συναμφοτέρου κύβος . λοιπὸν δεῖ τὸν ὑπ ' αὐτῶν λείψαντα συναμφότερον ποιεῖν κύβον . ἀλλὰ ὁ ὑπ ' αὐτῶν λείψας
καὶ τῷ ἑνί , πρὸ ἀμφοῖν δέ ἐστι κατὰ τὸ συναμφότερον ἐν τῷ ἡνωμένῳ : οὕτως ἄρα καὶ τὸ γνωστικὸν
6337737 ἐπιστητον
, ἀλλ ' ἵνα ὅτι οὐ ταὐτὸ καὶ ἓν ἑκατέρᾳ ἐπιστητόν . ἀλλὰ πρῶτον μὲν ἵν ' ὑπερβολὴν δείξῃ τῆς
ἀγαθόν ἢ ὅτι ἀγαθόν , ἵνα ᾖ μείζων μὲν ἄκρος ἐπιστητόν , ᾗ ἀγαθόν , μέσος δὲ ἀγαθόν , ἔσχατος
6237035 κινητον
κινητικὸν φύσει τὸ ἐνεργείᾳ θερμὸν τοῦ δυνάμει θερμοῦ , οὕτω κινητὸν φύσει τὸ δυνάμει θερμὸν ὑπὸ τοῦ ἐνεργείᾳ θερμοῦ :
γὰρ αὐτὸ ἐξ ἐνεργείας μεταβάλλειν καὶ οὕτως ἐνεργῆσαι πρὸς τὸ κινητὸν ὑπ ' αὐτοῦ . διὰ τοῦτο οὖν ἀντικινεῖται .
6226767 τμημα
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ
6165649 ἐπιστρεπτικον
, τὸ δὲ μόνιμον τοῦ γεννῶντος εἴδους , τὸ δὲ ἐπιστρεπτικὸν τοῦ γεννωμένου παραστατικόν . Εἰ δὲ μετέχει τὰ γεννώμενα
τὸ ἐπιστρέφον ἐν αὐτῷ τοῦ προεληλυθότος , προσλαμβάνει δὲ τὸ ἐπιστρεπτικὸν μετὰ τὸ προοδικόν : ὑποκείσθω γὰρ ἑκάτερον κατ '
6151888 νοηθησεται
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ
6142765 πολλαπλασιον
ἔτυχεν , πολλαπλάσιον τὸ Ζ . Ἐπεὶ οὖν ἰσάκις ἐστὶ πολλαπλάσιον τὸ Δ τοῦ Α καὶ τὸ Ε τοῦ Β
οὔτε πολλαπλάσιον ἔσται οὔτε ἐπιμόριον . ἔστω γὰρ διάστημα μὴ πολλαπλάσιον τὸ ΒΓ , καὶ γεγενήσθω , ὡς ὁ Γ
6081421 διτονον
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ
6038768 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
6025917 ΜΝΞ
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ
5995765 ἐπιμερες
ἦν πρῶτον τὸ διπλάσιον , εἶτα τὸ ἐπιμόριον καὶ τὸ ἐπιμερὲς καὶ τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ
ε : τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον
5970923 ἀναπαλιν
περὶ ψυχὴν τὸ αὐτὸν ἑαυτῷ εἶναι σπουδαῖον καὶ εὐδαίμονα . ἀνάπαλιν δὲ καὶ τῶν κακῶν τὰ μὲν περὶ ψυχὴν εἶναι
καὶ τὰ ἶσα ἀπὸ ὡροσκόπου , τοῖς δὲ νυκτὸς τὸ ἀνάπαλιν . Ἕκτος κλῆρος τῆς Νίκης , ὃν ἀριθμήσεις τοῖς
5963352 αἰτιωδες
ἢ ἄλλῳ . δίελε καὶ μέρισον τὸ ὑποκείμενον εἰς τὸ αἰτιῶδες καὶ ὑλικόν . ἐννόησον τὴν ἐσχάτην ὥραν . τὸ
ὁ σύνδεσμος οὗτος τὸ ἕτερον τῶν ἀξιωμάτων ψεῦδος εἶναι . αἰτιῶδες δέ ἐστιν ἀξίωμα τὸ συντασσόμενον διὰ τοῦ ” διότι
5961879 ὑποκειμενον
ἥλιος ἀπὸ μεσημβρίας τῷ γνώμονι προσπίπτῃ τῷ ὀρθῷ πρὸς τὸ ὑποκείμενον ἐπίπεδον , τοτὲ δ ' εἰς τοὐναντίον , ὅταν
μὲν πεντεκαιδέκατον λαβόντες ἕξομεν , ὅσων ἐστὶν ὡρῶν ἰσημερινῶν τὸ ὑποκείμενον διάστημα , τὸ δὲ δωδέκατον λαβόντες ἕξομεν , ὅσων
5953125 ΓΖ
τὸ ἀπὸ τῆς ΕΖ ἴσον ἐστὶν τοῖς ἀπὸ τῶν ΕΓ ΓΖ , ἔστιν δὲ καὶ τὰ ἀπὸ τῶν ΕΑ ΑΖ
: ἔστιν ἄρα καὶ ὡς ἡ ΑΕ βάσις πρὸς τὴν ΓΖ βάσιν , οὕτως τὸ ΑΒ στερεὸν πρὸς τὸ ΓΔ
5948881 γνωστικον
γνωστῶν καὶ τῶν γνωστικῶν , ἐπὶ τῆς ψυχῆς εὐλόγως ὡς γνωστικὸν εἰρῆσθαι ἀκούει , καὶ διὰ τοῦτο τοὺς εἰπόντας τὴν
τοίνυν , ὅπερ ἔφην , καὶ τὸ γνωστὸν καὶ τὸ γνωστικὸν καὶ ἡ γνῶσις ἐν τῷ νῷ διεκρίθη ἀπ '
5946332 τριπλασιον
αη ηβ : καὶ ἐπεὶ τὸ γδ τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ
, πρῶτον διπλάσιον ἐν ἑνὶ στίχῳ , εἶτα ἐν δευτέρῳ τριπλάσιον , εἶτα τετραπλάσιον ἐν τρίτῳ καὶ μέχρι δεκαπλασίων ,
5945039 τεταρτημοριον
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ
5944232 θρεπτικον
τοῦ δὲ τετάρτου μορίου τῆς ψυχῆς , ὅ ἐστι τὸ θρεπτικόν , οὐκ ἔστιν ἀρετὴ τοιαύτη , περὶ ἧς ἡμῖν
νοητικόν , ἢ τί τὸ αἰσθητικόν , ἢ τί τὸ θρεπτικόν , πρότερον ἐπισκεπτέον τί τὸ νοεῖν καὶ τί τὸ
5915368 συναμφοτερου
ἑκάστου τῶν τμημάτων τῶν δα , αγ ἴσον τῷ ὑπὸ συναμφοτέρου τῆς δαγ καὶ τῆς αβ διὰ τὸ αʹ τοῦ
, οἱ δὲ ἐξ ὑποκειμένου ἢ τέλους ἢ ἐκ τοῦ συναμφοτέρου , ἐξ ὑποκειμένου καὶ τέλους , ταῖς ἐπιστήμαις καὶ
5910847 αἰσθητικον
γὰρ μέρη ψυχῆς : τὸ μὲν θρεπτικόν , τὸ δὲ αἰσθητικόν , τὸ δὲ λογικόν . Τοῦ μὲν οὖν λογικοῦ
ἀσύστατοι . καὶ συνιστάμεναι μὲν αἱ δύο ὑπάλληλοι , ἔμψυχον αἰσθητικόν , ἄψυχον ἀναίσθητον , καὶ μία διαγώνιος ἔμψυχον ἀναίσθητον
5908260 γραμμικοι
ἐπιμορίου καὶ τῶν λοιπῶν εἰδῶν ἐν αὐτῶι , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί . τὸ μὲν
ἐξ ἀρχῆς βάθος τι προσκτωμένου : οἷον καθ ' ὑποδιαίρεσιν γραμμικοὶ μέν εἰσιν ἀριθμοὶ ἁπλῶς ἅπαντες οἱ ἀπὸ δυάδος ἀρχόμενοι
5905657 ἀσυνθετον
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις
5901568 παρωνυμῳ
ἀναλογεῖ τῇ ἐπιστήμῃ , ἡ δὲ τῇ πίστει καὶ τῇ παρωνύμῳ δόξῃ . ἀβουλήτως οὖν οἱ ῥήτορες καὶ οἱ τύραννοι
τὴν γένεσιν αὐτὸς ἔσχε : διόπερ συμβαίνει αὐτῷ πρὸς τῷ παρωνύμῳ μέρει ἔτι καὶ ἑτερώνυμον ἢ ἑτερώνυμα κεκτῆσθαι , τὸ
5891437 πολλαπλασιου
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον
5883687 σῳζομενης
οἰκείας φύσεως καὶ κινήσεως οὕτως ἐφέλκηται τὸ χόριον : μὴ σῳζομένης δὲ τῆς πρὸς τὸ βρέφος τοῦ χορίου συνεχείας μολίβδου
ἐπιβλαβές , δεῖ γὰρ ἐμπείρως τὴν ὁλκὴν γενέσθαι . διὸ σῳζομένης τῆς πρὸς τὸν ὀμφαλὸν αὐτοῦ συνεχείας ἐπὶ χειρῶν μιᾶς
5877079 ΥΘ
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ
5870507 ΞΓΔ
ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα
κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα
5864378 ΡΗ
τὸ ΝΓ πρὸς τὸ ΓΘ , τὸ ΓΡ πρὸς τὸ ΡΗ . καὶ ὡς ἓν πρὸς ἕν , οὕτως ἅπαντα
ὡς δὲ ἡ ΓΣ πρὸς ΣΗ , τὸ ΡΓ πρὸς ΡΗ : καὶ ὡς ἄρα τὸ ΝΓ πρὸς τὸ ΓΘ
5863969 τεμνομενον
, τῶν δὲ ἀριθμητῶν τὸ ἕν , τοῦτο δὲ σῶμα τεμνόμενον εἰς ἄπειρον : ὥστε τὰ ἀριθμητὰ τῶν ἀριθμῶν ταύτῃ
ἄτομον καὶ τὸ δυσχερῶς τεμνόμενον καὶ τὸ μηδ ' ὅλως τεμνόμενον ὡς τὸ σημεῖον καὶ τὸ εἰδικώτατον εἶδος . ἐνταῦθα
5862291 ΗΖΝ
μείζων ἐστὶν τῆς ὑπὸ ΗΖΚ . ἔστω δὴ ἡ ὑπὸ ΗΖΝ . ἐπεὶ οὖν , ἐν ὅσῳ χρόνῳ τὴν ΚΗ
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΞΓΔ , ΗΖΝ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΚΓΛ
5842516 ὑποπολλαπλασιον
τελείως : οὐ γὰρ δύνασαι εἰπεῖν τὸν γ τοῦ η ὑποπολλαπλάσιον : οὐδὲ γὰρ ἔχει λόγον πρὸς αὐτόν : τρὶς
ἐλάττονος κατὰ ἀντιπεπόνθησιν μετὰ τῆς ὑπό προθέσεως τὸ μέν ἐστιν ὑποπολλαπλάσιον τὸ δὲ ὑποεπιμόριον τὸ δὲ ὑποεπιμερές , δύο δὲ
5826885 ἐπιμοριου
ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος ,
δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς ,
5824541 νοουν
δύο ὄντα τοῦτο τὸ ἓν ὁμοῦ νοῦς καὶ ὂν καὶ νοοῦν καὶ νοούμενον , ὁ μὲν νοῦς κατὰ τὸ νοεῖν
δὴ τὸ μὲν πρώτως νοοῦν , τὸ δὲ ἤδη ἄλλως νοοῦν , τὸ ἐπέκεινα τοῦ πρώτως νοοῦντος οὐκ ἂν ἔτι
5823055 ἡμιτετραγωνον
γὰρ ἀεὶ καὶ ἑνοειδὲς τὸ ἴσον : δεύτερον δὲ τὸ ἡμιτετράγωνον : μίαν γὰρ ἔχον παραλλαγὴν γραμμῶν καὶ γωνιῶν ἐν
ἤτοι ἥμισυ ἑτερομήκους . εἰ μὲν οὖν ἰσοσκελές ἐστιν ἤτοι ἡμιτετράγωνον , ἐὰν αἱ περὶ τὴν ὀρθὴν γωνίαν ῥηταὶ μήκει
5822266 γνωστον
' ᾗ διακρίνεται μόνον , ταύτῃ καὶ γνῶσιν ἔχει καὶ γνωστὸν καὶ γνωστικόν , οὐ διακεκριμένον , ἀλλ ' ἔτι
οὐκ ἴσμεν . Καὶ ὁ Πλάτων δὲ οὐ πάντως οἴεται γνωστὸν τὸ ὄν : πρῶτον μὲν γὰρ ἐν Παρμενίδῃ φησίν
5819157 ΑΕ
πρὸς ΕΒ , ἡ ΓΖ πρὸς ΖΔ , αἱ δὲ ΑΕ , ΕΒ δυνάμει μόνον σύμμετροί εἰσιν , καὶ αἱ
οὕτω μία τῶν πλευρῶν ἡ ΑΒ πρὸς μέρος αὐτῆς τὴν ΑΕ . ἐπεὶ οὖν ἡ ΑΒ πρὸς τὴν ΑΕ λόγον
5818820 ΗΟ
ὅτι παράλληλός ἐστιν ἡ ΘΗ τῇ ΧΕ , αἱ δὲ ΗΟ , ΕΞ συζυγεῖς εἰσι διάμετροι . ἤχθωσαν γὰρ τεταγμένως
τὸ παρὰ τὴν ΕΞ εἶδος . αἱ ἄρα ΕΞ , ΗΟ συζυγεῖς εἰσι διάμετροι τῶν Α , Β , Γ
5811118 ΘΡ
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ ,
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
5810878 συναμφοτερῳ
ἡ ΗΔ τῇ ΕΖ ἐστὶν ἴση : ἡ ΗΚ ἄρα συναμφοτέρῳ τῇ ΓΔ ΕΖ ἐστὶν ἴση [ ἡ δὲ ΔΖ
τῇ ΑΕ , ἡ δὲ ΚΗ τῇ ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ
5801724 ΖΔ
πρὸς ΕΒ μείζονα λόγον ἔχειν ἤπερ τὸ ΓΖ πρὸς τὸ ΖΔ . λέγω , ὅτι τῶν ΑΕ , ΕΒ ,
ἡ ΒΕ τῇ ΔΖ : διπλῆ ἄρα ἡ ΒΓ τῆς ΖΔ : ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ , ΒΓ
5798939 χωριζομενον
καλὸν ὁ νόμος ἐνὸν ἐπαινεῖ . τί γὰρ δὴ δικαίῳ χωριζόμενον ἡδονῆς ἀγαθὸν ἂν γίγνοιτο ; φέρε , κλέος τε
τὸν δ ' αἰθέρα εἰς τοὺς βλαστοὺς ὡς ἑκάτερον ἑκατέρου χωριζόμενον , ἀλλ ' ἐκ μιᾶς ὕλης καὶ ὑφ '
5793942 γεγενησθω
ὅτι τὸ ΓΔ ἔν τινι ἀποστήματι γενόμενον οὐκέτι ὁραθήσεται . γεγενήσθω γὰρ τὸ ΓΔ ἐν τῷ μεταξὺ διαστήματι τῶν ὄψεων
ΥΑ : ἡ δὲ ΟΡ πρὸς μείζονα τῆς ΑΠ . γεγενήσθω δέ , καὶ ἔστωσαν αἱ ΓΕ , ΓΝ ,
5792830 ὑπεροχη
, ι : εἰ δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς
, ἀφελόμενον ἀπὸ τοῦ κέρδους τοῦ ἠδικηκότος , ὅπερ ὡς ὑπεροχή ἐστιν αὐτοῦ πρὸς τὸν ἠδικημένον , καὶ προστεθὲν τῷ
5791969 ΘΑ
ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ
τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ
5791874 σωρειαν
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν
5779179 ΣΕ
διαμέτρου τῆς ἀπὸ τοῦ Σ τμῆμα κύκλου ὀρθὸν ἐφέστηκεν τὸ ΣΕ καὶ τὸ συνεχὲς αὐτῷ , καὶ διῄρηται ἡ τοῦ
τῇ ὑπὸ ΧΣΡ ἐστὶν ἴση : ὁ ἄρα τοῦ ἀπὸ ΣΕ πρὸς τὸ ἀπὸ ΣΡ λόγος ὁ αὐτός ἐστιν τῷ
5779054 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
5778983 διττον
ποσὸν καταγίνεται , τὸ δὲ ποσόν , ὡς εἴρηται , διττόν ἐστιν , ἑκάτερον δὲ τούτων διττόν ἐστιν , τούτου
δόκει σοὶ μηδέπω ' ν προοιμίοις . ἔστι δὲ τοῦτο διττόν . ἢ ἃ εἶπον ἀληθῆ νόμιζε καὶ μηδὲ ψευδῆ
5775490 ὀρεκτικον
πεφυκέναι κατὰ τοῦτο πάσχειν ἢ ἐνεργεῖν . ὅταν δὲ τὸ ὀρεκτικὸν ὑπὸ τοῦ ὀρεκτοῦ ὡς ἐφετοῦ κινηθῇ , τότε ἡ
ὡς φθαρτικὴν ἢ διώκει ὡς σωστικήν . καὶ ἔστι τὸ ὀρεκτικὸν ταὐτὸ τῇ αἰσθητικῇ δυνάμει κατὰ τὸ ὑποκείμενον , τῷ
5771819 ἐπιμερους
ἡ δὲ λοιπὴ μικτὴ σχέσις ἡ πολλαπλασιεπιμερὴς γεννᾶται ἐκ τῆς ἐπιμεροῦς , καὶ ἐκ μὲν τῆς ἐπιδιμεροῦς ἢ δὶς ἐπιτρίτου
τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , ὧν ἕκαστον
5760273 συγκρινομενοι
ἀπεῖχε τοῦ μεσουρανήματος ὁ ἀφέτης , τὸν δὲ γενόμενον ἀριθμὸν συγκρινόμενοι πρὸς ὃν ἔχομεν τῆς θέσεως τοῦ ἑπομένου καὶ τοὺς
πρόσθεν πάντες ἐσημειώσαντο , οἱ ἐν τοῖς ἐλάττοσιν ὅροις λόγοι συγκρινόμενοι πρὸς τοὺς ἐν τοῖς μείζοσι μείζονές εἰσι : δειχθήσονται
5756635 διχη
ἀρτηρίαν . ἀρτηρία ἐστὶ σώματος ἐπίμηκες κυκλικὸν , δίκην σωλῆνος διχῆ διαιρούντων ἀπὸ καρδίας ἐρχόμενον καὶ ἐπὶ τὸ πᾶν σῶμα
τῶν ἐν αὐτῷ παραδιδομένων . Κατὰ δὲ τῶν ἀνωτάτω μερίζεται διχῆ , καθάπερ ἐν ἀρχῇ προαναπεφώνηται : καὶ ὁ μὲν
5750546 ΔΜ
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ
5749119 ΒΜΖ
τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ
αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ
5741184 ΖΕ
τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ ὀρθὰς ποιήσει γωνίας : ἡ ΖΕ ἄρα ὀρθή ἐστι πρὸς ἑκάστην τῶν ΑΕ , ΒΕ
ΓΒ , οὕτως τὸ ΔΖ πρὸς μεῖζόν τι μέγεθος τοῦ ΖΕ . καὶ τὰ λοιπὰ φανερά . ζʹ . Ἐχέτω
5735046 ἀδιαστατον
δοκεῖ προκόπτειν . Ἡ τοίνυν στιγμή , ἥν φασι σημεῖον ἀδιάστατον ὑπάρχειν , ἤτοι σῶμα νοεῖται ἢ ἀσώματον . καὶ
οὐ δυνατὸν ἐν τοῖς φαινομένοις λαβεῖν τινος σημεῖον καὶ πέρας ἀδιάστατον , δῆλον ὡς οὐδ ' ἐν τοῖς νοητοῖς ληφθήσεταί
5730345 τετραπλασιον
' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν
ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς
5728745 ΟΠΡ
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ
5718707 ἐνδεον
ἐκπίπλησι τοῦ τετραγώνου ὅ τι περ ἐς βάθος τῷ ἀριθμῷ ἐνδέον : ὥστε ἤδη τινὲς καὶ τριπλασίονα τὸν ἀριθμὸν τῶν
ψυχῆς χειμών , οὐκ ἔχοντος τοῦ ζῴου βαδίζειν ὡς πρὸς ἐνδέον τι καὶ ζητεῖν ἕτερον ᾧ τὸ τῆς ψυχῆς καὶ
5715774 Ϟων
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς
5710722 ΜΠ
ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἡ ΘΒ πρὸς ΜΠ καὶ ἡ ΠΜ πρὸς ΒΓ , ἀλλ ' ὡς
τῷ ὑπὸ ΤΒ , ΜΝ , καὶ τὸ μὲν ὑπὸ ΜΠ , ΒΘ τέταρτον τοῦ ὑπὸ ΤΒ , ΜΝ ,
5708395 πλεοναζον
συνθήκης κάλλος ἐχούσης τικαίπερ γὰρ ὂν κομμωτικὸν τὸ τοιοῦτο καὶ πλεονάζον παρὰ τῷ ῥήτορι ὅμως λεπτόν ἐστι καὶ οὐκ ἔχει
τὸ ιγʹ ἰαμβικὸν δίμετρον καταληκτικόν . τὸ ιδʹ ἐννεασύλλαβον Σαπφικὸν πλεονάζον μιᾷ συλλαβῇ τοῦ Γλυκωνείου . τὸ ιεʹ ἰωνικὸν ἀπ
5707940 ΑΟ
ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν
, ΨΣ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ
5702141 ἀρτιον
ἤπερ γὰρ ἄλλος καλοῖτο ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ὥσπερ τὸν κδ : ὑπὸ γὰρ ἀρτίου κατὰ ἄρτιον
, ἔχων ἄρρενα μὲν τὸν περιττόν , θῆλυν δὲ τὸν ἄρτιον , ἐξ ὧν εἰσιν αἱ γενέσεις κατὰ φύσεως θεσμοὺς
5695825 ΓΜ
τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ
λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ
5691121 ΖΛ
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν
5685635 ΕΛ
ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ ἡ ΒΕ τῇ ΕΛ ἐστὶν ἴση διὰ τὸ εἶναι ὡς τὴν ΒΓ πρὸς
οὕτως ἡ ΓΔ πρὸς τὴν ΚΛ . μείζων δὲ ἡ ΕΛ τῆς ΕΔ : μείζων ἄρα καὶ ἡ ΚΛ τῆς
5685308 συναμφοτερος
ὡς συναμφότερος ὁ Α Β πρὸς τὸν Β , οὕτως συναμφότερος ὁ Β Γ πρὸς τὸν Γ , καὶ πάντες
συνθέντι ὡς συναμφότερος ὁ ΑΒ πρὸς τὸν Β , οὕτως συναμφότερος ὁ ΒΓ πρὸς τὸν Γ : καὶ πάντες ἄρα
5683981 ΘΖ
ἐπεὶ ἡ ὑπὸ τῶν ΑΒ , ΒΓ τῇ ὑπὸ τῶν ΘΖ , ΖΗ , ὁμόλογος δὲ ἔστω ἡ ΒΓ τῇ
καὶ λοιπὴ ἡ ΝΛ πρὸς ΖΑ . ὁ ἄρα τῆς ΘΖ πρὸς ΖΑ λόγος σύγκειται ἐκ τοῦ τῆς ΜΛ πρὸς
5680514 ΖΘ
οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ , ἔσται ὡς τὸ ἀπὸ τῆς ΒΔ πρὸς τὸ
στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ . ὡς δὲ τὸ Ξ στερεὸν
5668740 ἰσακις
, Β οἱ ΓΔ , ΕΖ : λέγω , ὅτι ἰσάκις ὁ ΓΔ τὸν Α μετρεῖ καὶ ὁ ΕΖ τὸν
ἔχον αὔξησιν τοιανδί , τουτέστιν ᾗ οὕτως ὑπερέχον , ἤγουν ἰσάκις : ποιότης γὰρ ὑπεροχῆς ἐστι τὸ ἰσάκις πολλαπλασιάζεσθαι .
5666142 διακεκριμενου
, ἀφ ' οὗ μὴ προῆλθεν . Ἔτι τὸ διακεκριμένον διακεκριμένου διακέκριται , ὡς τὸ ἕτερον ἑτέρου ἕτερον . Εἰ
μὲν τοῦ συνεχοῦς τὸ μετρεῖν λέγεται , ἐπὶ δὲ τοῦ διακεκριμένου τὸ ἀριθμεῖν . . ἄρνες μὲν οἱ νέοι ,
5660471 ΜΘ
τῆς ΜΗ μείζων ἐστί . πάλιν ἐπεὶ ἡ ΚΘ τῆς ΜΘ ἐλάττων ἐστίν , ἡ δὲ ΜΘ τῆς ΜΗ ἐλάττων
: φανερὸν ὅτι ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΛΜ τῆς ΜΘ , ὡς προεδείχθη . Τῷ δὲ αὐτῷ τρόπῳ ἐφωδεύσαμεν
5645052 διακεκριμενον
διάκρισις , ὥστε καὶ φυλάττει αὐτὸ ἀδιάκριτον , ἢ μᾶλλον διακεκριμένον ἀπὸ τοῦ διακεκριμένου : τοῦτο δέ ἐστι πάλιν αὖ
ἕκαστον ἀπογραψόμεθα : ἔπειτα τὸν κατ ' ἐκείνην τὴν ὥραν διακεκριμένον τῆς ἀνωμαλίας ἀριθμὸν πρὸς τὸ ἀκριβὲς ἀπόγειον λαβόντες ἢ
5644873 ἀμεριστον
θεωρῶμεν : ἢ κατὰ διαίρεσιν , ὅταν τὸ ἓν καὶ ἀμέριστον μαθηματικὸν εἶδος μεριζόμενον περὶ τὰ καθ ' ἕκαστον καὶ
ἕνωσις . καὶ διὰ ταῦτα αὐτός τε πρὸς τὴν καθαρῶς ἀμέριστον γνῶσιν τοῦ ἐνεργείᾳ τελεοῦντος δεῖται νοῦ , καὶ τὰ
5642546 κινουν
καὶ γνώσεσθε τοῦ λοιποῦ ἐν τῷ ἀσφαλεῖ καθεστῶτες κατασπέρχον : κινοῦν εἰς δειλίαν , ἐκπλῆττον . οἱ τοιοῦτοι . .
ἐστι τὸ μὴ ὄν . καὶ μὴν τὸ διδασκόμενον φαντασίαν κινοῦν εἰς μάθησιν ἡμῖν ἔρχεται , τὸ δὲ μὴ ὂν
5640271 ΔΖ
τῆς ὑπὸ ΑΔΒ . ἐπεὶ παράλληλοι μὲν αἱ ΒΓ , ΔΖ καὶ πρὸς ὀρθὰς τῇ ΒΖ , οὐκ ἐλάττων δὲ
καὶ τὸ ἄρα ἀπὸ τῆς ΕΔ πρὸς τὸ ἀπὸ τῆς ΔΖ μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΒΑ πρὸς τὸ
5640063 ΓΛ
ΗΒ ἴσον ἐστὶ τὸ ΖΛ : ἀσύμμετρον ἄρα ἐστὶ τὸ ΓΛ τῷ ΖΛ . ὡς δὲ τὸ ΓΛ πρὸς τὸ
τῆς ΛΟ ἐλάσσων ἐστὶν ἢ β . καὶ ἐπεὶ ἡ ΓΛ κάθετός ἐστιν ἐπὶ τὴν ΒΛ , παράλληλος ἄρα ἐστὶν
5638317 στερεον
ἐκείνη , τριὰς δὲ στερεοῦ σώματος , ὅτιπερ τριχῆ τὸ στερεὸν διαιρετόν . . § . : ἡ μὲν οὖν
τοῦ εἰκοσαέδρου , οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό
5633275 θεωρουμενον
εἰπεῖν λίθος ἢ ξύλον , ἔστι δὲ καὶ τὸ λόγῳ θεωρούμενον σῶμα οἷον τὸ μαθηματικόν . ἐν οὖν τῇ οὐσίᾳ
καὶ τὸ ὑλικὸν αἴτιον , ὃ κατὰ μὲν τὸ προσεχὲς θεωρούμενον οὐ κωλύεται εἶναι γενητόν , ἀναλυόμενον δὲ εἰς ἔσχατον
5630515 ἡμιολιον
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον
5629424 ἐπιστρεφομενον
, μένον ἐν ἑαυτῷ καὶ προϊὸν ἀφ ' ἑαυτοῦ καὶ ἐπιστρεφόμενον πρὸς ἑαυτό . Στοιχεῖα γὰρ αὐτοῦ τῆς οὐσίας τὰ
. Ὥστε ἡ μὲν οὐσιώδης ἐπιστροφὴ πρὸς ἐκεῖνο ποιεῖ τὸ ἐπιστρεφόμενον , οἷον ἐκεῖνο , ἡ δὲ ζωτικὴ συνημμένον αὐτῷ
5627273 ΑΛΒ
παράλληλος αὐτῇ ἡ ΓΟ . ἐπεὶ οὖν ἰσογώνιόν ἐστιν τὸ ΑΛΒ τρίγωνον τῷ ΓΟΒ τριγώνῳ καὶ διπλῆ ἐστιν ἡ μὲν
πρὸς ὅλον τὸ ἀπὸ ΛΗ , οὕτως ἀφαιρεθὲν τὸ ὑπὸ ΑΛΒ πρὸς ἀφαιρεθὲν τὸ ἀπὸ ΛΚ , καὶ λοιπὸν ἄρα
5625198 ΛΖ
. Ποιείσθω οὖν κατὰ τὸ Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ
καὶ ἡμέρας χρόνος ἐστίν , ἐν ᾧ ὁ ἥλιος τὴν ΛΖ περιφέρειαν διαπορεύεται , καὶ ἔστιν ἴση ἡ ΛΖ τῇ
5625130 ΗΔ
ἐστιν ἴση , λοιπὴ ἄρα ἡ ΓΗ περιφέρεια λοιπῇ τῇ ΗΔ ἐστιν ἴση . πενταγώνου δὲ ἡ ΓΔ : δεκαγώνου
ἐστὶν ἴση . ἐπεὶ οὖν ὑπόκειται ὡς ἡ ΑΗ πρὸς ΗΔ , ἡ ΔΘ πρὸς ΘΖ , ἴση δὲ ἡ
5613895 ΝΟ
ἡ ΛΜ μείζων ἐστίν : πολλῷ ἄρα ἡ ΜΛ τῆς ΝΟ μείζων ἐστίν . ἀλλὰ καὶ ἴση : ὅπερ ἐστὶν
ἐστὶν ὡς ἡ ΒΚ πρὸς ΝΞ , ἡ ΚΜ πρὸς ΝΟ . καὶ τὰ τετράγωνα . καὶ ὡς ἓν πρὸς
5613880 ΜΡ
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ
5611619 ΕΒ
ΔΗΒ , ἡ δὲ ὑπὸ ΒΑΖ , ἐὰν ἐπιζευχθῇ ἡ ΕΒ , τῇ ὑπὸ ΒΕΖ , τουτέστιν τῇ ὑπὸ ΒΓΗ
ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ , κάθετοι δ ' ἤχθωσαν ἀπὸ μὲν
5610462 συνθετοι
κράσεων ἐννέα διαφοροὶ , τέσσαρες μὲν ἁπλαῖ , τέσσαρες δὲ σύνθετοι , καὶ πρὸς τούτοις ἡ εὔκρατος . καὶ τῶν
σῴζειν τὰς ἀναλογίας . Τῶν ῥυθμῶν τοίνυν οἱ μέν εἰσι σύνθετοι , οἱ δὲ ἀσύνθετοι , οἱ δὲ μικτοί ,
5607329 ΕΧ
τῇ ὑπὸ ΘΗΧ ἐστιν ἴση . παράλληλος ἄρα ἐστὶν ἡ ΕΧ τῇ ΗΘ . πεποιήσθω δή , ὡς ἡ ΠΗ
ἐστὶν ἡ ΔΧ τῇ ΧΖ , ἴση ἄρα καὶ ἡ ΕΧ τῇ ΖΗ : ὥστε καὶ ἡ ΓΗ ἴση τῇ
5604510 ΜΖ
, ἡ δὲ ΜΓ ὁμοίως # ιϚ , ἡ δὲ ΜΖ ὅλη ξ ιϚ , διὰ τοῦτο δὲ καὶ ἡ
. ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ
5596695 ΗΘ
, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ
, οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς
5591070 ΘΤ
ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως ἡ ΘΤ πρὸς ΘΦ , καὶ ἀφῃρήσθω
ὡς ἡ ΚΘ πρὸς ΘΣ , οὕτως ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως
5586737 ΕΔ
τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ
ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ
5582274 διαιρουμενον
τῷ διαιρουμένῳ γένει διαφοραὶ εἰς ἃς πᾶν τὸ ὑπὸ τὸ διαιρούμενον γένος ἐμπίπτει : εἰ γὰρ μὴ αἱ προσεχεῖς αὐτῷ
ἡ ἀπάτη τῷ μηθὲν οἴεσθαι διαφέρειν συντιθέμενον τὸν λόγον ἢ διαιρούμενον καὶ καταφρονεῖν ὡς οὐδὲν πρᾶγμα : τὸ δὲ διαφέρει
5582008 δωδεκαεδρον
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ
5580094 περιεχομενον
μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ
ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ
5577434 προϋπαρχει
εὐλόγως , ἄλλως τε καὶ ὑπόρριζ ' ἂν ληφθῇ : προϋπάρχει γὰρ πολλὰ τῶν μορίων ἃ δεῖται μόνον τροφῆς :
ἀρετὴν ὀρθῶς πράττεται . πρέπει δὲ ἀναλίσκειν καὶ οἷς τάλαντα προϋπάρχει : δεῖ γὰρ αὐτοὺς ἀξίους εἶναι καὶ ὧν οἱ
5576972 ΘΗ
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε
5576165 ΑΜ
ἑκατέρα μὲν τῶν ΑΒ , ΑΖ ἑκατέρας τῶν ΑΗ , ΑΜ τῇ ἐκ τοῦ κέντρου τῆς σελήνης , ἴση δὲ
ἐστὶ καὶ ἡ ὑπὸ ΓΝΗ . καὶ παράλληλός ἐστιν ἡ ΑΜ τῇ ΝΒ , καὶ δύο διηγμέναι εἰσὶν αἱ ΑΒ

Back