϋπάρχειν τὰ τελεώτερα τῶν ἀτελεστέρων . καὶ πάλιν ἐὰν νοήσωμεν γεννωμένην τὴν γραμμήν , πρότερον ὑπάρχει τὸ ἥμισυ αὐτῆς
4160797 δειξεως
: τὸ δὲ λογικὸν αὐτὸν εἶναι καὶ μὴ ἄλογον χωρὶς δείξεως αἰτεῖταί τε καὶ τίθησιν . εἰ δέ ἐστιν ἀσθενὴς
τὸ ἐνδέχεσθαι καὶ αὐτὴ συνάγει διὰ τῆς ἐπ ' εὐθείας δείξεως : διὸ καὶ τέλειος ὁ συλλογισμός . ἐπειδὴ γὰρ
4160755 ἐπινοησωμεν
εἰ τηλικοῦτός ἐστιν ὁ ἥλιος , ἡλίκος φαίνεται , ἂν ἐπινοήσωμεν αὐτὸν διπλασίονα γενόμενον , εἰς δύο διαιρουμένου ἑκάτερον αὐτοῦ
, ὡς ἂν ἠχήσειεν σαλπίζων ὅλος οὐρανός . Ἑτέραν οὖν ἐπινοήσωμεν μεταφορὰν μικρότητος αἰτίαν γινομένην μᾶλλον ἢ μεγέθους : δεῖ
4156240 ΑΟ
ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν
, ΨΣ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ
4155122 συμπλεκειν
λεγομένων τάττειν , καὶ τοὔμπαλιν : ἔστι δὲ ὅτε καὶ συμπλέκειν , ὥσπερ καὶ νῦν . παῖδα Ἀφροδίτης μὲν γὰρ
τοιοῦτο κατ ' ἰδίαν ἀφοριστέον περὶ αὐτῆς , κοινῇ δὲ συμπλέκειν πάντα ἄξιον , ὡς τῆς ψυχῆς καὶ ἰδέας οὔσης
4154896 γωνιας
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς
4146002 ἀναλυσομεν
καιρικῆς ὥρας . ἐφεξῆς δὲ τὰς μὲν δεδομένας καιρικὰς ὥρας ἀναλύσομεν εἰς ἰσημερινὰς πολλαπλασιάσαντες τὰς μὲν ἡμερινὰς ἐπὶ τοὺς τῆς
ἐξ ὕλης καὶ τοῦτο , ἢ πάλιν τὸν αὐτὸν τρόπον ἀναλύσομεν . Εἰ δὲ πάθημα τῆς ὕλης , ἀλλ '
4145251 ὁριστον
, ὅπερ καὶ Ἀριστοτέλης προλαβὼν εἴληφε , καὶ ἔστω τὸ ὁριστὸν ἄνθρωπος . αἰτούμεθα τούτου γένος εἶναι τὸ ζῷον ,
τε καὶ τὸ ὁριστὸν ἀντιστρέφει πρὸς ἄλληλα , εἰ τὸ ὁριστὸν ᾗ ὁριστὸν ἀποδεικτόν , δῆλον ὅτι καὶ ὁ ὅρος
4144567 ἐπινοεισθαι
πᾶν τὸ ἐπινοούμενον καὶ ὑπάρξεως μετείληφεν , ἀλλὰ δύναταί τι ἐπινοεῖσθαι μέν , μὴ ὑπάρχειν δέ , καθάπερ Ἱπποκένταυρος καὶ
καὶ νοητὴν τρίτην τινὰ δύναμιν , ἣν καὶ ἐκ τούτων ἐπινοεῖσθαι δύνασθαι , λέγων ὧδέ πως : εἰ γὰρ .
4136812 φιλοτεχνειν
περὶ τῆς φιλίας καὶ τῆς ὁμονοίας τῆς πρὸς ἀλλήλους ὑμῶν φιλοτεχνεῖν , ἴσως ἂν ὥσπερ ἄλλο τι πρᾶγμα τῆς προσηκούσης
φυτουργεῖν καὶ ῥιζοτομεῖν ἀσκοῦσι καὶ ὁπλοποιεῖν καὶ λίνα καὶ ἄρκυς φιλοτεχνεῖν . οὐχ ἅπτονται δὲ τῶν θηρευμάτων οἱ παῖδες ,
4136792 πενταγωνον
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ
4136477 γθʹ
γζʹ αἱ γʹ νικῶσιν . γηʹ αἱ ηʹ νικῶσιν . γθʹ αἱ γʹ νικῶσιν . δδʹ ὁ ἐγκαλούμενος νικᾷ καὶ
ἐστὶν ἡμίσους ζῳδίου . Καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ γθʹ , καὶ ἡ ηγκʹ , καὶ ἔτι ἥ τε
4132492 ἐπιμερες
ἦν πρῶτον τὸ διπλάσιον , εἶτα τὸ ἐπιμόριον καὶ τὸ ἐπιμερὲς καὶ τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ
ε : τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον
4131194 ΚΖΜ
ΒΕ . τὰ ἄρα ἀπὸ ΝΖΘ τετράγωνα μετὰ τῶν ἀπὸ ΚΖΜ εἰδῶν ὁμοίων τῷ πρὸς τῇ ΓΑ εἴδει διπλάσιά ἐστι
τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα περιενεχθέντα εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο
4127985 συναμφοτερον
συναμφοτέρου κύβος . λοιπὸν δεῖ τὸν ὑπ ' αὐτῶν λείψαντα συναμφότερον ποιεῖν κύβον . ἀλλὰ ὁ ὑπ ' αὐτῶν λείψας
καὶ τῷ ἑνί , πρὸ ἀμφοῖν δέ ἐστι κατὰ τὸ συναμφότερον ἐν τῷ ἡνωμένῳ : οὕτως ἄρα καὶ τὸ γνωστικὸν
4127098 παραλληλεπιπεδον
τὸ ΝΗ . Ἐπεὶ γὰρ ὅμοιόν ἐστι τὸ ΚΑ στερεὸν παραλληλεπίπεδον τῷ ΛΓ , τὸ ΚΑ ἄρα πρὸς τὸ ΛΓ
δίχα τμηθήσεται τὸ στερεὸν ὑπὸ τοῦ ἐπιπέδου . Στερεὸν γὰρ παραλληλεπίπεδον τὸ ΑΒ ἐπιπέδῳ τῷ ΓΔΕΖ τετμήσθω κατὰ τὰς διαγωνίους
4126914 ἐλλειψεως
ἴσον ἐστὶ τοῖς ΗΔ , ΑΖ . ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας ἐροῦμεν : ἐπεὶ οὖν
τοῦ κέντρου τῷ ὁμοίῳ τῷ ἀποτεμνομένῳ , ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας μετὰ τοῦ ἀποτεμνο -
4125141 ἀσυμμετρα
τὸ δὲ δὶς ὑπὸ τῶν ΑΗ , ΗΒ μέσον , ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΗ , ΗΒ τῷ
λόγον οὐκ ἔχει , ὃν ἀριθμὸς πρὸς ἀριθμόν . Ἔστω ἀσύμμετρα μεγέθη τὰ Α , Β : λέγω , ὅτι

Back