| , καὶ ἐπεζεύχθω ἡ ΑΖ . ἄξων ἄρα ἐστὶ καὶ συμβάλλει τῷ τέμνοντι ἐπιπέδῳ . συμβαλλέτω κατὰ τὸ Η , | ||
| κύκλου περιφερείας κέντρον ἔχοντος τὸ σημεῖον , καθ ' ὃ συμβάλλει τὸ μέγεθος τῷ ἐπιπέδῳ , ἴσον ἀεὶ τὸ ὁρώμενον |
| ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ . | ||
| Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ |
| , ὅτι καὶ ὡς ἐπὶ τὰ Ζ , Β ἐκβαλλομένη συμπίπτει . ἡ ΓΔ ἄρα ἐκβαλλομένη ἐφ ' ἑκάτερα συμπεσεῖται | ||
| ' ἐκ παθημάτων τὸ στόμα τῆς κοιλίας στενόν ἐστι , συμπίπτει μὲν τὰ ὅμοια , λυομένων δὲ τῶν παθῶν ἀνὰ |
| κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
| τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
| ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ | ||
| μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ |
| , ἡ δὲ ἐπ ' εὐθείας αὐτῇ ἐκτός . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , | ||
| ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ κῶνος ἔσται . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , |
| Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
| τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
| διαγομένη εὐθεῖα μήτε τὴν τομὴν τέμνῃ κατὰ δύο σημεῖα μήτε παράλληλος ᾖ τῇ ἀσυμπτώτῳ , συμπεσεῖται μὲν τῇ ἀντικειμένῃ τομῇ | ||
| κατὰ μῆκος τῆς φάλαγγος δεύτερον ζυγόν , καὶ ὁ τούτῳ παράλληλος ὑπ ' αὐτὸν τρίτον , καὶ τέταρτόν ἐστι τὸ |
| ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
| καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
| συμπίπτουσα τῇ ΗΑ κατὰ τὸ Κ , ἡ δὲ ΗΛ συμπίπτουσα τῇ ΒΚ κατὰ τὸ Μ . ἐπεὶ οὖν ἴση | ||
| ἀχθῇ πρὸς ὁποιανοῦν τῶν τομῶν , καὶ ταύτῃ παράλληλος ἀχθῇ συμπίπτουσα ταῖς ἐφεξῆς τρισὶ τομαῖς , τὸ περιεχόμενον ὑπὸ τῶν |
| ἀπὸ τοῦ Ε σημείου πρὸς τὴν γραμμὴν προσπέσῃ , τὴν ἀποτεμνομένην ὑπὸ τῆς γραμμῆς καὶ τῆς ΑΒ εὐθείας ἴσην ποιήσει | ||
| καθετικῶς ἐπὶ τὸ ὑποκείμενον ἐπίπεδον ἐνεχθεῖσα , καὶ τὴν ἐλαχίστην ἀποτεμνομένην ἀπὸ τῆς καθέτου μεταξὺ τῆς ἐπιφανείας καὶ τοῦ ἐπιπέδου |
| τῆς τῶν στρατηγῶν ἀθροίσεως : τέλος γὰρ τὸ τάγμα τὸ ὁποιονοῦν λέγεται εἴτε ἀρχόντων ἢ στρατηγῶν εἴθ ' ἑτέρων τινῶν | ||
| [ ἄν τι προσείποις ] [ ὀρθῶς οὐδ ] ' ὁποιονοῦν [ τι . Οὐκ ] ? εὐκαταφρόνητόν [ ] |
| ἐπέχουσα : τὸ δ ' ἑωθινὸν τῷ Ῥήνῳ ποταμῷ περιγραφομένη παράλληλον ἔχοντι τὸ ῥεῦμα τῇ Πυρήνῃ : τὸ δὲ νότιον | ||
| ἂν εἶεν καὶ οἱ ἀπὸ Μασσαλίας ἐπὶ τὸν διὰ Βορυσθένους παράλληλον , ὅς γε διὰ τῆς Κελτικῆς παρωκεανίτιδος ἂν εἴη |
| δὲ δύο γραμμαὶ ϲυνάπτουϲαι κατὰ θάτερον πέραϲ ὥϲτε γωνίαν ποιεῖν ἐμφερῶϲ ταῖϲ τοῦ Κ δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ | ||
| γενομένου τοὺϲ μὲν καθ ' ὅλον τὸ ϲῶμα γιγνομένουϲ ϲπαϲμοὺϲ ἐμφερῶϲ τοῖϲ τετανικοῖϲ θεραπεύϲομεν , τοὺϲ δὲ κατὰ μέροϲ , |
| Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
| δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
| Ἀριστοφάνης φησὶ καὶ παρὰ Ξενοφάνει : βάτραχος καὶ καθ ' ὑπερβιβασμὸν βράταχος καὶ βρόταχος . Ἡρωδιανὸς Περὶ παθῶν καὶ Ῥητορικόν | ||
| . Ἀλλόκοτον : τὸ ἀνόμοιον : ἀλλότοκον καὶ καθ ' ὑπερβιβασμὸν ἀλλόκοτον . ἢ παρὰ τὸ ἀλλαχοῦ κεῖσθαι καὶ μὴ |
| φέρεται τὰ Ξ , Χ σημεῖα , οἱ ΞΨ , ΩϚ : ὁμοία ἄρα ἐστὶν ἡ ΞΨ περιφέρεια τῇ ΩϚ | ||
| ἔχει ἤπερ ἡ ΡΟ πρὸς ΟΝ . καὶ συνθέντι ἡ ΩϚ πρὸς τὴν ϚΑʹ μείζονα λόγον ἔχει ἤπερ ἡ ΡΝ |
| τὰς πρακτικὰς τὸ πρακτικόν . Τούτων οὕτως ἐχόντων εἴπωμεν τὴν ὑποδιαίρεσιν τοῦ θεωρητικοῦ . καὶ ἐνῆν μὲν προτάξαι θάτερον θατέρου | ||
| αὐτοῦ καὶ τῶν κατ ' αὐτὸ ἀρετῶν ἤδη εἰρηκώς , ὑποδιαίρεσιν δὲ τοῦ λόγου ἔχοντος ποιεῖ καὶ φησί : Καὶ |
| , ἕως ἂν συναντήσῃ ἑνὶ τῶν προκειμένων ἀστέρων καθ ' οἱονδήποτε σχῆμα ἢ ἕως ἂν ἔξαλμα ποιήσηται ἀπὸ ζῳδίου ἐπὶ | ||
| . ἐν γὰρ ταῖς ἐπισήμοις ἑορταῖς ἐσπένδοντο οἱ Ἕλληνες πρὸς οἱονδήποτε εἶχον πόλεμον εἰς τὸν χρόνον τῆς ἑορτῆς . . |
| κατὰ τὴν ἀνατολικὴν πλευρὰν , καθ ' ἣν συνῆπται τῇ Βελγικῇ κατὰ τὸν Σηκοάναν ποταμὸν , ὡς εἶναι τοῦ μήκους | ||
| Ἰάτινον κγʹ μζʹ ∠ ʹʹ Μεθ ' οὓς πρὸς τῇ Βελγικῇ Οὐαδικάσιοι καὶ πόλις Νοιόμαγος κδʹ γʹʹ μϚʹ ∠ ʹʹ |
| ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν ΗΖ͵ πρὸς τὴν ΗϠ | ||
| Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν |
| καὶ ἔδειξε θανατηφόρον κλιμακτῆρα . ἐτῶν ιζ καὶ μηνῶν Ϛ ἔξαλμα πεποίηται ἀπὸ τοῦ Σκορπίου ἐπὶ τὸν Τοξότην καὶ ἔδειξεν | ||
| ἀπὸ Κρονίας νήσου οὕτω καλουμένη . Πολὺ γάρ ἐστι τὸ ἔξαλμα τῆς ἑτέρας σφαίρας , καὶ ἐν χειμῶνι μεταξὺ τῆς |
| ὑπάρχοντοϲ τοῦ ϲτομίου τὸ ἄκρον τῆϲ χειρὸϲ ὑψηλότερον ἀνατείνων εἰϲ ὑπόρρυϲιν τρέψειϲ τὸν κόλπον : ἐν δὲ τῷ μηρῷ τοῦ | ||
| διδόϲθωϲαν κατ ' ἀναλογίαν τοῦ μεγέθουϲ ἐν τοῖϲ καθ ' ὑπόρρυϲιν τόποιϲ : οὐ δεῖ δέ , ὡϲ ἐπὶ ἀποϲτημάτων |
| Ἴσαρος συμβολῶν πρὸς τὸν Ῥοδανόν : ἐνταῦθα δὲ καὶ τὸ Κέμμενον συνάπτει πως τῷ Ῥοδανῷ : μῆκος τὸ μέχρι δεῦρο | ||
| δὲ συμπίπτουσιν ὁ Ἴσαρ ποταμὸς καὶ ὁ Ῥοδανὸς καὶ τὸ Κέμμενον ὄρος , Κόιντος Φάβιος Μάξιμος Αἰμιλιανὸς οὐχ ὅλαις τρισὶ |
| κύκλου καὶ τοῦ ἰσημερινοῦ , πλείονα χρόνον ὑπὲρ τὸν ὁρίζοντα ἐνεχθήσεται τοῖς πρὸς μεσημβρίαν ἢ τοῖς πρὸς ἄρκτον οἰκοῦσιν . | ||
| ἄνωθεν ἀρχὴν μόνην ἀποτέμοις τοῦ μυός , ἐπὶ τὸ πέρας ἐνεχθήσεται , καὶ εἰ τὴν κάτω τελευτήν , ἐπὶ τὴν |
| ὡς ἀνωτέρω εἴρηται , περὶ τὸ ποσὸν τὸ καθ ' ἑαυτὸ καταγίνεται , ἡ δὲ μουσικὴ περὶ τὸ ποσὸν τὸ | ||
| , τὴν πρώτην αἴσθησιν ἑαυτοῦ λαβόν , εὐθὺς ὠικειώθη πρὸς ἑαυτὸ καὶ τὴν ἑαυτοῦ σύστασιν . φαίνεται δ ' ἔμοιγε |
| δύο σημείων τῶν Β Ε κλάσαι τὴν ΒΝΞΕ καθόλου τῇ δοθείσῃ εὐθείᾳ ἴσην τῶν κλασμάτων τὸ πλῆθος δοθὲν ἔχουσαν . | ||
| ΒΓ . Διὰ τοῦ δοθέντος ἄρα σημείου τοῦ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ παράλληλος εὐθεῖα γραμμὴ ἦκται ἡ ΕΑΖ |
| πόσθη διαμένει : ὅθεν ἐπὶ τούτων χρηστέον μετὰ τὴν ἐπιτομὴν λεπίδι σὺν μέλιτι : τήν τε γὰρ νομὴν ἵστησι καὶ | ||
| δὲ λεπίδος στομώματος δύναμίς ἐστιν ἡ αὐτὴ τῇ τοῦ χαλκοῦ λεπίδι καὶ πλύσις καὶ ἀπόθεσις ὁμοία : ἐν μέντοι τῷ |
| τῷ κατὰ τὰ αὐτὰ τῷ κόσμῳ φέρεσθαι καὶ καθ ' ὑπόλειψιν τοὺς πλάνητας ἡ Σελήνη ὑπάτη . ὁ μὲν γὰρ | ||
| αἵτινες διὰ τὴν ἐπὶ τὰ ἐναντία μετάπτωσιν τῶν σφαιρῶν ἢ ὑπόλειψιν αἱ αὐταὶ γίνονται ταῖς λ ξ διχοτομίαις τοῦ τε |
| . Ὅπωϲ δὲ μὴ ϲχῇ ἀχλὺν τὰ ὄμματα , ὅτε δύνουϲι καθ ' ὕδατοϲ τοῦ ψυχροῦ , μικρὸν ἀναβλέπειν : | ||
| , τὸ αὐτὸ ϲυμβαίνει : μηνὶ Δεκεμβρίῳ ι Ἔριφοι ἑῷοι δύνουϲι : μηνὶ Δεκεμβρίῳ κα Αἲξ ἑῷοϲ δύνει , ταραχὴ |
| σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν | ||
| τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν |
| μεγάλαις πράξεσι καὶ τὸ μέλλειν ἀεὶ τοῦ πράττειν καὶ τὴν ὑπέρθεσιν τῆς συντελείας προκρίνουσιν . ὃ καὶ τότε συνέβαινεν καὶ | ||
| , καὶ ἄλλα ἀνάγκη συνυπακούεσθαι πρὸς ἃ αὐτὸ τὴν ἑαυτοῦ ὑπέρθεσιν ἕξει , ἐφ ' ἃ λεγόμενον μέσην ἔχει πάντως |
| τι ἢ ἀπ ' ἄλλου τὸ αὐτό , οὐχ ἡ ἀντικειμένη , ἀλλ ' ἔσται ἐκείνης ἑτέρα , τοῦτο δέ | ||
| φερόμενον : ἡ γὰρ ὅλη φορὰ οὐθὲν ἧττον ἑκατέρα ἑκατέρᾳ ἀντικειμένη ἐπ ' ἄπειρον νοεῖται . Καὶ μὴν καὶ ἰσοταχεῖς |
| ἐφάψεται δὴ τῶν δύο τομῶν καὶ συμπεσεῖται τῇ ΓΒ . συμπιπτέτω κατὰ τὸ Λ , καὶ γινέσθω , ὡς ἡ | ||
| Ε τῇ Δ οὐ συμπεσεῖται . εἰ γὰρ δυνατόν , συμπιπτέτω κατὰ τὸ Δ , καὶ ἐπεζεύχθω ἡ ΒΓ καὶ |
| , ἤτοι περὶ τὰς τούτου διανοίας μόνας ἢ καθ ' αὑτὸ θάτερον τῶν μερῶν , ῥητὸν καὶ διάνοια γίνεται : | ||
| τὸ γὰρ κοῖλον , φησίν , αὐτὸ μὲν καθ ' αὑτὸ ληφθὲν κοινῇ μὲν καὶ συγκεχυμένως τὸ αὐτὸ δηλοῖ ἐπὶ |
| δὲ ἡ γῆ καὶ ὑποδέξεται τὴν Λαοδίκην ἤτοι ἐν φάραγγι πεσεῖται καὶ ἀποθανεῖται ἡ Λαοδίκη πότε ; ὅταν πορθῆται ἡ | ||
| Α τῇ ΑΒ πρὸς ὀρθὰς ἀπ ' ἄκρας ἀγομένη ἐκτὸς πεσεῖται τοῦ κύκλου . Μὴ γάρ , ἀλλ ' εἰ |
| ὀϲτέου κατὰ μέν τι μέροϲ εὐθεῖα , κατὰ δὲ τὸ πέραϲ μηνοειδήϲ : ἡ δὲ αὐτὴ καὶ καλαμηδὸν λέγεται . | ||
| ὑπαχθήϲεται καταρτιϲμῷ . τὸ δὲ πρὸϲ τὸν ὦμον διαρθρούμενον αὐτῆϲ πέραϲ οὐ πάνυ τι διεκπίπτει κωλυόμενον ὑπό τε τοῦ δικεφάλου |
| τῆς σκιᾶς καὶ οἱ τῆς σελήνης κύκλοι μέγιστοι . καὶ ἐκβεβλήσθω ἡ ΕΓ ἐπὶ τὴν περιφέρειαν τοῦ τῆς σκιᾶς κύκλου | ||
| παράλληλος ἤχθω ἡ ΒΗ , καὶ ἐπεζεύχθω ἡ ΗΓ καὶ ἐκβεβλήσθω ἐπὶ τὸ Θ : ἴση ἄρα ἐστὶν ἡ ὑπὸ |
| : ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ | ||
| χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου |
| τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
| συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
| διὰ τῶν ἐπιπέδων εὑρεῖν ἔστιν εὐθεῖαν ἴσην τῇ τοῦ κύκλου περιφερείᾳ χρησάμενον τοῖς ἐπὶ τῆς ἕλικος εἰρημένοις θεωρήμασιν . Σοφίας | ||
| πάλιν , ἐπεὶ ὁμοία ἐστὶν ἡ ΘΗ περιφέρεια τῇ ΠΝ περιφερείᾳ , ἐν ᾧ ἄρα χρόνῳ τὸ Θ ἐπὶ τὸ |
| δυσὶ ταῖς ΔΗ , ΗΖ ἴσαι εἰσίν , καὶ γωνίας ὀρθὰς περιέχουσιν , βάσις ἄρα ἡ ΑΘ βάσει τῇ ΖΔ | ||
| καὶ διὰ τοῦ Ζ ἐπὶ τὰ ἐναντία τῇ ΗΘ πρὸς ὀρθὰς γωνίας τῇ ΑΓ εὐθεῖα ἡ ΖΜΝ , ἐφ ' |
| , εἰς πνεύμονα ἀνανεύων , τῇ γλώττῃ καὶ τῷ στομάχῳ προσπέφυκεν , ἐρρίζωται δ ' ἐν μέσῳ τῷ πνεύμονι , | ||
| ἐδείξαμεν , καὶ οὐκ ἐξ ἐκείνων , οἷς τὸ σπέρμα προσπέφυκεν . Ἡρόφιλος δὲ ποτὲ μὲν καί τισιν τῶν γυναικῶν |
| . καὶ ἐπεὶ ταῖς μὲν πρὸ δύο ὡρῶν τῆς μεσημβρίας παράκειται Λέοντος ἀρχῇ παραλλάξεως μήκους # κδ , πρὸς δὲ | ||
| μέσον ἄρα τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΓΔ παράκειται πλάτος ποιοῦν τὴν ΖΜ : ῥητὴ ἄρα ἐστὶν ἡ |
| ὁ καθόλου τόδε τι σημανεῖ , εἴγε τῇ αἰσθήσει μὴ ὑποπίπτει ἀσώματος ὢν καὶ πλῆθος μᾶλλον πεποιωμένον † δηλοῦν † | ||
| συμμέτρων ὑγρῶν ἀποκριθέντων τῷ δακτύλῳ τῆς μαίας συνεχὴς ὑμὴν ἀκμὴν ὑποπίπτει , διαιρεθέντος δὲ τούτου πολλῶν ὑγρῶν ἀποκριθέντων ἀκολουθεῖ καὶ |
| τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
| προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
| , καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΓΔ πρὸς ὀρθὰς ἦκται ἐν τῷ ΓΝΔ ἐπιπέδῳ ἡ ΟΦ , ἡ ΟΦ | ||
| : τὸ μετεωρίζεσθαι καὶ ἐπαίρεσθαι καὶ γαυριᾶν : παρὰ τὸ ἦκται ἀκτός καὶ ῥῆμα ἀκτῶ , ἀφ ' οὗ ἀκταίνω |
| τῶν ζῳδίων κύκλου τὸ Ε , καὶ κέντρῳ τῷ Β γεγράφθω ὁ ἐπίκυκλος τῆς σελήνης ὁ ΖΗΘ , περιαγέσθω δ | ||
| πάλιν κέντρῳ τῷ Γ , διαστήματι δὲ τῷ ΓΒ κύκλος γεγράφθω ὁ ΔΚΒ , καὶ πάλιν κέντρῳ τῷ Α , |
| . οὕτως ἐστὶν ἡ Ἰβηρία περίκλυστος , ὅτι μὴ τῇ Πυρήνῃ μόνῃ , μεγίστῳ τῶν Εὐρωπαίων ὀρῶν καὶ ἰθυτάτῳ σχεδὸν | ||
| τῷ Κεμμένῳ ὄρει καὶ τὰ ὑπ ' αὐτῇ κείμενα τῇ Πυρήνῃ : τὸ μέντοι πλέον τἀντεῦθεν εὐδοκιμεῖ . ἐν δὲ |
| ὑγιὴς γίνεται ὁ ἄνθρωπος : ἢν δὲ ἐς τὴν φαρμακείην ἔρχηται εὐθὺ , ἀποῤῥήγνυται ἀπὸ τῆς ἕλμινθος , ὁκόσον δύο | ||
| ἐπὶ δὲ τῆς τῶν κρίκων παραβολῆς ἐκεῖνα παρατηρητέον , ὅπως ἔρχηται μὲν ἕκαστος διὰ τῶν εἰρημένων τεσσάρων σημείων , σχήματι |
| , τοῦτον ὀνομάζομεν ἐπεκτεταμένον τριταῖον . εἰ δὲ καθ ' ἑκάϲτην ἡμέραν παροξύνει μετὰ ῥίγουϲ εἰϲβάλλων ϲφοδροῦ , φέρει δὲ | ||
| ἐπιούϲῃ καταβάπτων εἰϲ τὸ ὑδάτιον τὸν κτένα χρῶ καθ ' ἑκάϲτην ἡμέραν . καὶ τὸ ϲπέρμα δὲ τῆϲ ἀλθαίαϲ ἐν |
| κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ | ||
| γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ |
| μεταξὺ γῆς καὶ οὐρανοῦ τεταμένην πέτραν , ἥτις αἰωρεῖται καὶ φέρεται μυρίαις στροφαῖς στρεφομένη καὶ προσηρτημένη χρυσαῖς ἁλύσεσιν ἄνωθεν ἐξ | ||
| γὰρ ὁ κόθορνος τὸ ὑπόδημα ἀμφοτέροις ἁρμόζει τοῖς ποσίν . φέρεται δὲ καὶ Προδίκου βιβλίον ἐπιγραφόμενον Ὧραι , ἐν ᾧ |
| τῶν πηγῶν τοῦ Ὤξου ποταμοῦ διὰ τῶν Καυκασίων ὀρῶν ἐκβαλλομένῃ μεσημβρινῇ γραμμῇ μέχρι πέρατος , οὗ ἡ θέσις ἐπέχει μοίρας | ||
| μὴ [ πρὸς ] ὀρθὰς δὲ τῇ διὰ Κασπίων πυλῶν μεσημβρινῇ , οὐδὲν ἂν ἐγίνετο πλέον πρὸς τὸν συλλογισμόν . |
| καὶ ὑδατῶδες περίττωμα . παράκεινται δ ' ἑκατέρωθεν τῇ κοίλῃ φλεβί , τῇ μικρῷ πρόσθεν εἰρημένῃ τῇ μεγίστῃ , μικρὸν | ||
| ἥπατος καὶ ἐπὶ τὰ κυρτὰ διαδοθέντος ἐπὶ τῇ κοίλῃ καλουμένῃ φλεβί , ἵν ' ὅπως δηλονότι καὶ τὸ αἷμα διαπορθμευεσθείη |
| ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
| ' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
| δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ | ||
| ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ |
| ἤτοι γε τῆς πληθοποιοῦ δυάδος . Οὐκοῦν ὅλην φέροντες τὴν οἱανδήποτε λεγομένην ἀντιδιαίρεσιν εἰς μίαν ἀνοίσομεν ἐκείνην ἀρχήν , τὴν | ||
| ἡττηθέντα διὰ παντὸς ὀχεύει . ἱστορεῖται δὲ ὅτι ἀλεκτρυὼν εἰσιὼν οἱανδήποτε θύραν ἐπικλίνει τὸν λόφον καὶ ὅτι τῆς ὀχείας ἑτέρῳ |
| πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
| τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
| χειμερίοιο τροπῆς κύκλος ἐστήρικται : ἑξείης δ ' ἐπὶ τῷ Νότιος πέλει , οὗ ῥά τε βαιὴν φράζεο μοῖραν ὕπερθε | ||
| ἐν ὥραις δυσὶ καὶ ἕκτῳ μέρει . Ὅταν δὲ ὁ Νότιος Ἰχθὺς δύνῃ , συγκαταδύνει μὲν αὐτῷ ὁ ζῳδιακὸς ἀπὸ |
| τὸ Α σημεῖον , βάσις δὲ ὁ ΒΓ κύκλος , τέτμηται ἐπιπέδῳ διὰ τοῦ ἄξονος , καὶ πεποίηκε τομὴν τὸ | ||
| ἡ ΖΗ : ἡ ΗΓ ἄρα ἄκρον καὶ μέσον λόγον τέτμηται τῷ Ε , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ |
| ἡ ἀπὸ τοῦ Θ κάθετος ἐπὶ τὸ ΔΕΖ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΣΤΥ ἐπιπέδου . καί εἰσιν ἴσαι αἱ | ||
| παραλληλογράμμου καὶ προσεκβαλλομένη μέχρι τοῦ ἑτέρου μέρους τῆς ἐπιφανείας δίχα τμηθήσεται ὑπὸ τοῦ παραλληλογράμμου . ἤχθω διὰ τοῦ Ε σημείου |
| : τὸ Η ἄρα σημεῖον κέντρον ἐστὶ τῶν κύκλων . ἀνεστάτω ἀπὸ τοῦ Η σημείου τῷ μὲν τοῦ ΓΔ κύκλου | ||
| . ἔστω δὲ ἡ δοθεῖσα γωνία πρότερον ὀρθή , καὶ ἀνεστάτω ἀπὸ τῆς ΑΒ ἐπίπεδον ὀρθὸν πρὸς τὸ ὑποκείμενον , |
| , πληρούσθω ἡ διαίρεσις τῇ τοῦ λιβάνου μάννῃ , καὶ διαμοτούσθω ὁ τόπος , καὶ μοτοφύλαξ ἐπιτιθέσθω οἴνῳ βεβρεγμένος , | ||
| πρὸς κόλλησιν . ὅταν δέ τι ἀντιβαίνῃ τῇ κολλήσει , διαμοτούσθω ἡ ἀναστολή , καὶ δι ' ὅλου ἡ πυοποιὸς |
| , ἐν ᾗ τὴν τροπὴν ἐποιήσατο πρὸς τῷ Ε , ἀνατελλέτω κατὰ τὸ Ζ , καὶ ἔστω , καθ ' | ||
| τῆς ἀρχῆς τῶν Διδύμων ἔγγιστα χρόνων ἰσημερινῶν ιζ , καὶ ἀνατελλέτω πρῶτον ἡ ἀρχὴ τοῦ Κριοῦ , ἵνα μεσου - |
| ΓΘΖ ἐστιν ἴση . ἡ δὲ ὑπὸ ΓΘΖ τῇ ὑπὸ ΔΘΗ ἴση : κατὰ κορυφὴν γάρ : καὶ ἡ ὑπὸ | ||
| Β τοῦ ΓΗΒ τριγώνου ἴση τῇ πρὸς τῷ Η τοῦ ΔΘΗ τριγώνου , ἡ δὲ πρὸς τῷ Β τῇ πρὸς |
| στηλῶν θάλατταν καὶ τὴν Ἐρυθρὰν καὶ ἔτι τὴν ταύτῃ γεγονυῖαν σύρρουν . Ἀλλ ' οὔτ ' εἰρηκέναι τοῦτό φησιν Ἐρατοσθένης | ||
| καὶ τὸ ψαύειν , ὥστε , εἰ ὕδατα εἴη , σύρρουν εἶναι θάτερον θατέρῳ . ἐγὼ μὲν οὖν δέχομαι τὸ |
| συντονοῦνται , φίλων κούφων δούλων , μονογενῆ δὲ τῇ ἰδίᾳ εὐθείᾳ , πτερά πτερῶν , ξυρά ξυρῶν , ὀστᾶ ὀστῶν | ||
| . Πρὸς ἄρα τῷ δοθέντι σημείῳ τῷ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ ἴση εὐθεῖα κεῖται ἡ ΑΛ : ὅπερ |
| , περιαιρετέον αὐτήν . Ἐκ γενετῆς ἐνίοις ἡ βάλανος οὐ τέτρηται κατὰ φύσιν , ἀλλ ' ὑπὸ τῷ κυνὶ καλουμένῳ | ||
| οὐδέν : ὅταν δὲ γένηταί τινι αὐτῶν παιδίον , οὐ τέτρηται τὴν πυγὴν οὐδὲ ἀποπατεῖ , ἀλλὰ τὰ μὲν ἰσχία |
| κεκλιμένοι . πάλιν , ἐπεὶ ἡ ἀπὸ τοῦ Ψ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς | ||
| ταπεινότατός ἐστιν . ἐπεὶ γὰρ ἡ ἀπὸ τοῦ Ϡ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς |
| παραληγόμενα σπάνιά ἐστι μονογενῆ ὄντα : οἷον , λύκος : κρίκος : Μύκος , ὄνομα ἔθνους . Εἰς κος λῆγον | ||
| , τὸ δὲ ῥάμμα κεχαλασμένον ἁμματιζέσθω , ἵνα φανῇ ὡς κρίκος . ταῖς δ ' ἑξῆς ἡμέραις παράγεται τὸ ῥάμμα |
| οὖν τῷ ἀπὸ τῆς ΚΗ τετραγώνῳ ἴσον παρὰ τὴν ΒΚ παραβέβληται ὑπερβάλλον τῷ ἀπὸ τῆς ΚΛ τετραγώνῳ , τὸ ἄρα | ||
| τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΜΖ ἴσον παρὰ τὴν ΓΜ παραβέβληται ἐλλεῖπον εἴδει τετραγώνῳ τὸ ὑπὸ τῶν ΓΚ , ΚΜ |
| διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
| τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
| προσπέσῃ ὄψις ἴσας ποιοῦσα γωνίας , αὐτὴ δι ' ἑαυτῆς ἀνακλασθήσεται . ἔστω ἔνοπτρον ἐπίπεδον τὸ ΑΓ , ὄμμα δὲ | ||
| παράλληλος ἤχθω ἡ ΖΗ . λέγω , ὅτι ἡ ΖΗ ἀνακλασθήσεται πρὸς ἴσην γωνίαν μεταξὺ τῶν Ε , Θ . |
| καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν | ||
| καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ |
| διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι | ||
| διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι |
| ἐκτὸς ἢ παραλλάξει ὡς τὸ ΓΗΔ , καὶ κύκλος κύκλον τέμνει κατὰ πλείονα σημεῖα ἢ δύο : ὅπερ ἐστὶν ἀδύνατον | ||
| ὡς ἀληθῶς τὰ πράγματα , ποτὲ δὲ ἀμφότερα , καὶ τέμνει καὶ δοκεῖ τέμνειν . κείσεται δὲ αὐτοῦ καὶ παραδείγματα |
| συνεχὲς εὑρεῖν , καὶ συμπεπληρώσθω τὸ ΑΒΓΛ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν ΑΒ ΒΓ τοῖς Δ Ε σημείοις | ||
| πλευρά . Ἑξαγώνου γὰρ ἡ ΔΒ ἄκρον καὶ μέσον λόγον τετμήσθω κατὰ τὸ Γ , καὶ ἔστω μείζων ἡ ΔΓ |
| , ὡς ἐπὶ τἀγαθὸν καὶ τὴν ἀρχὴν τὴν πρώτην , κείσθω διωμολογημένον καὶ διὰ πολλῶν δεδειγμένον : καὶ δὴ καὶ | ||
| . Καὶ ὁ μὲν κατὰ τὰς ἡλικίας λόγος ὧδέ πη κείσθω ἱκανῶς ῥηθείς νῦν δὲ καὶ περὶ τῶν λοιπῶν ῥητέον |
| : ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
| ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
| δὲ τοῦ κάμνοντοϲ πυρώϲαντεϲ δέκα καυτῆραϲ ἐμβαλοῦμεν , κατὰ τοῦ μέϲου ϲημείου πρῶτον τοὺϲ ἡλωτούϲ , εἶτα κατὰ τῶν πλευρῶν | ||
| ἐϲ τὸ ἴϲον , καὶ γλῶϲϲα μέϲφι τῶν ὁρίων τοῦ μέϲου , καὶ παρίϲθμιον ἕν , καὶ ἰϲθμόϲ , καὶ |
| δὴ λέγεται , ῥηθῆναι . Ποταμός ἐστι μέγας ἐν τῇ Ἀραβίῃ τῷ οὔνομα Κόρυς , ἐκδιδοῖ δὲ οὗτος ἐς τὴν | ||
| τόδε μὲν οὐκ ὄπωπεν , ὄπωπεν δὲ φοινικοβατέοντας ἢ ἐν Ἀραβίῃ ἢ ἐν Αἰγύπτῳ ἢ ἄλλοθί κου , οἶδε τὸ |
| , παραιτουμένη τὸ διωρισμένον καὶ πολύμορφον ἐν ἀρχῆς λόγῳ , συναίρουσα δὲ πάντα εἰς μίαν φύσιν μονοειδῆ , καὶ ταύτην | ||
| , παραιτουμένη τὸ διωρισμένον καὶ πολύμορφον ἐν ἀρχῆς λόγῳ , συναίρουσα δὲ πάντα εἰς μίαν φύσιν μονοειδῆ , καὶ ταύτην |
| τὰ ἐν ἀρχῇ . καὶ πρὸς τούτοις εἴ τις ὑμένα προσφύσει περὶ τὸν δάκτυλον , οὐδὲν ἧττον ἅμα τῇ θίξει | ||
| ῥεύσεται : ἢν δὲ αὐτὴν ἀφέλῃς τὴν κονδύλωσιν ἐν τῇ προσφύσει , οὐ ῥεύσεται . Ἢν μὲν οὖν οὕτω καθίσταται |
| ἀντὶ τοῦ ἡ καθέδρα τῶν Αἰακιδῶν ἡ καλῶς τῇ θαλάττῃ περιειλημμένη , ἤγουν ἡ Αἴγινα , ἔνθα ἐτελεῖτο τὰ Αἰάκεια | ||
| μέρους , ἀφ ' οὗ ποιούμεθα τὴν ἀνάβασιν , Μεσοποταμία περιειλημμένη δυσὶ ποταμοῖς , τῷ τε Εὐφράτῃ καὶ Τίγριδι , |
| γὰρ ὁ μὲν ὁρισμὸς μερικώτερός ἐστιν , ὁ δὲ ὅρος καθολικώτερος : εἴ τι μὲν γὰρ ὁρισμός , τοῦτο καὶ | ||
| καλῶς πάσχων καὶ ἀγαθὸν ἀνυμνηθεὶς ἀκούει λόγον . ἤτοι δὲ καθολικώτερος ὁ λόγος πρὸς τοὺς τῇδε τὴν ψυχὴν ἔχοντας , |
| ὥσπερ τινὶ βιαίῳ ῥεύματι , μικροῦ πρὸς ἑτέραν ὁδὸν μετωχετεύθη φερόμενος . ἐπανακτέον οὖν ἐπὶ Λιβύην τὸν λόγον . . | ||
| παιδεύσεως ἐπὶ τὴν αἴσθησιν , μεθ ' οὕτως ἀριπρεποῦς ἀξιώματος φερόμενος , συλλαβεῖν , καὶ τὸ νοούμενον ἐκ τῶν ἀρχαίων |
| οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ κα ἴσον ἐστὶ τῷ ὑπὸ τῶν ἐκ | ||
| μ παρὰ ῥητὴν τὴν οὖσαν τριῶν μονάδων ἤτοι τὴν ΓΔ παραβληθὲν πλάτος ποιεῖ τὴν ΕΔ ἤτοι μία θ ιϚ . |
| : καὶ κέντρῳ τῷ Η καὶ διαστήματι τῷ ἀπέχοντι αὐτοῦ σημείῳ ἐπὶ τῆς ΗΖ τμήματα οθʹ κύκλον γράψομεν τὸν ἐσόμενον | ||
| θρέψοντα προάγει , καὶ τὴν ἐκ τῶν θηρατῶν ἐπιβουλὴν διδάσκει σημείῳ τινὶ ἀτεκμάρτῳ , καὶ τῶν τόπων ὧν οὐ χρὴ |
| ἀπὸ τῶν ἐκτὸς εἰς ἄστυ κομίζειν , ὃ νῦν λέγουσιν σκαζειν . . . ἐν τῷ κάστρῳ εἰσάγειν . κάστρον | ||
| ἀπὸ τῶν ἐκτὸς εἰς ἄστυ κομίζειν , ὃ νῦν λέγουσιν σκαζειν . . . ἐν τῷ κάστρῳ εἰσάγειν . κάστρον |
| τμηθῇ παραλλήλῳ τῷ κύκλῳ , καθ ' οὗ φέρεται ἡ γράφουσα τὴν ἐπιφάνειαν εὐθεῖα , τὸ ἐναπολαμβανόμενον ἐπίπεδον μεταξὺ τῆς | ||
| ἰατρική , ὅταν ἡ φύσις ἐξασθενήσῃ , τὰ δὲ μιμεῖται γράφουσα καὶ πλάσσουσα παντοίας ζῴων καὶ φυτῶν ἰδέας . ὁμοίως |
| τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα | ||
| ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ |
| δὲ ἐπὶ τῆς ἑτέρας αὐτὴν λαβόντες τοῦ παραλληλογράμμου πλευρᾶς τῆς παραλλήλου τῇ κοινῇ αὐτῶν βάσει τὸ αὐτὸ ἀποδείξομεν . δύο | ||
| ἔρριψα . τὸ δὲ “ ἀνείλετο λαβοῦσα ” ἢ ἐκ παραλλήλου , ὡς τὸ “ ἁγνεύσας ἐκάθηρε ” καὶ “ |
| Ὑγείας ἐστὶν οὐκ ἀφανές . Κύθηρα δὲ κεῖται μὲν ἀπαντικρὺ Βοιῶν , ἐς δὲ Πλατανιστοῦνταἐλάχιστον γὰρ τῆς ἠπείρου ταύτῃ διέστηκεν | ||
| λεʹ γʹʹ μγʹ ∠ ʹʹδʹʹ Ἀρίμινον λεʹ μγʹ ∠ ʹʹγʹʹ Βοιῶν Γάλλων ὁμοίως Ῥουβίκωνος ποταμοῦ ἐκβολαί λδʹ ∠ ʹʹγʹʹ ιβʹʹ |
| μείζων ἐστὶν ἡ ΓΕ περιφέρεια τῆς ΕΔ περιφερείας . ὁ πόλῳ γὰρ τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος | ||
| φανερὸς μὲν ἀεὶ κύκλος γίνεται ὁ πόλῳ μὲν τῷ βορείῳ πόλῳ τοῦ ἰσημερινοῦ , διαστήματι δὲ τῷ τοῦ πόλου ἐξάρματι |
| τῇ εὐθείᾳ τὸ βάρος ὥστε ἠρεμεῖν : λέγω δὴ ὅτι ἐκβληθεῖσα ἡ ΑΒ εὐθεῖα συμπεσεῖται τῇ πρότερον ἐναπειλημμένῃ . εἰ | ||
| γενέσθαι . ὁμοίως δὲ καὶ ἀπὸ τῆς χολῆς , ἥτις ἐκβληθεῖσα καὶ ἀνατιναγεῖσα πρὸς τὸ τῶν πολεμίων μέρος ἧτταν τούτων |
| τοῦτον τῷ τῆς τρυγόνος κέντρῳ καὶ παραυτίκα θανάτῳ καθυποβάλλει . αἰγανέῃ : ἐν ἀκοντίῳ , κονταρίῳ , δόρατι καὶ ἀκοντίῳ | ||
| καὶ ἀκοντίῳ : αἰγανέαν νῦν τὸν κοντὸν εἶπεν : τῇ αἰγανέῃ τῇ δολιχήρεϊ : αἰγανέα κυρίως ἡ κώπη , ἡ |
| μὲν καρπὸν ἀπολέγων κινδυνεύειν τοῖς ὀφθαλμοῖς , τὴν δὲ ῥίζαν τέμνων ἐκπίπτειν τὴν ἕδραν . Φυλάττεσθαι δὲ καὶ τὴν κενταυρίδα | ||
| τοῦτο δὲ ὡς βυρσέα σκώπτει . ΓΘ ὑποτέμνων ] πλαγίως τέμνων καὶ οὐκ ὀρθῶς . μοχθηροῦ ] πολλὰ μοχθήσαντος καὶ |
| ἀλλήλων - κατὰ δύο τὰ Α , Β , οὐ συμβάλλουσιν ἀλλήλαις καθ ' ἕτερον : ὥστε ἡ ΛΖ ἑκατέραν | ||
| , καὶ ἀπὸ τοῦ Ζ σημείου , καθ ' ὃ συμβάλλουσιν αἱ εὐθεῖαι , ἐπὶ τὰ Β , Α , |
| εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
| ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
| , ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
| δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |