ὥστε κἂν αἴτιον ᾖ , τὸ δὲ αἰτιατόν , οὐ συμβεβηκότως ἐκεῖ τοῦτο , κατ ' οὐσίαν δέ . καὶ | ||
ἐναντίου , ἰδίως μὲν ὑπὸ μονάδος μετρεῖται ὅταν περισσακῶς , συμβεβηκότως δὲ ὑπὸ δυάδος , οὐ μὴν καθ ' ἑαυτήν |
εἴτε καὶ συνδιαφόρως εἴτε καὶ ἄκρατος εἴτε καὶ σὺν ᾡτινιοῦν ὁμογενεῖ : περισσὸς δὲ ἐκ τοῦ ἐναντίου , ἰδίως μὲν | ||
καὶ ξηροῦ : τριχῶς δὲ γίνονται , ὅταν ἢ ὁμογενὲς ὁμογενεῖ , ἢ παράλλαττον τῷ παραλλάττοντι , ἢ ὑγρῷ ὑγρὸν |
ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ | ||
ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη |
Τρία εἴδη εἰσὶ τῶν ὑδέρων , ἓν μὲν ὁ λεγόμενος ἀσκίτης , ὅταν ὥσπερ ὄγκῳ ὀγκῶται , ἐφ ' οὗ | ||
μάλιστα χειρουργοῖς . ἔστι γὰρ πολλάκις ὕδερος , καὶ οὗτος ἀσκίτης , ἐπὶ κατακλυζούσῃ ὑγρότητι , καὶ ἔδοξέ σοι χειρουργίᾳ |
πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
. Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
ἐπειδὴ λόγος μέν ἐστι δύο μεγεθῶν ἡ πρὸς ἄλληλα ποιὰ σχέσις : γίνεται δ ' αὕτη καὶ ἐν διαφόροις καὶ | ||
ἔστιν , ἐὰν δὲ προστεθῇ ἕτερος ὅρος , γίνεται μία σχέσις , ἐπειδὴ εἷς ἦν ὅρος ὁ προκείμενος . πάλιν |
ιβην , πανσέληνος δὲ περὶ τὴν διχομηνίαν : καὶ πάλιν ἀμφίκυρτος μετὰ τὴν διχομηνίαν , διχότομος δὲ περὶ τὴν κγην | ||
τοῦ Ἡλίου ἀποδιαστῇ μοίρας Ϙ ἐπὶ τετραγώνου πλευρᾶς ὑπάρχουσα . ἀμφίκυρτος δέ ἐστι πρώτη , ὅταν ἡ Σελήνη εἰς τὸ |
ἐστὶν ἀποστηματώδης ἐκ παχέων χυμῶν , ἐν τοῖς σαρκώδεσι τόποις συνιστάμενος , ἐπιεικὴς μὲν ὑπάρχων , ὅτε ἐν αὐτῷ μόνῳ | ||
τὸ πᾶν ἐστιν ὁ ἀήρ , καὶ οὗτος πυκνούμενος καὶ συνιστάμενος ὕδωρ καὶ γῆ γίνεται , ἀραιούμενος δὲ καὶ διαχεόμενος |
κατὰ τέτταρα ἥμισυ καὶ δϲʹʹ καὶ κα , τὸ δὲ τονιαῖον χρῶμα κατὰ Ϛ καὶ Ϛ καὶ ιη , τὸ | ||
, πλείω δ ' οὔ : ὁ γὰρ τὸ τέταρτον τονιαῖον ὁρίζων φθόγγος οὔτε τῷ τετάρτῳ διὰ τεσσάρων οὔτε τῷ |
, καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
ἰδέα οὐδέποτε ἥξει . Οὐ δῆτα . Ἄμοιρα δὴ τοῦ ἀρτίου τὰ τρία . Ἄμοιρα . Ἀνάρτιος ἄρα ἡ τριάς | ||
τοιούτοις . ἔοικε γὰρ ὁ γεωμέτρης πάντα ἀριθμὸν τὸν ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενον κατὰ ἄρτιον ἀριθμὸν ἀρτιάκις ἄρτιον ὀνομάζειν , |
γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε μηδαμῇ δύνασθαι μηχανὰς προσάγειν : ἔχει | ||
χολῶν , ὅταν ϲκευάζῃϲ φάρμακον ἐν ᾧ καὶ χολῆϲ τι περιέχεται . γίγνεται δὲ καὶ παρὰ τὸ χρώμενον τῇ χολῇ |
ἑκάτερον τῶν λίθων ἓξ ὀνόματα ἐγγλύφεται , διότι καὶ τῶν ἡμισφαιρίων ἑκάτερον δίχα τέμνον τὸν ζῳοφόρον ἓξ ἐναπολαμβάνει ζῴδια . | ||
οὐδὲν γὰρ τούτων περιφορὰ τοῦ παντὸς οὐρανοῦ , ἀλλὰ τῶν ἡμισφαιρίων καὶ μέρος τῆς ὅλης περιφορᾶς . πρὸς τούτοις δὲ |
♊ ♌ ♎ ♐ ♒ : ταῦτα καὶ ἑξάγωνα καὶ ἡμερινὰ καὶ ἀρσενικὰ καλοῦνται : ὁ δὲ ♉ καὶ ♋ | ||
τοῦ μεσημβρινοῦ γένωνται . καὶ τούτου δὲ δύο μέν ἐστιν ἡμερινὰ καὶ μὴ φαινόμενα , ὅταν τοῦ ἡλίου μεσουρανοῦντος ὑπὲρ |
οἰκεῖα πληρώματα ὁ νοῦς , ἐξ ὧν ὁ σύμπας ὁμοῦ συμπληροῦται , ἐπιδεὴς ἂν εἴη αὐτὸς ἑαυτοῦ , οὐ μόνον | ||
περιττοῦ φύσιν ἔχουσι : μὴν δὲ καθ ' ἑβδομάδας τέσσαρας συμπληροῦται , τῇ μὲν πρώτῃ ἑβδομάδι διχοτόμου τῆς σελήνης ὁρωμένης |
, ἡ δὲ ἐπ ' εὐθείας αὐτῇ ἐκτός . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , | ||
ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ κῶνος ἔσται . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , |
δὲ μοιράρχας εἰς τὰ ἑκατέρωθεν μέρη μέσον τῶν βάνδων τῶν κουρσόρων . ὥστε τὰ ἁρμόζοντα κεφάλαια ἑκάστῳ μοιράρχῃ καὶ ἄρχοντι | ||
διανομῆς τῶν ἐν τῇ παρατάξει ταγμάτων . Γʹ . Περὶ κουρσόρων καὶ δηφενσόρων . Δʹ . Περὶ πλαγιοφυλάκων καὶ ὑπερκεραστῶν |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
βραχεῖαι : ἡμίβραχυ γὰρ λαμβάνεται ἕκαστον τῶν συμφώνων πλὴν τῶν διπλῶν : ἤγουν τοῦ Ζ . Ξ . Ψ . | ||
, καὶ τότε τοῖς τῆς σκυτάλης ἄκροις ἢ τοῦ καυτηρίου διπλῶν καιριῶν μεσότητες ἢ βρόχων ἀνισοτόνων ἀγκύλαι περιτιθέσθωσαν ἀγόμεναι κάτω |
παρ ' οὐδέν . ὁ δ ' ὑπ ' αὐτὸν πεντάγωνος ὁ κβʹ σύστημα τοῦ ὑπὲρ αὐτὸν τετραγώνου τοῦ ιϚʹ | ||
ἐστιν , ὁ δὲ δ τετράγωνος , ὁ δὲ ε πεντάγωνος , ὁ δὲ Ϛ ἑξάγωνος , ὁ δὲ ζ |
γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων | ||
ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον , |
, ἀφ ' ὧν λαμβάνεται πᾶσα μεσότης , ἀριθμητική , ἁρμονική , γεωμετρική . τούτων ἡ μὲν ἴσῳ ἀριθμῷ ὑπερέχει | ||
τὸ ποιὸν ἀντὶ τοῦ περὶ τοὺς ὅρους . ἡ μέντοι ἁρμονική , ὡς περὶ ἑκάτερον ἔχουσα , διὰ τοῦτο τῶν |
οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ | ||
ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους |
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
ἐστιν , ἀλλ ' οὐκέτι ἐπαληθές , ὅτι πᾶς τρίγωνος ἑξάγωνός ἐστιν . τὸ μὲν γὰρ αὐτῶν κοινότερον , τὸ | ||
ἐστιν , ἀλλ ' οὐκέτι ἐπαληθές , ὅτι πᾶς τρίγωνος ἑξάγωνός ἐστιν . τὸ μὲν γὰρ αὐτῶν κοινότερον , τὸ |
τοῦ περιτοναίου τε καὶ τῶν ἐντέρων διειληφότα τόπον , τοὺς τυμπανίας διατείνει ὕδρωπας , τυμπάνου δίκην δηλαδὴ συνεξογκοῦντος ἐν ταῖς | ||
, ἐφ ' οὗ παρακέντησιν παραλαμβάνομεν : δεύτερος ὁ λεγόμενος τυμπανίας , ὅταν πνεύματος γέμῃ ἡ γαστὴρ μᾶλλον , δῆλος |
στοχασμὸς ἐκ μόνων προσώπων οὐκ ἔστι κατά γε ἐμέ , διπλοῦς δὲ ἔστι . πρῶτον δὲ περὶ τοῦ τελείου διπλοῦ | ||
παριέντες ἑτέρου ἐπιδέσμου . ἀρχαὶ κατ ' ἐπιγαστρίου καὶ συντελεῖται διπλοῦς βουβωνίσκος τῶν κάτω παρειμένων ταινιδίων πτυσσομένων ὡς ἐπὶ τοῦ |
Μεσσήνην . . . . . . . διδόασι . τριμερὴς δὲ ἡ τῶν Ἡρακλειδῶν διαίρεσις . οἱ μὲν γὰρ | ||
δὲ γεοῦχοι . Ὧν κατὰ μέσην τὴν χώραν ποταμὸς διαφέρεται τριμερὴς μὲν τῇ φύσει , ψῆγμα δὲ χρυσοῦ κατάγων , |
νέμεσις οὐ διαφέρουσιν . φθόνος ἡ νέμεσις , νέμεσις ὁ μερισμός . ἀφθόνητος οὖν ὁ μὴ φθόνον καὶ μερισμὸν καὶ | ||
εὐμαθέστεροι γενήσονται . εὐμάθειαν δὲ ποιεῖ προέκθεσις , ἀνανέωσις , μερισμός . προέκθεσις μέν ἐστιν , ὅταν ἃ μέλλει τις |
ὄντα καὶ γυμνωθέντα τῶν πώρων , λιθώδη μὲν ὄντα καὶ ἀπόλυτα τῶν σωμάτων ἀναβολέως ἢ λιθούλκου καμπῇ κομιζέσθω , καὶ | ||
ὡς ἔφην , μεμηχανημένον καὶ τῇ συμπεριπλοκῇ τῶν πραγμάτων . ἀπόλυτα γὰρ καὶ ἐντελῆ πάντα ποιήσει , καὶ τὸ πρῶτον |
βροτοὶ ἐμβαλόντες ἀνεφρυάξανθ ' : Ἱππαπαῖ , τίς ἐμβαλεῖ ; Ληπτέον μᾶλλον . Τί δρῶμεν ; Οὐκ ἐλᾷς , ὦ | ||
ἡμέραν χρώμενος ἕως αὐξηθῶσι , καὶ θαυμάσεις τὴν ἐνέργειαν . Ληπτέον τὴν οἰνάνθην ἀπὸ τῆς ἡδὺν οἶνον φερούσης ἀμπέλου , |
ἡ Μακεδονικὴ φάλαγξ ἐν τούτοις παρετάσσετο . Τί παρέχει ὁ οὐραγός . Περὶ τῶν ψιλῶν : πῶς αὐτοὺς δεῖ τετάχθαι | ||
καὶ ὅταν τέλος ἡ σκηνὴ ἔχῃ , ἐξάγει μὲν ὁ οὐραγός , ἔφη , ὁ τοῦ τελευταίου λόχου τὸν λόχον |
' ἑκάστῳ τῶν ῥυθμίζεσθαι δυναμένων . . . Τῶν δὲ ῥυθμιζομένων ἕκαστον οὔτε κινεῖται συνεχῶς οὔτε ἠρεμεῖ , ἀλλ ' | ||
καὶ σχῆμα ἐκλήθη : ὅ τε ῥυθμὸς ὡσαύτως οὐδενὶ τῶν ῥυθμιζομένων ἐστὶ τὸ αὐτό , ἀλλὰ τῶν διατιθέντων πως τὸ |
μὲν οὖν ὁ ἀνὴρ κατέχει πήχεις τέσσα - ρας , πεπυκνωμένος δὲ κατέχει πήχεις δύο , συνησπικὼς δὲ κατέχει πῆχυν | ||
τὰ πάντα καταλέξω . σοφός τις ἐκ τῶν παλαιῶν ῥήτωρ πεπυκνωμένος , Ῥητόριος Αἰγύπτιος οὕτως ὠνομασμένος , πρὸς ἐπιστήμην ἔμπειρος |
γωνία ὀρθή . καὶ λο πὴ ἡ ὑπὸ ΚΕΑ γωνία περιεχομένη ὑπὸ τοῦ ἑπομένου τμήματος τοῦ ζῳδιακοῦ καὶ τῆς βορείας | ||
παρὰ τῆς ἐπὶ τῆς βάσεως γωνίας , ὑπὸ τριῶν ἐπιπέδων περιεχομένη , τὴν κατὰ κορυφὴν ὑπὸ τεττάρων συγκλειομένη , ὥστε |
καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
ἐπὶ τῆϲ κεφαλῆϲ φύονται . πολλῷ μὲν οὖϲι θερμοτέροιϲ τῶν εὐκράτων μέλαιναί τε καὶ πολλαὶ καὶ οὖλαι καὶ ἰϲχυραί , | ||
ἐκκενοῦϲθαί τι τῶν ἔνδον περιττωμάτων . ἀλλὰ γὰρ ἀπὸ τῶν εὐκράτων ἀρκτέον . διὰ παντὸϲ μὲν οὖν ὑγραίνει τὰ εὔκρατα |
: ὀνομάζεται δὲ τὸ μὲν πρόταξις , τὸ δ ' ὑπόταξις , τὸ δὲ προσένταξις : ἔστι δ ' ὅτε | ||
διαστήματα τῆς φάλαγγος ἐντάσσειν , ἄνδρα παρ ' ἄνδρα . ὑπόταξις δέ ἐστιν , ἐάν τις τοὺς ψιλοὺς ὑπὸ τὰ |
γίνεται . Τόνος δὲ λέγεται τετραχῶς : καὶ γὰρ ὡς φθόγγος καὶ ὡς διάστημα καὶ ὡς τόπος φωνῆς καὶ ὡς | ||
τἀναντία συνισταμένῃ : ὅτε γὰρ τῷ διὰ τεσσάρων τινὸς βαρύτερος φθόγγος τῷ διὰ πέντε τοῦ ὁμοφώνου αὐτῷ κατὰ τὸ βαρύτερον |
κἀν τῇ τῶν μερῶν τὰ μὲν μήκει ἡμίση δυνάμει μὲν τεταρτημόρια , στερεῷ δὲ ὀγδοημόρια , τὰ δὲ μήκει τρίτα | ||
δὲ Ἑρμοῦ περὶ παῖδας ἐπτοημένους . λέγομεν δὲ νῦν ἀπηλιωτικὰ τεταρτημόρια ἐπὶ μὲν τοῦ ἡλίου τὰ προηγούμενα τοῦ τε ἀνατέλλοντος |
ἕωθεν κατὰ τῶν τεσσάρων μερῶν τοῦ τόπου , ἔνθα ἡ συμβολὴ γίνεται , ἀπὸ δύο ἢ καὶ τριῶν μιλίων ἐν | ||
τάξις καβαλλαρικὴ πεπυκνωμένη καὶ ἀδιάσπαστος ἀκολουθοῦσα : ἡ ἐκ χειρὸς συμβολὴ ἤτοι συμπλοκή : ἔφοδοι νυκτεριναὶ ἀσφαλῶς γινόμεναι , ἐφ |
ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
πρῶτοι ἀριθμοὶ καὶ οὐ καθ ' αὑτοὺς οἱ κοινῷ μέτρῳ μετρούμενοι τῇ μονάδι , κἂν ὑπ ' ἄλλων τινῶν ἀριθμῶν | ||
μὴ μετρούμενοι ὅλως πρῶτοι καὶ ἀσύνθετοι , οἱ δὲ ἅπαξ μετρούμενοι πρὸς μὲν ἑαυτοὺς σύνθετοι , πρὸς δὲ ἀλλήλους ἀσύνθετοι |
πρὸς μονάδας , ταῖς αὑτοῦ χώραις καταλαμβάνει τοὺς ταῖς γραμμαῖς περιεχομένους : ὁ δ ' ἐν οἰκείᾳ μὲν γινόμενος οὐδέποτε | ||
μόνη δίαιτα τελείαν παρασχεῖν θεραπείαν καὶ μεταβαλεῖν τοὺς ἐν αὐτῇ περιεχομένους χυμούς . εἰ δὲ ἐξ ὅλου τοῦ σώματος ἐπιρρεῖ |
τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ | ||
εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ |
οἷον ῥίζῃ τῆς ἀπάτης : μία γὰρ ὁμολογουμένως αὕτη καὶ ὡρισμένη : ἀπατώμεθα μὲν γὰρ τὸ ἀγαθὸν καὶ βλαβερὸν ἢ | ||
αἴτιον ὡς ἀρχή : θέλει γὰρ ἡ ἀρχὴ τοῦ πράγματος ὡρισμένη εἶναι , τὸ δ ' ὡρίσθαι πέρατός ἐστι . |
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
θαλάσσῃ σκύλλονται καὶ σύρονται καὶ ἐσθίονται πρὸς τῶν ἀναύδων καὶ ἀφώνων παίδων τῆς ἀμιάντου , δηλαδὴ θαλάσσης . οὐ γὰρ | ||
κατὰ μίαν συλλαβὴν συνεκφερόμενα : ἡμιφώνων τε πρὸς ἡμίφωνα καὶ ἀφώνων καὶ φωνηέντων πρὸς ἄλληλα συμπτώσεις , αἳ διασαλεύουσι τοὺς |
καὶ οἱ λοιποί . λέγονται οὕτως ἐκεῖνοι μὲν πρῶτοι καὶ ἀσύνθετοι , ἐπειδὴ ὑπὸ μόνης τῆν μονάδος μετροῦνται , ἐπεὶ | ||
ὡσαύτως καὶ ὁ λθ καὶ ὅμως οὐκ εἰσὶ πρὸς ἀλλήλους ἀσύνθετοι , πρὸς δὲ ἑαυτοὺς σύνθετοι : ἀμφότεροι γὰρ ὑπὸ |
δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
ἐλαίῳ . Ἡ δὲ δι ' ἐχιδνῶν θηριακὴ Ἀνδρομάχου συνεχῶς λαμβανομένη ἐν τοῖς διαλείμμασι , δυσαλώτους ἀποδείξει ἐν τοῖς παροξυσμοῖς | ||
οὖσα ἔδεσμα , καὶ ὡς ἐν φαρμάκου χρήσει τὸ πλέον λαμβανομένη : ἄλλως δὲ ἄθετος , πάνυ τε ὀλιγότροφος οὖσα |
περιεχόμενον ὑπὸ δύο φθόγγων ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις | ||
οἱ τοῦ διὰ τεσσάρων ὅροι σύμφωνοι : ἀπὸ δὲ τοῦ ὀξυτέρου αὐτῶν λαμβάνεται φθόγγος σύμφωνος ἐπὶ τὸ ὀξὺ διὰ τεσσάρων |
εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
σχισθέντος γὰρ ἑνός τινος γίνεται δύο : οὐ τοίνυν οὔτε σύνοδος οὔτε σχίσις τὰ δύο , ἵν ' ἂν ἦν | ||
ἀποσπασθὲν ἑκάτερον ἑκατέρου . Μιμοῦνται δὲ καὶ ἐκκλησίαι καὶ πᾶσα σύνοδος ὡς εἰς ἓν τὸ φρονεῖν ἰόντων : καὶ χωρὶς |
] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
, οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
ἁπλῆ τίς ἐστι κατηγορία , ἡ δὲ τῶν πρός τι σύνθετος , ῥᾷον δὲ τὰ ἁπλᾶ μανθάνομεν τῶν πολυσχεδῶν ; | ||
καὶ ὁ τῇδε ἵππος ἐκ τῶν τῇδε φύσεων ἀνομοίων οὐσῶν σύνθετος ᾖ . πάντα γὰρ ταῦτα κωμῳδοῦντός ἐστι μᾶλλον ἢ |
. Συντεθέντων γὰρ σὺν δύο καὶ ὑπὸ τοῦ λοιποῦ τρὶς πολλαπλασιασθέντων , ἀποτελεσθήσονται ρπ ζʹ , ρν ζʹ , ρκ | ||
τοῦ τε τρίτου ὄντος τελείου καὶ τοῦ τετάρτου ὄντος γονίμου πολλαπλασιασθέντων καὶ συγκερασθέντων ἀποκυίσκεται . Τῶν οὖν ἐν τοῖς δώδεκα |
νῦν δὲ τῶν Λιβύων , ἣν δὴ μυθεύονται ῥινῷ βοὸς μετρηθῆναι . Ἐφεξῆς δὲ ἡ μικροτέρα Σύρτις τὸν ἄγαν ταχέα | ||
οὗ ἐλάττονα οὐχ οἷόν τε ὑπὸ τῶν δοθέντων δύο ἀριθμῶν μετρηθῆναι , οἷός ἐστιν ὁ ιε : τούτου γὰρ ἐλάττονα |
δὲ τοιαύτη τῶν ἐνεργειῶν ποικιλία καὶ τῶν πολλῶν ὑλικῶν δυνάμεων σύνθεσις οὐχ ὅπως θείας δημιουργίας τῷ παντὶ κεχώρισται , ἀλλὰ | ||
καὶ ἐπὶ τοῦ ἀριθμοῦ ἕξει , εἴπερ ἐστὶν ὁ ἀριθμὸς σύνθεσις μονάδων , ὥσπερ λέγουσί τινες : οὕτως γὰρ ἔσται |
ἀναλογεῖ τῇ ἐπιστήμῃ , ἡ δὲ τῇ πίστει καὶ τῇ παρωνύμῳ δόξῃ . ἀβουλήτως οὖν οἱ ῥήτορες καὶ οἱ τύραννοι | ||
τὴν γένεσιν αὐτὸς ἔσχε : διόπερ συμβαίνει αὐτῷ πρὸς τῷ παρωνύμῳ μέρει ἔτι καὶ ἑτερώνυμον ἢ ἑτερώνυμα κεκτῆσθαι , τὸ |
ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ . | ||
ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς |
φέρεται . τῇ δὲ αὐτῇ θεωρίᾳ ὑπ ' ἀμφοτέρων τῶν ἑξαγώνων τοῦ Ἡλίου ἡ Σελήνη παρατυχοῦσα ὑπὸ σύνδεσμον φέρεται . | ||
μὲν γὰρ πρῶτον ὀκτάεδρόν ἐστιν περιεχόμενον ὑπὸ τριγώνων δʹ καὶ ἑξαγώνων δʹ . τρία δὲ μετὰ τοῦτο τεσσαρεσκαιδεκάεδρα , ὧν |
μύξας ἐξιέναι δι ' αὐτῶν . εἰσὶ δὲ νευρώδεις καὶ χονδρώδεις , ἀντιληπτικοὶ ὀσμῶν : γίνεται δὲ καὶ δι ' | ||
δὲ στέαρ οὔτε πιμελὴν ἔχειν τοὺς ἰχθῦς τούτους διὰ τὸ χονδρώδεις εἶναι . ἰδίως δ ' ὁ ἀκανθίας τὴν καρδίαν |
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
δ ' αὐτῶν ὁ μὲν ἀρκτι - κός τε καὶ ἀειφανής , ὁ δὲ θερινὸς τροπικός , ὁ δ ' | ||
ἀνατολῶν . κύκλοι πέντε , ἀρκτικὸς ὁ καὶ βόρειος καὶ ἀειφανής , θερινὸς τροπικὸς ὅτε ὁ ἥλιος Καρκίνῳ , ἰσημερινὸς |
ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε παρυπάτη καὶ ἡ λιχανός , ἡ μὲν ἐπιτεινομένη ἡ δ ' ἀνιεμένη , | ||
. τὸ γὰρ δίτονον , ὅταν μὲν ὁρίζωσι μέση καὶ λιχανός , ἀσύνθετόν ἐστιν , ὅταν δὲ μέση καὶ παρυπάτη |
δὲ αὖ ἑκατέρα τριχῆ νενέμηται . ὃ μὲν γάρ τις ἐξελιγμὸς Μακεδών , ὃ δὲ Λάκων , ὃ δὲ Κρητικὸς | ||
πολεμίους , ἀσθενεστέρους δὲ τοὺς ἐξελίσσοντας . Ὁ δὲ Λακωνικὸς ἐξελιγμὸς τὸν ἐναντίον τούτῳ μεταλαμβάνει τόπον : μεταβάλλει γὰρ ἕκαστος |
τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις : | ||
ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ |
αὐξανομένη . πάλιν γὰρ μεταξὺ τοῦ Ϛ καὶ τοῦ ιβ ἑτερομηκῶν ὄντων ἀπόθου τὸν θ τετράγωνον : καὶ ἡ ὑπεροχὴ | ||
ἡ διαγώνιος ἔσται μόνων τετραγώνων , ἑκάστου παρασπιζομένου ὑπὸ δύο ἑτερομηκῶν κατά τε μῆκος καὶ πλάτος , ὡς κἀνταῦθα σῴζεσθαι |
ἀντιστροφὴν τῆς τῶν φυσιογνωμονούντων : ὅπου μὲν γὰρ μορφῆς ὑποκειμένης συνορᾶται βίος , ὅπου δὲ ἤθους θεωρουμένου τυποῦται μορφή . | ||
καὶ γὰρ Λαγωὸς ἐχόμενος καὶ ἄλλα θηρία παρ ' αὐτόν συνορᾶται Τοῦτο τὸ ἄστρον κοινόν ἐστιν ἀπὸ πράξεως γεγονὸς ἐναργοῦς |
ὅρους καὶ λεκτέον ὅτι ὁ μόνον ὑπ ' ἀρτίου περισσάκις ἀρτιοπέρισσος , ὁ δ ' οὐδέποτε μόνον θάτερον ἀλλ ' | ||
Εὐκλείδου ῥητὸν προεκθέμενοι περὶ αὐτῶν . λέγει γὰρ οὕτως : ἀρτιοπέρισσος ἀριθμός ἐστιν ὁ ὑπ ' ἀρ - τίου ἀριθμοῦ |
ὅπερ ἔδει δεῖξαι . Ἐὰν ἀριθμὸς μήτε τῶν ἀπὸ δυάδος διπλασιαζομένων ᾖ μήτε τὸν ἥμισυν ἔχῃ περισσόν , ἀρτιάκις τε | ||
τέτταρες ἔσονται ἢ ἄλλο τι πλῆθος τῶν ἀφ ' ἑνὸς διπλασιαζομένων : τοσαῦτα δὲ καὶ τὰ εἴδη . ἔστι δ |
ἐμὸς δοῦλος : καθὼς πρόκειται δέ , ἡ τοῦ ὀνόματος πρόταξις καὶ δύο ἄρθρων ἐστὶν δεκτική , ὁ δοῦλος ὁ | ||
παρεμβολὴ καὶ πρόσταξις καὶ ἔνταξις καὶ ὑπόταξις καὶ ἐπίταξις καὶ πρόταξις : ἑκάστου δὲ ὀνόματος τὴν σημασίαν διὰ συντόμων δηλώσομεν |
διαστήσῃ , τὸ τοιοῦτον ἔμβολον καλεῖται . ἐπὰν δὲ ἀντίστομος διφαλαγγία τὰ μὲν ἑπόμενα πέρατα συνάψῃ , τὰ δὲ ἡγούμενα | ||
εὐωνύμῳ , τοὺς δὲ οὐραγοὺς ἔσω τεταγμένους : ἀντίστομος δὲ διφαλαγγία , ἣ τοὺς μὲν ἡγεμόνας ἔχει μέσους τεταγμένους , |
ἀριθμούς . Γεγονέτω , καὶ ὁ διπλάσιος τοῦ πλήθους αὐτῶν μετρείσθω πρότερον ὑπὸ τετράδος , καὶ ὑποκείσθω ὑπὸ ἕκαστον τῶν | ||
, σύνθετός ἐστιν . μετρηθήσεται ἄρα ὑπὸ ἀριθμοῦ τινος . μετρείσθω ὑπὸ τοῦ Γ . ὁ Γ ἄρα τοῦ Β |
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν | ||
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα |
καὶ τρίτον γένος μελῳδίας ἐναρμόνιον , ἐπειδὰν ἀπὸ τοῦ βαρυτάτου φθόγγου κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον ἡ φωνὴ προελθοῦσα | ||
οἷον σφραγῖδα σφραγῖδι ἐπιβάλλων ἐναργῆ μᾶλλον καὶ εὔδηλον , οὐδενὸς φθόγγου ἀπεχόμενος , ἀλλὰ ἔμβραχυ ποταμῶν τε μιμούμενος φωνὰς καὶ |
ἀστραγάλων ἤ τινων ἄλλων ἐξετάζειν τὸν συμπαίζοντα πότερον ἀρτίους ἢ περισσοὺς κατέχει , ὡς καὶ Ἀριστοφάνης Πλούτῳ στατῆρσι δ ' | ||
ὑπάρχον καὶ ταὐτὸν ἀεί . γεννᾶται δὲ δυάδος τοὺς τάξει περισσοὺς μηκυνούσης , ἵν ' ἐπειδὴ δυάδι οἱ γνώμονες ἀλλήλων |
: καὶ ταῦτα οὖν κἂν ἑτερότητα ἔχωσι , πρὸς κοινώνυμον λεχθήσονται . καὶ ἐπὶ τῶν λοιπῶν ἀντιθέσεων ἀναλόγως νοητέον : | ||
ἢ ὡς ταὐτόν , καὶ ταῦτα φανερὸν ὡς ὅτι πολλαχῶς λεχθήσονται , ὅμως μέντοι γε πάντα ταῦτα ὑπὸ μιᾶς ἐπιστήμης |
. ἰστέον δὲ ὅτι ἐπὶ τῶν τριῶν ὁρισμῶν τρεῖς σχέσεις νοοῦνται : οἱ μὲν γὰρ δύο πρῶτοι τὴν ἀπὸ τοῦ | ||
ἔχει καὶ αὐτὸ λόγον , πλὴν ὡς συνεχῶν ποσῶν τμημάτων νοοῦνται καὶ οὐχ ὡς διῃρημέναι μονάδες . Τοῦτο ἴδιον τῶν |
: ἐπόπται , θεωρητικαὶ τῶν ἰδίων τέκνων , ἐπιόπται , θεωρηταὶ , ὡς βαϊοῦλοι , ἐπιτηρηταί . Οἷον δή : | ||
ἄλλοι καθ ' ἕνα ἕκαστον περιόδοις ἰδίαις κέχρηνται , αἵτινες θεωρηταὶ οὐ τοῖς τυχοῦσιν εἰσίν , ἀλλὰ τοῖς πεπαιδευμένοις : |
: περὶ κοινῶν μὲν ὡς ἐν τοῖς Φιλιππικοῖς , περὶ ἰδικῶν δὲ ὡς ἐν τοῖς ἐπιτροπικοῖς , περὶ μικτῶν δὲ | ||
ἀμφότερα καταγίνεται : καὶ γὰρ ὁ ῥήτωρ ποτὲ μὲν περὶ ἰδικῶν διαλαμβάνει , ὅταν τῷδέ τινι συνηγορήσῃ τῶν πολιτῶν ἢ |
ἐκ τῶν πέντε συγκείμενον κινεῖται , πάντως καὶ ἕκτου προσελθόντος ἀμεροῦς κινήσεται , ἰσχυροτέρων ὄντων τῶν πέντε παρὰ τὸ ἕν | ||
ὁ χρόνος εἴη διαιρετός , ἐν ᾧ κινεῖταί τι κατὰ ἀμεροῦς καὶ ἐλαχίστου , δῆλον ὡς ἐν τῷ μέρει τοῦ |
τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
πρὸς δὲ τὸν ἀπὸ τοῦ τετάρτου μέρους γενόμενος ἐν λόγῳ τριπλασίῳ συμφωνήσει διὰ πασῶν καὶ διὰ πέντε . ἐὰν δὲ | ||
τὴν ταὐτῷ λόγῳ ὑπερέχουσαν καὶ ὑπερεχομένην , οἷον διπλασίῳ ἢ τριπλασίῳ , ὡς γʹ Ϛʹ ιβʹ : ἁρμονικὴν δὲ τὴν |
, καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος καὶ ὁ ὑπεπίτριτος | ||
κ τὸ τρίτον αὐτῆς : ἀπὸ γὰρ τοῦ τρία ὁ ὑποτριπλάσιος παρωνόμασται . καὶ ποιῶ τὰ λ ἐπὶ τὰ κ |
Οἱ δὲ περὶ Ἀπολλόδωρον τὸν Ἀθηναῖον ὕστερον τῶν Ἰλιακῶν ἔτη σμʹ . Ἄλλοι μικρὸν πρὸ τῶν Ὀλυμπιάδων ἔτεσι υʹ ἐγγὺς | ||
ἐς διάκρισιν μʹ , ἐς μετάβασιν πʹ , ἐς ἔκπτωσιν σμʹ : οὐκ ἔστι καὶ ἔστι : γίνεται δὲ ἐν |
διαιρετὸς καὶ ἀδιαίρετος : ἐπὶ μὲν τῶν ἀύλων εἰδῶν παντάπασιν ἀδιαίρετος ὅ τε χρόνος καὶ αὐτὸς ὁ νοῦς , ὅταν | ||
ἀλλὰ μία ἐν ἑκάστῃ φύσει , πότερον ἀμέριστος αὕτη καὶ ἀδιαίρετος ἢ μεριστή τις καὶ πολυδύναμος . καὶ εἰ μὲν |
δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
ϲυνελθόντων εἰϲ ἕνα τῶν δύο παροξυϲμῶν ἢ εὐθέωϲ ἐξ ἀρχῆϲ ἀνακεκραμένων ἀλλήλοιϲ ἀμφοτέρων . ὅταν μὲν οὖν ὁ τριταῖοϲ ἐπικρατῇ | ||
ἕνα καιρὸν τῶν δύο παροξυσμῶν , ἢ εὐθέως ἐξ ἀρχῆς ἀνακεκραμένων ἀλλήλοις ἀμφοτέρων . ὅταν μὲν οὖν ὁ τριταῖος ἐπικρατῇ |