τὰ ἰοβόλα θηρία προστιθέμενα τούτοις χαλβάνη σὺν σπονδυλίῳ , καρκίνοι προστεθέντες τῷ σκορπίῳ κτείνουσιν αὐτόν : λυχνὶς ἀγρία φυγαδεύει σκορπίους | ||
. Ἄλλαι δὲ πρὸς τὸ οὐκ ἄνθρωπος ὡς ὑποκείμενόν τι προστεθέντες . ἐπειδὴ τὰς ὡρισμένον ἐχούσας τὸν ὑποκείμενον προτάσεις ἐγύμνασεν |
' ἂν γένοιό γ ' ἀθλιωτάτη γυνή . ἴτω : περισσοὶ πάντες οὑν μέσωι λόγοι . ἀλλ ' εἶα χώρει | ||
μὲν οὖν ἄρτιον δεῖ εἶναι , ὅπως ἴσοι ἐνῶσιν οἱ περισσοὶ καὶ ἄρτιοι καὶ μὴ ἑτερομερῶς : ἐπεὶ γὰρ πρότερος |
: πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
Ἀπορήσειέ τις δι ' ἣν αἰτίαν ἐλάσσονα ἔταξε τὸν ρ λείψει Ϟοῦ ἑνός , μείζονα δὲ τὸν κ καὶ τὸν | ||
κζ . Εὑρεῖν δύο ἀριθμοὺς ὅπως ὁ ὑπ ' αὐτῶν λείψει ἑκατέρου ποιῇ τετράγωνον , τῶν δὲ τετραγώνων αἱ πλευραὶ |
γραμμὴ συνθέουσα δηλονότι κινήσει . Ἀλλ ' αὕτη συνθέουσα πῶς μετρήσει τὸ ᾧ συνθεῖ ; Τί γὰρ μᾶλλον ὁποτερονοῦν θάτερον | ||
ὑπὸ τῶν Α , Β μετρούμενος [ τὸν Ε ] μετρήσει . ἐλάχιστος δὲ ὑπὸ τῶν Α , Β μετρούμενός |
καὶ ὄνομα οἰκεῖον πρόσκειται . οἱ μέν γε δύο λόχοι διλοχία καλεῖται , ἐξ ἀνδρῶν δύο καὶ τριάκοντα , καὶ | ||
δὲ λόχον ἑξκαίδεκα . Ἔσονται δὴ οἱ μὲν δύο λόχοι διλοχία καὶ ὁ ἐπ ' αὐτοῖς ἄρχων διλοχίτης , οἱ |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
εἶναι καὶ ἀριθμόν , συνάξει , ὅτι ἄρτιοί εἰσιν ἢ περιττοὶ οἱ ἀστέρες , οὔτε δὲ τὸ περιττοὺς αὐτοὺς εἶναι | ||
εἰς περιττόν . καὶ οἱ ἄρτιοι δὲ ἵπποι δύνανται καὶ περιττοὶ γενέσθαι ἑτέρου προσθήκῃ . ἀλλὰ καὶ τὸ χρῶμα εἰ |
, ὃς ἀπὸ πλευρᾶς λζ ιʹ . . Ἀπὸ τῶν χκε λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων | ||
τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς ἀλλήλους μὲν |
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
τούτων λαμβανομένων μέσων γίνονται αἱ τρεῖς μεσότητες : οἷον ἔστωσαν ἄκροι ὅ τε μ καὶ ὁ ι . ἐὰν μὲν | ||
. Ἀλλὰ τριῶν ὄντων τοῦ γένους ἀρχηγετῶν , οἱ μὲν ἄκροι μετωνομάσθησαν , Ἀβραάμ τε καὶ Ἰακώβ , ὁ δὲ |
συνημμένον τρόπον ἐκλεγομένους , ἵνα καὶ αἱ πλευραὶ μονάδι ἀλλήλων διαφέρωσιν . ἐν μὲν οὖν τῇ τῶν τετραγώνων γενέσει ἡ | ||
ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν ὑποκείμενον μὴ διαφέρωσιν ἑνός , ὅπερ ἐὰν μὴ παντάπασιν αὐτοῖς ὑπάρχῃ , |
ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
δὲ ζητουμένων ὃν μὲν ΚΥ Κ ξγ , ὃν δὲ ΚΥ Κ ιε , ὃν δὲ ΚΥ Κ γ . | ||
τοὺς τρεῖς ἰσῶσαι ʂ α : γίνονται δὲ οἱ τρεῖς ΚΥ β δא : ταῦτα ἴσα ʂ α : ὅθεν |
ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι | ||
ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν |
τε καὶ οἰκοδομικοὶ καὶ χαλκευτικοὶ καὶ οἱ τῶν ἄλλων τεχνῶν πλάσσονται ἀπὸ ὀξυτέρου ἄκρου διαδύνειν ἀρχόμενοι καὶ αἰεὶ μᾶλλον πλατυνόμενοι | ||
πρόεισιν ἐπ ' ἄπειρον . καὶ ἀπὸ τούτων δὲ ἄλλοι πλάσσονται κατὰ τὸν αὐτὸν λόγον , περὶ ὧν οὐκ ἀναγκαῖον |
ἐφεξῆς ἀριθμοί , ἀπογεννῶντες τριγώνους ἢ τετραγώνους ἢ πολυγώνους , γνώμονες καλοῦνται . τοσούτων δὲ μονάδων ἕκαστον τρίγωνον ἔχει πλευρὰς | ||
Ἐν Ἀλεξανδρείᾳ δὲ τῇ αὐτῇ ὥρᾳ ἀποβάλλουσιν οἱ τῶν ὡρολογίων γνώμονες σκιάν , ἅτε πρὸς ἄρκτῳ μᾶλλον τῆς Συήνης ταύτης |
ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
τῶν ἁρμονικῶν λέγουσι βαρύτατον μὲν τὸν ὑποδώριον τῶν τόνων , ἡμιτονίῳ δὲ ὀξύτερον τούτου τὸν μιξολύδιον , τούτου δ ' | ||
ἄλλο τι λεγόμενον συνημμένων , εὐθὺς τὴν ἑαυτοῦ τρίτην ἔχον ἡμιτονίῳ διεστῶσαν ἀπὸ τῆς μέσης , εἶτα μετὰ τόνον τὴν |
ἰσάκις γείνεσθαι [ , ἀλλ ] ' ἢ πλείων ? ἐλαττονάκις [ ] ? ? ? ἢ ἐλάττων ? [ | ||
τρίς , τὰ τοιαῦτα στερεὰ σχήματα πλινθίδες λέγονται ἰσάκις ἶσοι ἐλαττονάκις : ἐὰν δὲ καὶ μείζονα τὰ ὕψη τῷ τετραγώνῳ |
καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
Ϟ α πολυπλασιασθεὶς ποιεῖ δυ α . δυ ἄρα α ἑξαπλασίων ἐστὶν Ϟοῦ α . Ἑξάκις ἄρα τὰ ἐλάσσονα ἴσα | ||
, καὶ ὁ τετράγωνος ὁ λϚ αὐτοῦ τοῦ ἐλάσσονος ὁ ἑξαπλασίων ἐστί , καὶ πλευρᾶς αὐτοῦ ἑξαπλασίων . . Ὁμοίως |
καὶ διλοχίτης ὁ τούτου ἡγούμενος : οἱ δὲ τέσσαρες λόχοι τετραρχία , καὶ ὁ τούτου ἡγούμενος τετράρχης τεσσάρων καὶ ἑξήκοντα | ||
διλοχία καὶ πόσων ἀνδρῶν καὶ τίς ὁ διλοχίτης . Τί τετραρχία καὶ τίς ὁ τετράρχης καὶ ὁπόσων ἀνδρῶν . Τί |
εἰσι ταῦτα τὰ στοιχεῖα , μεταξὺ δὲ δύο στερεῶν δύο μέσοι ἀνάλογοι γίνονται . ἐν δὲ ταῖς Πολιτείαις ζητεῖ εἰ | ||
παρ ' Αἰολεῦσι τὸ μέσοι , γαίας καὶ νιφόεντος ὠράνω μέσοι : τῇδε ἔχει καὶ ἀπὸ τοῦ τηλόθι τὸ τήλοι |
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
τὸ ζῷον ὑλακτικόν ὑπάρχουσι δὲ καὶ ἕτεροι ἄνθρωποι πλείους , ὡρισμένοι μέντοι γε κατὰ τὸν ἀριθμόν : τίθεται γὰρ ἴδιον | ||
ἢ ἔμπαλιν ὁ μὲν α ἀόριστος οἱ δὲ τελευταῖοι β ὡρισμένοι . τὰ δὲ παραδείγματα τούτων τῷ βουλομένῳ γράψαι σαφέστατα |
τὸ ΓΕ μετρείτω . Ἐπεὶ οὖν τὸ ΑΖ τὸ ΓΕ μετρεῖ , ἀλλὰ τὸ ΓΕ τὸ ΖΒ μετρεῖ , καὶ | ||
. μετρείτω ὁ Γ . ἐπεὶ ὁ Γ τὸν Β μετρεῖ , ὁ δὲ Α τὸν Β οὐ μετρεῖ , |
μετ ' αὐτοὺς πεντάγωνοι , εἶτα ἐπὶ τούτοις ἑξάγωνοι καὶ ἑπτάγωνοι καὶ ἐπ ' ἄπειρον : προσαγορεύονται δέ , ὡς | ||
, μέχρις ἄν τις θέλῃ . οἱ δὲ τούτοις ἀκόλουθοι ἑπτάγωνοι τοὺς μὲν γνώμονας ἔχουσι πεντάδι μὲν διαφέροντας , τετράδι |
, Β οἱ ΓΔ , ΕΖ : λέγω , ὅτι ἰσάκις ὁ ΓΔ τὸν Α μετρεῖ καὶ ὁ ΕΖ τὸν | ||
ἔχον αὔξησιν τοιανδί , τουτέστιν ᾗ οὕτως ὑπερέχον , ἤγουν ἰσάκις : ποιότης γὰρ ὑπεροχῆς ἐστι τὸ ἰσάκις πολλαπλασιάζεσθαι . |
٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١ | ||
μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν |
, ἐπεὶ ὁ ἀπὸ ʂ β Μο α ⃞ος ἐστι ΔΥ δ ʂ δ Μο α , ἐὰν ὁμοίως ἀφέλω | ||
# ʂ β˙͵δφος : καὶ πάντων τὸ Δον . γίνεται ΔΥ α ΜΥ ρδ˙͵ηφος # ʂ ͵Ϛρμδ ἴσ . ⃞ῳ |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
μὲν οὖν ἐπὶ μονάδα αἱ ἀφαιρέσεις περαιωθῶσι , πρώτους καὶ ἀσυνθέτους αὐτοὺς ἀποφαίνουσι πρὸς ἀλλήλους , ὅταν δὲ ἐπὶ ἕτερόν | ||
ψεύστας , διαβόλους , ἐπιόρκους , βαθυπονήρους , ἐπιβουλευτικούς , ἀσυνθέτους , ἀδεξιάστους , νοθευτάς , γυναικῶν διαφθορέας καὶ παίδων |
ὅτι αὐτῷ , καὶ φανερὸν πεποιήκατε ὅτι οὐδ ' ἂν δεκάκις ἀποθάνῃ , οὐδὲν μᾶλλον κινήσεσθε . τί οὖν πρεσβεύετε | ||
τίκτουσι δὲ πᾶσαν ὥραν τοῦ ἔτους : διὸ δὴ καὶ δεκάκις τοῦ ἐνιαυτοῦ τιθέασιν , ἐν Αἰγύπτῳ δὲ δωδεκάκις . |
καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί | ||
δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν , |
' ἔφη τἀπόφθεγμα . Ἢ τρὶς ἓξ , ἢ τρεῖς κύβοι : ἐπὶ τῶν κινδυνευόντων : τὸ μὲν τρὶς ἓξ | ||
δὲ καὶ παροιμία , ἀεὶ γὰρ εὖ πίπτουσιν οἱ Διὸς κύβοι . βοῦς ἐπὶ γλώσσῃ μέγας ] παροιμία ἐπὶ τῶν |
ἑκάστῳ καὶ ὄνομα οἰκεῖον πρόσκειται . οἱ μέν γε δύο λόχοι διλοχία καλεῖται , ἐξ ἀνδρῶν δύο καὶ τριάκοντα , | ||
: ἤδη δὲ καὶ ἐς λόχους καταχωρισθέντων τῶν πεζῶν , λόχοι ἐνεβλήθησαν ἐναλλὰξ τῶν ψιλῶν . τὸν δὲ ἀριθμὸν τάξεώς |
δὴ τοσούτων εἶναι μονάδων τοὺς δύο πρώτους ἀριθμούς , οἵπερ διπλάσιοι ἔσονται τῶν λοιπῶν δύο , ὄντων δηλονότι καὶ αὐτῶν | ||
, ὀγδοήκοντα δὲ ἐκ Μυκηνῶν καὶ ἐκ Φλιοῦντος διακόσιοι , διπλάσιοι δὲ τούτων Κορίνθιοι : παρεγένοντο δὲ καὶ Βοιωτῶν ἑπτακόσιοι |
ΒΔ . Ποιοῦσι δὲ τὰ αὐτὰ καὶ οἱ ἰσάκις αὐτῶν πολλαπλάσιοι . Τὸ γὰρ ἀπὸ τῆς ΓΒ τετράγωνον καὶ τὸ | ||
ὁ ζη τῷ κν : οἱ γὰρ τοῦ αὐτοῦ ἰσάκις πολλαπλάσιοι ἴσοι ἀλλήλοις εἰσίν . ἔστι δὲ καὶ ὁ ηθ |
τοίνυν αὕτη διαφορά , δευτέρα δὲ ἐκείνη . λαβὲ πρῶτον ἑτερομήκη καὶ δεύτερον τετράγωνον καὶ τρίτον τετράγωνον καὶ δεύτερον ἑτερομήκη | ||
ἕτερον ἐπὶ δυοῖν λέγει : ὅθεν καὶ οἱ γεννῶντες τὸν ἑτερομήκη δύο τέ εἰσιν ἀριθμοὶ καὶ μονάδι ἀλλήλων διαφέροντες . |
οὓς κῆρες φορέουσι μελαινάων ἐπὶ νηῶν . ἀθετεῖται , ὅτι περισσός : ἐν γὰρ τῷ κηρεσσιφορήτους τὸ αὐτὸ συντόμως εἴρηκεν | ||
λοιπὸς ὁ ΓΑ ἄρτιός ἐστιν . Ἐπεὶ γὰρ ὁ ΑΒ περισσός ἐστιν , ἀφῃρήσθω μονὰς ἡ ΒΔ : λοιπὸς ἄρα |
εἰ γὰρ μή εἰσιν οἱ Ε , Ζ , Η ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α , Β | ||
Τοῖς μὲν οὖν πλησίον τῆς διακεκαυμένης καὶ πρὸς μεσημβρίαν οἰκοῦσιν ἐλάχιστοι γίνονται οἱ ἀρκτικοὶ διὰ τὸ καὶ τὴν ἔγκλισιν τοῦ |
ἀποκρίνασθαι ” μύριοί εἰσιν ἀριθμόν , ἀτὰρ μέτρον „ γε μέδιμνος : εἷς δὲ περισσεύει , τὸν ἐπενθέμεν οὔ κε | ||
ἀπομάκτρα , σκυτάλη , περιστροφίς , μαγίς , χοῖνιξ , μέδιμνος ἡμιμέδιμνος , ἑκτεύς , καὶ παρ ' Ἀλκαίῳ τῷ |
στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ | ||
οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος |
τοῦτο καὶ τὸ νόσημα χρονιώτερον γίνεται . καὶ ἑβδομαδικῶς μὲν ἀριθμοῦμεν μέχρι τῆς ὀγδοηκοστῆς ἡμέρας . ἀπὸ δὲ τῆς ὀγδοηκοστῆς | ||
ἡ μέλλουσα ἕτεραι . ἔπειτα ἀριθμὸς ὁ χρόνος οὐχ ᾧ ἀριθμοῦμεν , ἀλλ ' ὁ ἀριθμούμενος . * * * |
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
καὶ ὥρας κ , μοίρας δὲ ὁμοίως λδ λδ : συνάγονται δὲ καὶ τῆς μέσης κατὰ μῆκος παρόδου κατὰ τὸ | ||
οὗτοι ἐξ ὑποθέσεώς τέ εἰσι καὶ διά τινος τῶν σχημάτων συνάγονται . ἐξ ὑποθέσεως μὲν οὖν εἰσιν , ὅτι , |
. καὶ ὁσάκις μὲν ὁ Κ τὸν Μ μετρεῖ , τοσαυτάκις καὶ ἑκάτερος τῶν Θ , Η ἑκάτερον τῶν Ν | ||
συγκυρήματος : ὁσάκις γὰρ ἂν ἀστράψῃ Ζεὺς ἢ βροντήσῃ , τοσαυτάκις ἀπὸ τῆς ἀκρωρείας διὰ φόβον κυλίεται , καθὼς ἱστορεῖ |
θέλω ἴσους εἶναι Μο π : ἀλλ ' οἱ δύο συντεθέντες ʂ εἰσι δ καὶ Μο δ . ʂ ἄρα | ||
ἄρα ὁ αος ἔσται ʂ δ . καὶ οἱ τρεῖς συντεθέντες ποιοῦσι τὸν ἐπιταχθέντα ⃞ον , ΔΥ α ʂ β |
. Ἐπιτυχόντες δὲ τούτου , οὐκ ἐβούλοντο ἀπαλάσσεσθαι , ὡς συντιθέμενοι νύκτας καὶ ἡμέρας μένειν . Διὸ λέγεσθαι τοῦτο ἐπὶ | ||
, καὶ μένουσι νεαροί . ὁμοίως δὲ καὶ ἐν ἅλμῃ συντιθέμενοι διαμένουσιν . Ἀκμαίους τοὺς σικύους φυλάξεις , ἐὰν ἐν |
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
τῷ Ϛ : ἑξάκις γὰρ ϘϚ φοϚ καὶ ἑξάκις ρν ἐννακόσιοι . ὥστε ἡ εἰκοσιτεσσαράπους καὶ ἡ τριακοντάπους μήκει μὲν | ||
] πάντες πεζοὶ μὲν μύριοι καὶ ἑξακισχίλιοι , ἱππεῖς δὲ ἐννακόσιοι , οἱ δ ' Ἀντιγόνου χωρὶς τῶν ἐλεφάντων πεζοὶ |
ἐγκεφάλῳ ἐστὶ τὸ ἡγεμονικὸν εἴτε ἐν καρδίᾳ . Εἰ δὲ ὑπερβάλλοι εἴκοσιν ἡμέρας ὅ τε πυρετὸς ἔχων καὶ τὸ οἴδημα | ||
ὁ Θεὸς αὐταρκεστάτης ὕλης ὡς μήτ ' ἐνδέοι μήθ ' ὑπερβάλλοι . καὶ γὰρ ἄτοπον ἦν τοῖς μὲν κατὰ μέρος |
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
γένωνται , πάθεσιν ἀκαθάρτοις καὶ παρὰ φύσιν ἡδοναῖς χρήσονται . ἑξάγωνοι δὲ πρὸς ἀλλήλους τὴν αὐτὴν ἀποτελεσματογραφίαν τοῖς τριγώνοις ἔχουσιν | ||
πεντάγωνοι , ἐκ δὲ τῶν πενταγώνων καὶ τῶν τριγώνων οἱ ἑξάγωνοι , ἐκ δὲ τῶν ἑξαγώνων καὶ τῶν τριγώνων οἱ |
, οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
Ν ποιείτω . καὶ πάλιν ὁ μὲν Β τὸν Γ πολλαπλα - σιάσας τὸν Ξ ποιείτω , ἑκάτερος δὲ τῶν | ||
λόγον ἕξει . τὰ δὲ λόγον ἔχοντα πρὸς ἄλληλα δύναται πολλαπλα - σιαζόμενα ὑπερέχειν ἀλλήλων : καὶ κερατοειδὴς ἄρα πολλαπλασιαζομένη |
ἀφαιρέτης τῶν χρόνων γενήσεται , ἢ καὶ τὰ ἐλάχιστα ἔτη μεριεῖ . ἔστι δὲ Ἡλίου μὲν ζῴδια τὰ ἀρρενικά , | ||
ἀγαθοδαιμονῶν ἢ καὶ ἐπί τινος χρηματιστικοῦ τόπου , τὰ τέλεια μεριεῖ . οὐκ ἄρα ἀφελεῖ τις ἀπὸ τῆς ὥρας ἢ |
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
γὰρ πέντε κε . καὶ ὁ λ ἄρα τοῦ κε ἐπίπεμπτός ἐστιν , ὡς ἔχει ἡ ΑΒ πρὸς τὴν ΒΓ | ||
γὰρ πέντε κε . καὶ ὁ λ ἄρα τοῦ κε ἐπίπεμπτός ἐστιν , ὡς ἔχει ἡ ΑΒ πρὸς τὴν ΒΓ |
, οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
: καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : | ||
: καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : |
ἐπισημασιῶν καὶ ταῖς ἀνα - βάσεσιν ἐπί τε τροφῇ προσφάτως εἰλημμένῃ . καὶ πρὸ ὕπνου δὲ μέλλοντος ἁρμόδιος ἡσυχία . | ||
ποσὸν ποσῷ ποιὸν ποιῷ λάβοιμεν τὴν ἀντικειμένην τῇ ὡς ἀποφάσει εἰλημμένῃ καταφάσει , οἷον τῇ ἐνδέχεται μηδενί τὴν ἀνάγκη τινί |
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος , | ||
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ |
ᾖ ὁποσαοῦν μεγέθη καὶ ἄλλα αὐτοῖς ἴσα τὸ πλῆθος , σύνδυο λαμβανόμενα καὶ ἐν τῷ αὐτῷ λόγῳ , καὶ δι | ||
εἰς τὸ ὦ . ὁ χορὸς δὲ γυναικῶν ἐκ τῶν σύνδυο πεποιημένος αὐτῷ ἐστιν ἔμμετρος ἅμα καὶ μεμελοπεποιημένος τόνδε τὸν |
παραθέντες τὸν τῶν δέκα πληροῦμεν ἀριθμόν , τοῦτον δὲ τῷ τριακονταπέντε συνθέντες ποιήσομεν τὸν τεσσαρακονταπέντε , καθ ' ὅν φασι | ||
τριακοντατέσσαρα ὁ τριακοντατρία , τοῦ δὲ τριακοντατέσσαρα καὶ τριακονταὲξ ὁ τριακονταπέντε , ὡς μεταξὺ τριακονταδύο καὶ τριακοντατέσσαρα γίνεσθαι δύο διαστήματα |
ἐλαίῳ καὶ ποιῶ φλόγα . παρὰ τούτῳ κεῖται καὶ τὸ ἐλᾳδίου κοτύλη . ὅτι Θίμβρων ἔνδοξος μάγειρος παρὰ Φιλοστεφάνῳ . | ||
ἅλμης ἀκμήν , εἰς ἣν ἂν ἐμβάψαιτο πᾶς ἐλεύθερος : ἐλᾳδίου κοτύλη τε παραναλωμένη σέσωκέ μοι τρίκλινα πεντήκοντ ' ἴσως |
πλευρᾶς σκη τριακοσιοστοεξηκοστοπρώτων . Ὁμοίως καὶ ↑ τῶν ἑκατὸν Ϙβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων καὶ αὐτῶν εἰς ἑξακισμύρια ἐννακισχίλια τριακόσια ιβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα | ||
Ἔσται ὁ μὲν πρῶτος , ἐπεὶ ιβ δυ , ρϘβ τριακοσιοστοεξηκοστοπρώτων , ὁ δὲ δεύτερος , ἐπεὶ δυνάμεων ἑπτά , |
μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ ι ρ καὶ τετράκι ι μ , δεκάκι | ||
ἀποβολὴ τοῦ ς ἐγένετο , ὡς ἐν τῷ πολλάκι καὶ δεκάκι , καὶ τὸ χωρίς ἀποβάλλον τὸ ς ἐγίνετο χῶρι |
ἄρα νομεὺς ἀγαθὸς τούτων , καὶ οἱ τούτου νόμοι καὶ διανομαὶ ἐπὶ ταῦτα ὀρθαί εἰσιν ; Ναί . Τίς δὲ | ||
ταῦτα ἐξαίρετα παρ ' ἐμοῦ ὑπῆρξεν ἄν , αἱ μὲν διανομαὶ κατὰ μῆνα ἕκαστον δραχμαὶ τῷ μὲν ἀστῷ ἑκατόν , |
ΙΑ πρὸς ΑΜ , διὰ τὴν ὁμοιότητα τῶν τριγώνων . τέσσαρες ἄρα αἱ ΔΑ ΑΚ ΑΙ ΑΜ ἑξῆς ἀνάλογόν εἰσιν | ||
τῶν ἄκρων ἴσος ᾖ τῷ ὑπὸ τῶν μέσων , οἱ τέσσαρες ἀριθμοὶ ἀνάλογόν εἰσιν : ἔστιν ἄρα ὡς ὁ Ε |
οἰκείου κλίματος χρόνοις ἀναφορικοῖς , κατὰ δὲ τὴν τοῦ μεσουρανήματος ἰσάριθμον τοῖς χρόνοις τῶν μεσουρανημάτων , κατὰ δὲ τὰς ἀπὸ | ||
οἱ ὀδόντες , ἀνεστήκασι δὲ αἱ κεφαλαί , ζητοῦσι δὲ ἰσάριθμον θήραν . μαντεύομαι οὖν ἐγὼ καὶ Ὅμηρον βούλεσθαι λέγειν |
αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν | ||
ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς |
εἰ γὰρ θέλομεν δύο ἐπογδόους εὑρεῖν , λαμβάνομεν τὸν δεύτερον ὀκταπλάσιον : τίς δὲ ὁ δεύτερος ; ὁ ξδ . | ||
τὴν πόλιν . πατούμενοι ] ὑβριζόμενοι , θλιβόμενοι . Γ ὀκταπλάσιον χέζομεν : πολλῷ πλείονα , ἵν ' ᾖ τὸ |
τῆς πόρτας . . τελευταῖος . . . ἰάμβων . προυσχόμην ] ἐλάμβανον . , ἔξω ἔμπροσθέν μου ἐκράτουν . | ||
οὐκ ἔφθης φράσας , κἀγὼ λαβὼν θύραζε ἐξέφερον ἂν καὶ προυσχόμην σε . σὺ δέ με νῦν ἀπάγχων , βοῶντα |
. ἐπὶ δὲ τοῦ βʹ λήμματος ὁ ἑκατὸν τοῦ εἴκοσι πολλαπλάσιός ἐστι κατὰ τὸν ε , καὶ ὁ κ τοῦ | ||
Γ πολλαπλάσιον εἶναι . ἐπεὶ γὰρ ὁ Β τοῦ Γ πολλαπλάσιός ἐστι , μετρεῖ ἄρα ὁ Γ τὸν Β . |
οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
, μικρότερα δὲ καὶ λιπαρώτερα καὶ ἐρυθρά : θάμνος δὲ σπιθαμιαῖος , εὔστομος , δριμύς , εὐώδης . Κότινος , | ||
ῥίζαν δὲ πολυσχιδῆ καὶ βαθεῖαν . Ὀρεοσέλινον : καυλός ἐστι σπιθαμιαῖος εἷς ἐκ ῥίζης λεπτῆς , περὶ δ ' αὐτὸν |
ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ | ||
. Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν |
τῶν εʹ : γίνονται ρπʹ . Ἐὰν δὲ Τόσοι πόδες εὐθυμετρικοὶ πόσοι πήχεις εὐθυμετρικοί ; ποίει τὸ ἀνάπαλιν . Ἐὰν | ||
καὶ ὧν ἥμισυ γίνεται ρνʹ . Ἐὰν δὲ Τόσοι πόδες εὐθυμετρικοὶ πόσοι πήχεις εὐθυμετρικοί ; τὸ ἀνάπαλιν ποίει : δὶς |
ἦσαν τὰ ἐπίπεδα , ὡς ἐδείχθη . Πάλιν οὖν ἄνωθεν ἑτερομήκης ἀριθμὸς λέγεται , οὗ ἐπιπέδως σχηματογραφηθέντος τετράπλευρος μὲν καὶ | ||
τῆς εἴλης τετράγωνον ᾖ , ὁ ἀριθμὸς τῶν ἱππέων γίνεται ἑτερομήκης . Δοκεῖ δὲ τὸ ῥομβοειδὲς σχῆμα ἀναγκαιότατον παρειλῆφθαι : |
καὶ ἐνδεχόμενα , ἔτη νομιζέσθω : ἐὰν δὲ πολλά , μῆνες : ἐὰν δὲ ὑπέρμετρα , ἡμέραι . ἀναστρέφει δὲ | ||
θʹ : Ἡλίου ἔτη ιθʹ , τὸ τέταρτον ἔτη δʹ μῆνες θʹ . Ἀφροδίτης ἔτη ηʹ , τὸ τέταρτον ἔτη |
τῶν δ ' ἀμφισβητούντων πρὸς ταύτας τὰς ζημίας αἱ κρίσεις ἔστωσαν ἐπὶ τοῦ δήμου . τοῦτον τὸν νόμον ἐπιψηφίσαντες οἱ | ||
στερεὰ παραλληλεπίπεδα ἀνάλογον ᾖ , καὶ αὗται ἀνάλογον ἔσονται . ἔστωσαν ὁσαιδηποτοῦν εὐθεῖαι ἀνάλογον ἡ ΑΒ , ΓΔ , ΕΖ |
ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα | ||
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ |
ἐστὶ τὸ α ιγ ν οὐδὲν μβ ιε , καὶ παραβάλῃς αὐτὸ πρὸς τὴν ΑΒ καὶ ἐκβάλῃς ἀπὸ τοῦ ἀπὸ | ||
ὑπὲρ ἐλαίας κοπτομένης , ὑπὲρ ληΐου δῃουμένου ; Ἐὰν δὲ παραβάλῃς τῷ στρατιωτικῷ τούτῳ τὰ ὕστερα , εὑρήσεις μὲν πλείστους |
δὲ ἡ μονὰς κατὰ τὸν ἕνα θεόν : πᾶς γὰρ ἀριθμὸς νεώτερος κόσμου , ὡς καὶ χρόνος , ὁ δὲ | ||
γὰρ ἄλλα πάντα τὸν ἀριθμὸν φαίνεται μιμούμενα , ὁ δὲ ἀριθμὸς παρ ' ἑαυτοῦ ἀρχὰς μονάδα καὶ δυάδα . ὡς |
, ὁμοίως δέ : ὅταν μὲν γὰρ αἱ προτάσεις ὦσιν ἄρτιαι , οἱ ὅροι περισσοί , ὅταν δὲ αἱ προτάσεις | ||
τούτῳ ἑπόμενα παραδίδωσιν , ὅτι τοῦ κατηγορικοῦ τοῦ προσεχοῦς συλλογισμοῦ ἄρτιαι μὲν αἱ προτάσεις , περιττοὶ δὲ οἱ ὅροι : |
ἢ ἐλλείποι : εἰ μὲν οὖν ὑπεραίροι , οὐκ ἂν ἐκλείποι ὅλος , ἀλλὰ παραλλάττοι αὐτοῦ τὸ ὑπεραῖρον . εἰ | ||
ἐλέγχων ἀπαίτησις κοινά ἐστιν ἀμφοτέρων , ἄν τε γὰρ πρόσωπον ἐκλείποι , εὑρεθήσεται παραγραφικὸν , καὶ ἐλέγχων ἀπαίτησις , εἴγε |
ρξβ . δῆλον οὖν , ὅτι ὁ Α τοῦ Β ὑφημιόλιός ἐστι καὶ οὐ μετρεῖ αὐτόν . ὁμοίως καὶ οἱ | ||
ὁ β τοῦ γ κοινῶς μὲν ὑποεπιμόριος , ἰδικῶς δὲ ὑφημιόλιός ἐστιν , ὡσαύτως δὲ ὁ γ τοῦ δ κοινῶς |
τῆς γῆς ἑξηκοστῶν μὲν λʹ σταδίων μυριάδων δὲ ιβʹ καὶ ͵Ϛ . καλοῦνται δὲ οἱ μὲν ἐπὶ τοῦ αὐτοῦ ἡμισφαιρίου | ||
ἀρχῆς στερεόν , αἱ ἄρα μυριάδες ρʹ ἐπὶ τὰς μονάδας ͵Ϛ γενόμεναι ποιοῦσιν μυριάδας ξʹ διπλᾶς , ὥστε ὁ ἐκ |
ὑπεροχάς . . Ἐπεὶ ὁ τρίτος καὶ ὁ τέταρτος δὶς λαμβανόμενοι μετὰ τοῦ πρώτου καὶ δευτέρου ἅπαξ λαμβανομένων ὑπερέχουσι τοῦ | ||
τῶν προτάσεων τὸ Δίων ἀληθεύει . ὅσον δὴ οἱ οὕτως λαμβανόμενοι τῶν ἐκείνως διαφέρουσι , τοσοῦτον καὶ οἱ κατηγορικοὶ συλλογισμοὶ |
πελειάδες ἀμφὶς ἕκαστον χρύσειαι νεμέθοντο , δύω δ ' ὑπὸ πυθμένες ἦσαν , ἀκουστέον οὐ πυθμένας δύο , ἀλλ ' | ||
γὰρ διπλασιεπιδιμεροῦς τρίτων ἐν πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ |