| δὲ τοῦτο , δύο εὐθεῖαι τὰ αὐτὰ πέρατα ἔχουσαι χωρίον περιέξουσιν : ὅπερ ἐστὶν ἀδύνατον : δύο γὰρ εὐθεῖαι χωρίον | ||
| εἰσιν οὐκ ἐν τῷ αὐτῷ ἐπιπέδῳ οὖσαι , ἴσας γωνίας περιέξουσιν . ἴση ἄρα ἐστὶν ἡ ὑπὸ ΕΘΗ γωνία τῇ |
| , ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ | ||
| πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , |
| ζῶον . καὶ εἰ ἄπειροι ἑκατέρωθεν , ἢ πᾶσαι πάσαις ἐφαρμόσουσι κἀντεῦθεν ἄπειροι δήπου καὶ ψυχαὶ τῷ ζώῳ ἐνέσονται , | ||
| ἐπίπεδά ἐστι σχήματα . Δῆλον , ὅτι ἐφαρμοζουσῶν τῶν εὐθειῶν ἐφαρμόσουσι καὶ τὰ πέρατα αὐτῶν , εἰ δὲ τοῦτο , |
| παραθέντες τὸν τῶν δέκα πληροῦμεν ἀριθμόν , τοῦτον δὲ τῷ τριακονταπέντε συνθέντες ποιήσομεν τὸν τεσσαρακονταπέντε , καθ ' ὅν φασι | ||
| τριακοντατέσσαρα ὁ τριακοντατρία , τοῦ δὲ τριακοντατέσσαρα καὶ τριακονταὲξ ὁ τριακονταπέντε , ὡς μεταξὺ τριακονταδύο καὶ τριακοντατέσσαρα γίνεσθαι δύο διαστήματα |
| πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα | ||
| Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ |
| κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ | ||
| γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ |
| αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν | ||
| ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς |
| κγʹ πρόβλημά ἐστι σύστασιν ἀπαιτοῦν γωνίας ἴσης ἄλλῃ δοθείσῃ γωνίᾳ εὐθυγράμμῳ πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ δοθέντι | ||
| τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ , |
| τῷ μήκει ἴσας ταῖς τοῦ τριγώνου πλευραῖς καθ ' ὕψος συννευούσας εἰς ἓν καὶ τὸ αὐτὸ σημεῖον , πυραμὶς ἂν | ||
| καὶ ἐπὶ τῶν περάτων αὐτῆς ἑστώσας πρὸς ὀρθάς , εἶτα συννευούσας εἰς τριγώνου γένεσιν , ὁρῶμεν , ὅτι , καθ |
| σημείῳ τότε τὴν σελήνην γινομένην ἐν τῷ δι ' Ἀλεξανδρείας παραλλήλῳ , καθ ' ὃν ἐποιούμεθα τὰς τηρήσεις , τὴν | ||
| οὕτως ἐστὶν τὸ ἀπὸ ΑΔ πρὸς τὸ ἀπὸ ΘΚ ἐν παραλλήλῳ : ὁ ἄρα μοναχὸς καὶ μέγιστος λόγος ἐστὶν ὁ |
| τὴν ἑαυτοῦ ἐπικράτειαν γενόμενον ἔφυγεν . . . σχάσαντα : τεμόντα . ἔλεγον σχάσαντα ἐκ τῶν βραχιόνων τὰς φλέβας λειποψυχήσαντα | ||
| ὁ μὲν Δολοβέλλας προύτεινε τὴν κεφαλὴν τῷ σωματοφύλακι αὑτοῦ καὶ τεμόντα προσέταξε φέρειν Κασσίῳ σῶστρον ἴδιον : ὁ δὲ τεμὼν |
| , οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
| ' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
| , τὸν δ ' ὑπὸ δεικήλοισι δυώδεκα παμφαίνοντα Ζωδιακόν : λοξοὶ δ ' ἐπαμοιβαδὶς ἐζώσαντο οὐρανὸν ἀμφότεροι δίχα τέμνοντές σφεας | ||
| . ἔτι δὲ ὁ τοῦ γάλακτος κύκλος καὶ ὁ ζῳδιακὸς λοξοὶ ὄντες πρὸς τοὺς παραλλήλους κύκλους καὶ τέμνοντες ἀλλήλους ἐν |
| καὶ ἡ ΑΕ τῇ Γ ἐστιν ἴση . Δύο ἄρα δοθεισῶν εὐθειῶν ἀνίσων τῶν ΑΒ , Γ ἀπὸ τῆς μείζονος | ||
| μείζων ἐστὶν τῆς ΕΒ ἡμισείας . ] Ἔστω δὲ νῦν δοθεισῶν τῶν ΖΒ ΒΓ τὴν μείζονα ἄκραν εὑρεῖν . Ἤχθω |
| , καὶ ἀπὸ τοῦ Μ σημείου , καθ ' ὃ τέμνουσιν ἀλλήλους οἱ κύκλοι , ἐπεζεύχθωσαν αἱ ΜΑ , ΜΒ | ||
| ἐπεὶ γὰρ ἐν σφαίρᾳ δύο κύκλοι οἱ ΩΒΓ , ΗΘΚ τέμνουσιν ἀλλήλους , διὰ δὲ τῶν πόλων αὐτῶν γέγραπται μέγιστος |
| ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , ὅ τε δ καὶ ὁ θ καὶ | ||
| τετράγωνον , ὃν δὲ πλευρὰν τοῦ τετραγώνου . Ἔστωσαν οἱ δοθέντες δύο ἀριθμοὶ ὅ τε σ καὶ ὁ ε : |
| . Κιμμερίου διὰ Βοσπόρου ] Πλησίον γάρ εἰσιν οἱ Κιμμέριοι κείμενοι παρὰ τὸν ἰσθμὸν , οὗ ἐστιν ὁ Ταῦρος : | ||
| ἐπὶ τὴν δεξιὰν , ποτὲ δὲ παρὰ τὴν ἀριστερὰν πλευρὰν κείμενοι καὶ κοιταζόμενοι , προνοούμενοι τοῦ συμφέροντος . φέρει : |
| ὅλου σὺν τῷ προσκειμένῳ καὶ ὁ ἀπὸ τοῦ προσκειμένου οἱ συναμφότεροι τετράγωνοι διπλάσιοί εἰσι τοῦ ἀπὸ τοῦ ἡμίσεος τετραγώνου καὶ | ||
| ἱππεὶς μὲν ἀμφὶ τοὺς πεντακισχιλίους , ὁπλῖται δὲ καὶ πεζοὶ συναμφότεροι δισμύριοι . ὁ δὲ Λογχάτης ἀγνοούμενος παρελθὼν ἐς τὸν |
| κύκλοι οἱ ΑΕΚΗΓΦΤ , ΒΖΛΘΔΥ ἑνὸς μὲν αὐτῶν τοῦ ΚΛ ἐφαπτόμενοι κατὰ τὰ Κ , Λ σημεῖα , τοὺς δὲ | ||
| γεγραμμένοι εἰσὶν κύκλοι μέγιστοι οἱ αβγʹ δβεγʹ ἑνὸς μὲν αὐτῶν ἐφαπτόμενοι τοῦ αδʹ , τὸν δὲ ηζθʹ τέμνοντες , καὶ |
| ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
| τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
| καὶ ὑφ ' ἡμῶν διχῶς . Ἔστω γὰρ κύκλου τοῦ ΚΛΘ περιφέρεια ἡ ΛΘ , καὶ δέον ἔστω τεμεῖν αὐτὴν | ||
| τοῦ ΔΖ , τὸ δὲ ΗΘ τοῦ ΖΗ καὶ ὁ ΚΛΘ κύκλος μείζων τοῦ ΚΛΔ . Ἐπὶ τὰ προβλήματα πάλιν |
| δὲ τῶν μὲν Ἑλλήνων ὥσπερ τροφέων ἐπιμελόμενοι , χεῖρά τε ὑπερέχοντες καὶ οἷον κειμένους ἀνιστάντες , τοὺς μὲν ἀρίστους καὶ | ||
| ὁ πίθων , οὕτω παρὰ τοῖς ἄφροσι καὶ κόλαξιν οἱ ὑπερέχοντες λέγονται σοφοὶ καὶ πάντα ἔχειν τὰ ἀγαθά : δεῖ |
| . ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
| κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
| τε πόλος ἐξαίρεται ὁ παρ ' ἡμῖν , καὶ οἱ ὁρίζοντες μεταπίπτουσι , καὶ ὁ ἄξων οὐδενὸς ἔτι διάμετρος γίνεται | ||
| προτιθέντες , ἐς δὲ τὸ ἑκατέροις που αἰεὶ ἡδονὴν ἔχον ὁρίζοντες , καὶ ἢ μετὰ ψήφου ἀδίκου καταγνώσεως ἢ χειρὶ |
| τῶν δ ' ἀμφισβητούντων πρὸς ταύτας τὰς ζημίας αἱ κρίσεις ἔστωσαν ἐπὶ τοῦ δήμου . τοῦτον τὸν νόμον ἐπιψηφίσαντες οἱ | ||
| στερεὰ παραλληλεπίπεδα ἀνάλογον ᾖ , καὶ αὗται ἀνάλογον ἔσονται . ἔστωσαν ὁσαιδηποτοῦν εὐθεῖαι ἀνάλογον ἡ ΑΒ , ΓΔ , ΕΖ |
| ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
| τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
| ἐπεζεύχθω ἡ ΗΘ . καὶ ἐπεί , ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ τῶν πόλων αὐτοῦ ἀγομένη εὐθεῖα | ||
| κύκλον ἐγγραφομένων . ὅπερ ἔδει δεῖξαι . Δωδεκάεδρον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν , ᾗ καὶ τὰ προειρημένα σχήματα , καὶ |
| ἐπειδὴ οὐδὲν δ ' ἕτερον πρόκειται νυνὶ ἰδεῖν μετὰ πόσους ἰσημερινοὺς χρόνους ἡ δοκοῦσα ἀναιρετικὴ μοῖρα παραγίνεται ἐπὶ τὸν τοῦ | ||
| αὐτοῦ γίγνεται τῶν προειρημένων ἡμικυκλίων , δεήσει λαβεῖν μετὰ πόσους ἰσημερινοὺς χρόνους καὶ τὸ ἑπόμενον τμῆμα τὰς ἴσας καιρικὰς ὥρας |
| αὐτοῦ τοῦ Φιλίππου τρισκαιδέκατον ἐπόμπευε θεοπρεπὲς εἴδωλον , σύνθρονον ἑαυτὸν ἀποδεικνύντος τοῦ βασιλέως τοῖς δώδεκα θεοῖς . τοῦ δὲ θεάτρου | ||
| καὶ ἴσως τὸ τοιοῦτο δόξει οὐκ ἀληθεύειν δεόμενον λόγου τοῦ ἀποδεικνύντος τὴν ἐν αὐτοῖς σύνθεσιν . φέρε γὰρ φάναι ὡς |
| δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
| διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
| διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι | ||
| διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι |
| , καὶ τοῦ Κήτους ὁ νοτιώτερος τῶν ἡγουμένων ἐν τῷ τετραπλεύρῳ . Ἀνατέλλει δὲ ὁ Προκύων ἐν τρίτῳ μέρει ὥρας | ||
| ἀριστερὸς πούς , ἔσχατος δὲ τοῦ Κήτους τῶν ἐν τῷ τετραπλεύρῳ ὁ βορειότερος τῶν ἡγουμένων . Ἀνατέλλει δὲ ὁ Λαγωὸς |
| δ τὴν Ϛ ἀπ ' αὐτῆς ἀναγράφεις τετράγωνον ἴσον τῷ παραλληλογράμμῳ . ἀλλ ' εἴτε τὸ τί ἐστι τετραγωνίζειν λέγοις | ||
| ΗΘ , ΕΚ , ΖΛ : καὶ τῷ μὲν ΑΘ παραλληλογράμμῳ ἴσον τετράγωνον συνεστάτω τὸ ΣΝ , τῷ δὲ ΗΚ |
| ληψόμεθα τὰς δύο μέσας ἀνάλογον ἐν τῇ συνεχεῖ ἀναλογίᾳ . ἐκκείσθωσαν γὰρ ταῖς ΕΔ ΔΖ ΔΜ ἴσαι αἱ ΕΔ ΔΖ | ||
| : ποδηγεῖ γὰρ πρὸς τὴν τοῦ ζητουμένου κατάληψιν . οἷον ἐκκείσθωσαν ταυταδὶ τὰ στοιχεῖα ἰσάριθμα ὄντα καὶ ἀναλογοῦντα τοῖς νοήμασι |
| τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις | ||
| τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον |
| ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
| περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
| κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
| γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
| νυκτερινή , τίς δὲ ἑσπερία , καὶ ποῖα τῶν δ τεταρτημορίων ἀρσενικά , ποῖα δὲ θηλυκά , καὶ τίνα μὲν | ||
| ἐπιγράφονται οἱ ἀριθμοὶ διὰ ε ἕως Ϙ ἐπὶ τῶν δ τεταρτημορίων , τουτέστιν ἀπὸ τῶν ἐσομένων κοινῶν τομῶν τουτέστιν τοῦ |
| , ἐπειδήπερ οἱ διὰ τῶν πόλων τοῦ ἑτέρου τῶν εἰρημένων γραφόμενοι μέγιστοι κύκλοι ἀνίσους ἀπολαμβάνουσιν ἐφ ' ἑκατέρου περιφερείας , | ||
| τῇ ΘΚ , καὶ οἱ διὰ τῶν Κ καὶ Η γραφόμενοι παράλληλοι ἴσον ἀπέχουσιν ἐφ ' ἑκάτερα τοῦ ἰσημερινοῦ , |
| ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ | ||
| ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν |
| , ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
| γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
| τοίνυν αὕτη διαφορά , δευτέρα δὲ ἐκείνη . λαβὲ πρῶτον ἑτερομήκη καὶ δεύτερον τετράγωνον καὶ τρίτον τετράγωνον καὶ δεύτερον ἑτερομήκη | ||
| ἕτερον ἐπὶ δυοῖν λέγει : ὅθεν καὶ οἱ γεννῶντες τὸν ἑτερομήκη δύο τέ εἰσιν ἀριθμοὶ καὶ μονάδι ἀλλήλων διαφέροντες . |
| κατὰ τοὺς κυνόδοντας ἐπῆρται , οἷς δὲ τὰ κατὰ τοὺς τομεῖς , κυνώδεις . Τῶν ἐρώντων ὑπάρχει σημεῖα τοιαῦτα : | ||
| τὰ αὐτὰ δὴ καὶ οἱ ΘΕΖ , ΘΖΜ , ΘΜΝ τομεῖς ἴσοι ἀλλήλοις εἰσίν . ὁσαπλασίων ἄρα ἐστὶν ἡ ΛΒ |
| ἐλαύνειν τοῖς πολεμίοις καὶ ἐπιθυμήσουσι τοῦ καλόν τι ἀκούειν καὶ δυνήσονται ἃ ἂν γνῶσιν ἐγκαρτερεῖν . ἐὰν δέ ποτε αὖ | ||
| καὶ δικαίοις περὶ τὸ πλῆθος τὸ ὑμέτερον , καὶ βουλόμενοι δυνήσονται εὖ ποιεῖν ὑμᾶς . Ἐγὼ οὖν ὑμῖν ὑπισχνοῦμαι ἢ |
| ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
| ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
| ἔργων πλουτήσαντα , σπεύδει καὶ αὐτὸς πλουτῆσαι . . ΕΙΣ ἙΤΕΡΟΝ ΓΑΡ . Τίς γὰρ χρῄζων ἔργου , ἰδὼν εἰς | ||
| τῆς ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ |
| , φῶς ἀγαθόν , σκότος κακόν , τετράγωνον ἀγαθόν , ἑτερόμηκες ἐναντίον ὡς μὴ ἰσόπλευρον . δέκα οὖν ὑπετίθεντο , | ||
| μὴ ταύτῃ μὲν κτλ . οὕτω γὰρ ἑτερόμηκες εἴη οἷον ἑτερόμηκες ἀναγραψώμεθα δὴ κτλ . τὸ ὅλον πόδες ιϚʹ τοῦδε |
| ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
| δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
| καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς τὸ ποιήσασθαί τινα κἂν μερικὴν | ||
| τῇ ὑπὸ ΗΖΑ γωνίᾳ : ὅλη ἄρα ἡ ὑπὸ τῶν ΕΖΓ ὅλῃ τῇ ὑπὸ τῶν ΓΖΗ γωνίᾳ ἴση ἐστίν : |
| ὃς σύγκειται ἐκ δύο τετραγώνων , μεταδιελεῖν εἰς δύο ἑτέρους τετραγώνους . Ἔστω τὸν ιγ , συγκείμενον ἔκ τε τοῦ | ||
| τρεῖς ἀριθμοὺς ὅπως ὁ ὑπὸ δύο ὁποιωνοῦν ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , |
| ἔσται μὲν μέση δίχα διαιρεθείσης τῆς ὅλης χορδῆς , καὶ ἀφέξει Ϛʹ ἑκατέρωθεν [ διαιρουμένη ] : ἡ δὲ ὑπάτη | ||
| αὐτῶν δʹ . ἡ δὲ ὑπερυπάτη ἀπὸ τῆς ἀρχῆς τρία ἀφέξει μεγέθη , ἀπὸ δὲ τῆς ὑπάτης ἕν : ἡ |
| ἄτμητον φυλαχθῆναι , τὴν δ ' ἐντὸς ἑξαχῆ τμηθεῖσαν ἑπτὰ κύκλους τῶν λεγομένων πλανήτων ἀποτελέσαι : ὃ γάρ , οἶμαι | ||
| λόγων κεκαθαρμένων καὶ πρὸς εὐθύτητα ἀπεξεσμένων , ἐμβεβλημένων δὲ ξύλοις κύκλους ἀποτελοῦσιν : οἱ δὲ κύκλοι ἐκ τοῦ ἐδάφους ἀρχόμενοι |
| τοῦ ἄξονος παραλληλόγραμμον τὸ ΘΛ , ἔσται καὶ ἐν τῷ κυλίνδρῳ τομή , ἧς διάμετρός ἐστιν ἡ ΖΕ . ὁμοίως | ||
| ἄρα ὁ ΑΒΖ κῶνος ἢ κύλινδρος τῷ ΓΔΘ κώνῳ ἢ κυλίνδρῳ : ὅπερ ἔδει δεῖξαι . Δύο κύκλων περὶ τὸ |
| ἡμᾶς ὀνειδίζοντι αὐτοὺς ἑαυτοῖς ἀντιλέγοντας καὶ οὕτω παρὰ πόδας ἄνω βαλλομένους κάτω ; εἰ γὰρ τούτῳ μὴ αἰσθάνεσθαι τῶν οἰκείων | ||
| καὶ σὺ ὁρᾷς , σχεδὸν τρία ἡμίπλεθρά ἐστιν ὃ δεῖ βαλλομένους διελθεῖν : τούτου δὲ ὅσον πλέθρον δασὺ πίτυσι διαλειπούσαις |
| τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
| τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
| καὶ τῆς ἰδίου οὐσίας δηλωτικὸν ἢ καὶ τὸν αὐτὸν τῷ προσκειμένῳ : οὕτως γὰρ αὐτῷ ὑπάρξει ὁ μείζων ἄκρος . | ||
| δυνα - τόν . Ἀλλ ' ὅταν μὲν ἐν τῷ προσκειμένῳ τῶν ἀντικειμένων τι ἐνυπάρχῃ . τὸν κανόνα παραδίδωσιν λοιπὸν |
| οἷον ἐπιδιμερῶν τὸν πέντε πρὸς τρία , εἶτα διπλασίους καὶ τριπλασίους τούτων καὶ ἐπ ' ἄπειρον , ἐπιτριμερῶν δὲ ἑπτὰ | ||
| ἐπὶ μιᾶς εὐθείας ἐφεξῆς τούς τε διπλασίους ἐκτάττων καὶ τοὺς τριπλασίους , πρῶτον μὲν ἰσχυρίζεται τῇ λεγομένῃ κατὰ μῆκος σχίσει |
| ἡ ΗΔ τῇ ΕΖ ἐστὶν ἴση : ἡ ΗΚ ἄρα συναμφοτέρῳ τῇ ΓΔ ΕΖ ἐστὶν ἴση [ ἡ δὲ ΔΖ | ||
| τῇ ΑΕ , ἡ δὲ ΚΗ τῇ ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ |
| δὴ μεταξὺ τούτων τῶν τετραγώνων πείπτοντες ἀριθμοί εἰσιν προμήκεις : ἀνισάκις [ ] γὰρ ἄνισοι , ὡς οἱ ? μεταξὺ | ||
| ? [ ] οὖν ἀνισάκις ? ? ἄνισοι [ ] ἀνισάκις σφηνίσκοι [ καλοῦνται ] . , οἱ [ δέ |
| καὶ οὐ τῆς σπείρας . ἀντεστραμμένων γὰρ αὐτῶν καὶ ὡσανεὶ παραλλήλως κειμένων ἡ οὐρὰ τοῦ Δράκοντος μεταξὺ αὐτῶν διὰ μήκους | ||
| Ζηνόδοτος μετέθηκεν ὡς ταυτολογοῦντος πρωτοπαγεῖς νεοτευχέες , ἀγνοῶν ὅτι ἐνίοτε παραλλήλως τάσσει τὰς ἰσοδυναμούσας λέξεις . . . Ν . |
| τετράκις δʹ ιϚʹ . οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομήκεις περιλαμβάνουσι κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους αὐτοὺς ποιοῦσι | ||
| πρὸς ἑαυτοὺς διαφορὰς τοὺς περισσοὺς μόνον ἔχουσιν , οἱ δὲ ἑτερομήκεις τοὺς ἀρτίους : ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη |
| ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα | ||
| ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν |
| μείζων ἐστὶν ἡ ΓΕ περιφέρεια τῆς ΕΔ περιφερείας . ὁ πόλῳ γὰρ τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος | ||
| φανερὸς μὲν ἀεὶ κύκλος γίνεται ὁ πόλῳ μὲν τῷ βορείῳ πόλῳ τοῦ ἰσημερινοῦ , διαστήματι δὲ τῷ τοῦ πόλου ἐξάρματι |
| ὑπεροχάς . . Ἐπεὶ ὁ τρίτος καὶ ὁ τέταρτος δὶς λαμβανόμενοι μετὰ τοῦ πρώτου καὶ δευτέρου ἅπαξ λαμβανομένων ὑπερέχουσι τοῦ | ||
| τῶν προτάσεων τὸ Δίων ἀληθεύει . ὅσον δὴ οἱ οὕτως λαμβανόμενοι τῶν ἐκείνως διαφέρουσι , τοσοῦτον καὶ οἱ κατηγορικοὶ συλλογισμοὶ |
| στίχῳ : τὸ δ ' αὐτὸ διάστημα ἐν τῷ κάτω στίχῳ εἰς ιεʹ ὥρας τοῦ τελείου ὅρου : ἔστι δὲ | ||
| στίχου μονάδος ὑπερέχει δυάδι : καὶ ἔστιν ἐν τῷ δευτέρῳ στίχῳ μεταξὺ τῶν γ καὶ τῆς μονάδος ὁ β . |
| ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
| ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
| κύκλος ὁ ΛΕΝ . Ἐπεὶ οὖν ἐν σφαίρᾳ δύο κύκλοι ἐφάπτονται ἀλλήλων ὅ τε ΑΕΒ καὶ ὁ ΓΕΔ , διὰ | ||
| τὸ Ζ , ἀλλὰ κατὰ τὸ Η . ἐπεὶ οὖν ἐφάπτονται αἱ ΒΔ , ΔΑ , καὶ ἐπὶ τὰς ἁφάς |
| δύναμιν διαρρέουσαν συνιστᾶσιν , εὐαισθησίας δὲ ποιητικοί : οἱ δὲ νοτιώτεροι συμπληρωτικοὶ κεφαλῆς καὶ τῶν αἰσθητηρίων ἀμβλυντικοί , κοιλίαν δὲ | ||
| γνωριζομένων : ἤδη δὲ τἀπέκεινα διὰ ψῦχος ἀοίκητά ἐστι . νοτιώτεροι δὲ τούτων καὶ οἱ ὑπὲρ τῆς Μαιώτιδος Σαυρομάται καὶ |
| χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα | ||
| ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ |
| ἐπιμορίου καὶ τῶν λοιπῶν εἰδῶν ἐν αὐτῶι , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί . τὸ μὲν | ||
| ἐξ ἀρχῆς βάθος τι προσκτωμένου : οἷον καθ ' ὑποδιαίρεσιν γραμμικοὶ μέν εἰσιν ἀριθμοὶ ἁπλῶς ἅπαντες οἱ ἀπὸ δυάδος ἀρχόμενοι |
| , καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἀγομένη ἐφάψεται τῆς τομῆς . ἤχθω γὰρ ἐφαπτομένη ἡ ΔΖ , | ||
| ἡ ἀπὸ τοῦ γενομένου σημείου ἐπὶ τὸ ληφθὲν σημεῖον ἐπιζευγνυμένη ἐφάψεται τῆς τομῆς . ἔστω παραβολή , ἧς διάμετρος ἡ |
| γραμμὴ συνθέουσα δηλονότι κινήσει . Ἀλλ ' αὕτη συνθέουσα πῶς μετρήσει τὸ ᾧ συνθεῖ ; Τί γὰρ μᾶλλον ὁποτερονοῦν θάτερον | ||
| ὑπὸ τῶν Α , Β μετρούμενος [ τὸν Ε ] μετρήσει . ἐλάχιστος δὲ ὑπὸ τῶν Α , Β μετρούμενός |
| ὡς ἄρα ἡ ΑΠ πρὸς ΠΔ , ἡ ΑΡ πρὸς ΡΒ : καὶ διελόντι ἄρα ἐστὶν ὡς ἡ ΑΔ πρὸς | ||
| καὶ τῇ ΒΔ ἴση ἡ ΒΕ . καὶ ἐπιζευχθεῖσα ἡ ΡΒ , ἐκβεβλήσθω ἐπὶ τὸ Θ , καὶ ἀπὸ τοῦ |
| ἢ συμβεβηκός , ἐνδέχεται καὶ διαφόρους μέσους λαβεῖν καὶ διαφόρους ἐλάττονας , κἀντεῦθεν συναγαγεῖν καὶ διάφορα συμπεράσματα . κατὰ σημεῖον | ||
| οἱ δὲ πορρωτέρω , καὶ διὰ τοῦτο ἢ πλέονας ἢ ἐλάττονας περιέπλευσαν σταδίους : τοῦ δὲ ἐπ ' εὐθείας γινομένου |
| καὶ τὸ θέατρον . καθάρσιον δὲ τοῦτο χοιρίδιον ἐκαλεῖτο . περίπολοι . ἔφηβοι περιῄεσαν τὴν χώραν φυλάττοντες , ὥσπερ μελετῶντες | ||
| ἐπειδὴ ἀπὸ ιηʹ ἐτῶν ἕως κʹ ἐγίνοντο οἱ στρατιῶται ὡς περίπολοι φύλακες , ἀπὸ δὲ κʹ λοιπὸν ἐξῄεσαν εἰς τοὺς |
| τε καὶ οἰκοδομικοὶ καὶ χαλκευτικοὶ καὶ οἱ τῶν ἄλλων τεχνῶν πλάσσονται ἀπὸ ὀξυτέρου ἄκρου διαδύνειν ἀρχόμενοι καὶ αἰεὶ μᾶλλον πλατυνόμενοι | ||
| πρόεισιν ἐπ ' ἄπειρον . καὶ ἀπὸ τούτων δὲ ἄλλοι πλάσσονται κατὰ τὸν αὐτὸν λόγον , περὶ ὧν οὐκ ἀναγκαῖον |
| . ἐὰν τὰ στελέχη τῶν ἀμπέλων κισσῷ δασεῖ περιδήσωμεν , εὑρεθήσονται μετ ' ὀλίγον οὐ μόνον οἱ μύρμηκες , ἀλλὰ | ||
| γὰρ οὐδέν ἐστι παρὰ τὰ γένη καὶ τὰ εἴδη , εὑρεθήσονται ἐκ τοῦ μηδαμῇ μηδαμῶς ὄντος προελθοῦσαι αἱ διαφοραὶ ἐν |
| καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
| δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
| μακροῦ ὄντων , ἐπαρθεὶς ὁ στρατηγὸς αὐτῶν , ὅτι καὶ πενταπλάσιοι τῶν πολεμίων ἦσαν οἱ σφέτεροι , τήν τε παρεμβολὴν | ||
| τὸν ε οὕτως ὡς ὁ ε πρὸς τὴν μονάδα : πενταπλάσιοι γὰρ ἀμφότεροι . Καὶ διὰ τοῦτο ὅσων ἐστὶν ἡ |
| ' ἂν γένοιό γ ' ἀθλιωτάτη γυνή . ἴτω : περισσοὶ πάντες οὑν μέσωι λόγοι . ἀλλ ' εἶα χώρει | ||
| μὲν οὖν ἄρτιον δεῖ εἶναι , ὅπως ἴσοι ἐνῶσιν οἱ περισσοὶ καὶ ἄρτιοι καὶ μὴ ἑτερομερῶς : ἐπεὶ γὰρ πρότερος |
| πτυρείης τὸν θάνατον . νῦν δὲ περιτρέπεις σεαυτόν , δειματούμενος στερήσεσθαι τῆς ψυχῆς , τῇ δὲ στερήσει περιτιθεῖς ψυχήν , | ||
| ὁ γὰρ νικηθεὶς ἐζημιοῦτο . ταύτης οὖν τῆς πάσης προσόδου στερήσεσθαι ἔμελλον οἱ Ἀθηναῖοι πολεμίων αὐτοῖς ἱδρυμένων ἐν τῇ χώρᾳ |
| τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
| σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
| πλατυνομένης , καὶ τοῦ μὲν μήκους ἐπὶ παραλλήλου τινὸς τῷ ἰσημερινῷ γραφομένου , τοῦ δὲ πλάτους ἐπὶ μεσημβρινοῦ , δεῖ | ||
| ἡμέραν , μείζονα μέντοι τῆς νυκτός , μέχρι πελάσῃ τῷ ἰσημερινῷ , διαμένουσαν . Ἐπὰν δὲ τούτου ἐφαψάμενος φθινοπωρινὴν ἰσημερίαν |
| κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
| τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
| : τὰ μικρὰ ξύλα τὰ ὡσανεὶ ἧλοι πεπηγμένα ἐν τῷ ἄξονι : θραύων δὲ σάρκας : ἀντὶ τοῦ θραυόμενος . | ||
| . αἱ χνόαι ἢ τὰ ἐμβαλλόμενα [ πρὸς ] τῷ ἄξονι , ὥστε μὴ ἐξιέναι τὸν τροχόν : ἄλλως : |
| [ κἂν ἡμίσειαν ὀρθῆς ] , ἄλογος ἔσται ἡ ὑπὸ ΔΒΖ . νβʹ . Τῆς ὑπὸ Ἀρχιμήδους ἐν τῷ περὶ | ||
| ἡ ΔΖ τῇ ΓΑ ἴση : γωνία ἄρα ἡ ὑπὸ ΔΒΖ γωνίᾳ τῇ ὑπὸ ΓΒΑ ἴση ἐστίν . τὰ δὲ |
| πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων . ἔστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι , ὧν βάσεις | ||
| δηλονότι τὸ κέντρον αὐτοῦ , καὶ αὐτόθεν ἂν ἐφαίνετο τῶν διαμέτρων ὁ λόγος : ἐπεὶ δ ' ἐλάσσων ἐστὶν αὐτῆς |
| : ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , | ||
| τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ |
| Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος τῶν ἡμερῶν εὑρίσκομεν , ἐπειδήπερ , ὡς ἔφαμεν | ||
| ἣν ὑποτείνει ἡ τῆς σελήνης διάμετρος καὶ ὑπεροχὴ τῶν δύο διαστάσεων , ἑξηκοστῶν ἔσται ζ ν . καὶ ἡ τετραπλασία |
| πρὸς τὸ ἀπὸ ΓΒ , τὸ ΑΕΗ τρίγωνον πρὸς τὸ ΑΘΓ . ὡς δὲ τὸ ΑΗΕ πρὸς τὸ ΑΘΓ , | ||
| ' εἰ δυνατόν , ἔστω [ αὐτῶν ] διάμετρος ἡ ΑΘΓ , καὶ ἐκβληθεῖσα ἡ ΗΖ διήχθω ἐπὶ τὸ Θ |
| οἱ Ἀθηναῖοι μὲν οὔπω † θέλοντες ἐξυφερουμένοις † ἐπὶ τῇ ἴσῃ καταλύεσθαι ” . μάλιστα δὲ οἱ τῶν δεδεμένων συγγενεῖς | ||
| παραταξαμένων ἰσχυρὰ μάχη γίνεται καὶ ἱππέων καὶ πεζῶν καὶ ψιλῶν ἴσῃ πάντων χρωμένων προθυμίᾳ τε καὶ ἐμπειρίᾳ , καὶ τὸ |
| ἰξυόθεν κατιόντων . τοῦ γὰρ νοτιωτέρου τῶν ἡγουμένων ἐν τῷ πλινθίῳ εἷς μόνος προηγεῖται λαμπρὸς ἀστήρ , ὁ νῦν ἐν | ||
| τὸ σχῆμα , Ἀφροδίτης ἐστὶν ἐν αὐτῇ ναὸς καλούμενος ἐν πλινθίῳ καὶ ἄγαλμα λίθου . στήλαις δὲ ἐπειργασμένοι τῇ μὲν |
| , πρὸς τοὺς περιγραφομένους περὶ τὴν ἕλικα τομέας ὁμοταγεῖς τῷ ΟΘΝ , οὕτως πάντες οἱ ἐν τῷ ΑΖΓ τομεῖς οἱ | ||
| ἐν τούτῳ καὶ τὸ Θ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΘΝ περιφέρειαν διελθὸν ἐπὶ τὸ Ν παραγίγνεται . Ὁμοία ἄρα |
| : καὶ κέντρῳ τῷ Η καὶ διαστήματι τῷ ἀπέχοντι αὐτοῦ σημείῳ ἐπὶ τῆς ΗΖ τμήματα οθʹ κύκλον γράψομεν τὸν ἐσόμενον | ||
| θρέψοντα προάγει , καὶ τὴν ἐκ τῶν θηρατῶν ἐπιβουλὴν διδάσκει σημείῳ τινὶ ἀτεκμάρτῳ , καὶ τῶν τόπων ὧν οὐ χρὴ |
| ὑπὸ τὸ ποιόν . οὐδ ' εἰ τὸ τρίγωνον δυοῖν ὀρθαῖν ἴσας ἔχει , συμβέβηκε δ ' αὐτῷ σχήματι εἶναι | ||
| ἀναβεβασμένοι ἵπποι : καὶ οἱ τοῖς ἀναβαίνουσι βοηθοῦντες ἀναφέρουσιν αὐτοὺς ὀρθαῖν ταῖν χεροῖν ἢ σιμαῖν ταῖν χεροῖν . καταβαίνει , |
| , ταύτης τὴν λαμπρότητα ἀφανῆ ποιήσει . πάντων γὰρ τῇ ὑπεροχῇ διαφέρει . ” καταπλαγεὶς δὲ Νεκτεναβὼ τὴν εὐστοχίαν τῶν | ||
| τῶν ἐκκειμένων ὅρων . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , περισσοὶ τὸ πλῆθος , |
| λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν | ||
| , ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω - |
| τῇ ὑπὸ ΔΖΕ γωνίᾳ . ἔστιν δὲ καὶ ἡ ὑπὸ ΑΖΓ γωνία τῇ ὑπὸ ΒΖΕ γωνίᾳ : ὅλη ἄρα ἡ | ||
| καὶ ἐπεζεύχθωσαν αἱ ΔΚ ΚΒ ΚΕ ἐπεὶ οὖν τὸ ὑπὸ ΑΖΓ μετὰ τοῦ ἀπὸ ΖΚ ἴσον ἐστὶν τῷ ἀπὸ ΑΚ |
| ἑκάτερον τῶν λίθων ἓξ ὀνόματα ἐγγλύφεται , διότι καὶ τῶν ἡμισφαιρίων ἑκάτερον δίχα τέμνον τὸν ζῳοφόρον ἓξ ἐναπολαμβάνει ζῴδια . | ||
| οὐδὲν γὰρ τούτων περιφορὰ τοῦ παντὸς οὐρανοῦ , ἀλλὰ τῶν ἡμισφαιρίων καὶ μέρος τῆς ὅλης περιφορᾶς . πρὸς τούτοις δὲ |
| ἄχρι πρὸς τοὺς πεζούς . ἐνταῦθα δὲ κἀκείνων ἐπιβοηθούντων ἔφυγον ἐγκλίναντες , καὶ μάλιστα ἐπεὶ ᾔσθοντο τοὺς ἐπὶ τῷ εὐωνύμῳ | ||
| αὐτοῦ ἀμφὶ τοῖς σκευοφόροις ξυνεχομένους ἀπέκτειναν , οἱ δὲ αὐτῶν ἐγκλίναντες ἔφευγον . οἱ δ ' ἐπὶ τοῦ δεξιοῦ κέρως |
| συνδοθήσεται , ὅπερ ἀποπτύσαντες αὖθις φλέγμα συνεστραμμένον ἐκβάλλουσιν , ἔπειτα διαστήσαντες μέρος τῆς τροφῆς καὶ τοῦ φαρμάκου μετὰ φλέγματος ἐμοῦσιν | ||
| τῆς ἀμπέλου καὶ τοῦ δένδρου σφῆνα ἐμβάλλουσιν , οὕτω δὲ διαστήσαντες ἐκ τοῦ δένδρου τὴν ἄμπελον , χώρημα αὐτὴν ἔχειν |