| κάθετος ἐπὶ τὴν ΒΓ : ἐν τέμνοντι ἄρα ἐπιπέδῳ ἡ ΖΙ , ὥστε καὶ τὸ Ι . ἔστιν δὲ καὶ | ||
| , Η παράλληλοι ταῖς ΑΓ , ΒΔ αἱ ΕΘ , ΖΙ , ΗΚ . ἐπεὶ οὖν ῥητή ἐστιν ἡ ΑΗ |
| δοθὲν ἄρα καὶ τὸ ὑπὸ ΛΥΦ : καὶ δοθέντα τὰ ΛΥ : δοθὲν ἄρα τὸ Φ : ἀπῆκται οὖν εἰς | ||
| ΛΖ βάσις τῇ ΝΖ βάσει , ἴσον ἐστὶ καὶ τὸ ΛΥ στερεὸν τῷ ΝΥ στερεῷ , καὶ εἰ ὑπερέχει ἡ |
| , ταύτης τὴν λαμπρότητα ἀφανῆ ποιήσει . πάντων γὰρ τῇ ὑπεροχῇ διαφέρει . ” καταπλαγεὶς δὲ Νεκτεναβὼ τὴν εὐστοχίαν τῶν | ||
| τῶν ἐκκειμένων ὅρων . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , περισσοὶ τὸ πλῆθος , |
| . οὐκ ἐχρησάμεθα δὲ ἐνταῦθα τῇ τοῦ τετάρτου τῶν ὡρῶν παραυξήσει διά τε τὸ συνεχεῖς ἤδη γίγνεσθαι τοὺς παραλλήλους καὶ | ||
| ἐστιν ἰσημερινῶν ιϚ . ἐχρησάμεθα δὲ τῇ καθ ' ἕκαστον παραυξήσει ἐπὶ μὲν τῶν κλιμάτων τῇ καθ ' ἡμιώριον πάλιν |
| ΗΘΓ καθέτους γίνεσθαι καὶ πρὸς αὐτήν . ἐφαρμόσαντες δὴ τῇ χορδῇ κανόνιον καὶ μεταλαβόντες ἐπ ' αὐτοῦ τὸ ΕΗ μῆκος | ||
| ἐν μὲν τῷ αὐλῷ διὰ τρυπημάτων , ἐν δὲ τῇ χορδῇ δι ' ὑπαγωγέως , ἄλλον ἐξ ἄλλου τρόπον ἀποτελεῖσθαι |
| ἕξει ὅ τε Κριὸς καὶ ἡ Παρθένος . Ἵνα δὲ συντομωτέραν τὴν πῆξιν δηλώσωμεν πρὸς τό τινας καὶ ὅλον τὸ | ||
| τὴν ὑποδειχθησομένην ὁδόν . Ἐδοκιμάσθη οὖν ἕκαστος τούτων τῶν ἀριθμῶν συντομωτέραν ἐπωνυμίαν κτησάμενος στοιχεῖον τῆς ἀριθμητικῆς θεωρίας εἶναι : καλεῖται |
| : ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
| ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
| ὁ γὰρ πρὸς τοῖς δυσὶ διαστήμασι τοῖς ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ θεωρουμένοις ἐπὶ μῆκος καὶ ἐπὶ πλάτος τρίτον διάστημα προσειληφώς | ||
| γὰρ καὶ α ὁ γ ἐστί , καὶ τῇ γε σχηματογραφίᾳ οὕτως συνίσταται : ἐπὶ μιᾷ μονάδι δύο μονάδες παράλληλοι |
| γένος αὐθάδει ῥώμῃ , τὴν τῶν ὀκτὼ καὶ εἴκοσι γερόντων ἰσόψηφον εἰς τὰ μέγιστα τῇ τῶν βασιλέων ποιήσασα δυνάμει . | ||
| λέγειν . Κήλη ζημίας ἐστὶ σημαντικὴ τοῦτο μὲν διὰ τὸ ἰσόψηφον τοῦτο δὲ ὅτι καὶ πάντα ὅσα ἐπιφύεται τῷ σώματι |
| τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς | ||
| κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν |
| ὀρθὰς τέμνοντες τούτους , γραφόμενοι δὲ διὰ τῶν πόλων , καταμετρεῖ τὴν μὲν οἰκήσιμον ἐμβατεύων , τὴν δ ' ἄλλην | ||
| τοῦ Ϛ μέρη ἐστί , δύο τρίτα . οὐ γὰρ καταμετρεῖ ὁ δ τὸν Ϛ οὔτε μεθ ' ἑαυτοῦ ἤτοι |
| ΑΠ [ ] [ ] ΤΩΙΨΗΙΚ [ ] [ ] ΩϹ καὶ Μ [ ] [ ] θανάτω ? [ | ||
| : ΕΥΦ ! [ ! ] ! ! [ ] ΩϹ ! ! [ ] # ΚΑΡΝΕΙϹΚΟΥ # ΦΙΛΙϹΤΑ Β |
| , ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
| ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
| τὴν ἔνδειαν τῶν ζῴων εὐπειθεῖς ἔσχεν . Εὐρυσθεὺς δ ' ἀχθεισῶν πρὸς αὐτὸν τῶν ἵππων ταύτας μὲν ἱερὰς ἐποίησεν Ἥρας | ||
| διάμετρον εὑρεῖν . γεγονέτω , καὶ ἔστω ἡ ΓΘ . ἀχθεισῶν δὴ τεταγμένως τῶν ΔΖ , ΕΘ καὶ ἐκβληθεισῶν ἔσται |
| δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ κατ ' εὐθεῖαν τὴν ΠΔΡ πρὸς ὀρθὰς τῇ ΗΔΘ , ἡ δὲ κοινὴ τομὴ | ||
| τὸ ΖΗΘ : καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΠΔΡ ὀρθή ἐστι πρὸς τὸ ΖΗΘ : καὶ πρὸς πάσας |
| λόγου δύναμιν δείκνυσι τὴν ῥητορικήν , ὅτι πρᾶγμά ἐστιν ἐν μεσότητι θεωρούμενον , ᾧ ἔξεστι χρήσασθαι καὶ καλῶς καὶ κακῶς | ||
| τοῦ ἴσου καὶ τοῦ προσήκοντος , ἐμπεριεχομένη ἀριθμοῦ τετραγώνου περισσοῦ μεσότητι . πρῶτον δὴ ἐκθετέον στιχηδὸν τοὺς μέχρι τούτου ἀριθμοὺς |
| χρόνῳ ἀναφέρεται τοῦ λέοντος , μετὰ δὲ μοίρας ιϚʹ κζʹ ἐξάρματος πόλου τοῦ δευτέρου κλίματος ἕως τοῦ γʹ κλίματος ἐν | ||
| ἐν αὐτῷ τὰς καθ ' ἕκαστον κλῖμα διαστάσεις τῶν τοῦ ἐξάρματος μοιρῶν καταγράψομεν τὰς ἴσας καὶ ἐπὶ τῶν λοιπῶν τριῶν |
| περιεχομένη ὑπὸ τῶν ΚΞΛ ἴση τῇ πρὸς τῷ Θ , περιεχομένῃ δὲ ὑπὸ τῶν ΖΘΕ . ἔτι κείσθω τῇ ὑπὸ | ||
| τῶν τόπων ἀπηρτημένην . κεῖσθαι δὲ ταύτην ἔν τινι νήσῳ περιεχομένῃ μὲν ὑπὸ τοῦ Τρίτωνος ποταμοῦ , περικρήμνῳ δὲ καὶ |
| καταρχῆς καλῆς καὶ ὡς εἴπομεν συμβῶσιν δεξιῶς καὶ τὸ ζητούμενον προχωρήσει . εἰ δὲ σπουδὴ ἐπῇ , μὴ συντρέχουσι δὲ | ||
| ἡ δὲ διάνοια : εἰ νῦν , φησίν , μὴ προχωρήσει ἐκ τῆς ἐκκλησίας ταύτης τὸ νομίζειν ἕκαστον ἔχοντα τὸ |
| Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
| τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
| ΕΒ , ΒΝ πίπτουσιν . ἔστιν δὲ καὶ ἡ ὑπὸ ΔΚΕ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΚΔΕ ἐστὶν | ||
| ΘΓ ἐν τῷ ΑΠΘΓ τετραπλεύρῳ . κἂν τυχοῦσα κλασθῇ ἡ ΔΚΕ , αἱ τρεῖς ὁμοῦ αἱ ΔΚ ΚΕ ΕΖ τῶν |
| ἑκατέρᾳ : καὶ γωνία ἡ ὑπὸ ΒΑΓ γωνίᾳ τῇ ὑπὸ ΕΔΗ ἴση : βάσις ἄρα ἡ ΒΓ βάσει τῇ ΕΗ | ||
| πλείονα σημεῖα ἢ δύο . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΕΔΗ , καὶ ὑπερβολὴ ἡ ΑΓ τῆς ΑΒ ἐφαπτέσθω κατὰ |
| ὀρθαῖς αἱ γωνίαι ἴσαι , δευτέρως δὲ καὶ ὅτι τοῦ σκαληνοῦ , πολλοστῶς δὲ καὶ ἐσχάτως καὶ ὅτι τοῦδε τοῦ | ||
| ἴδιον τῆς αὐτοῦ μεσότητος εἰς ταύτην συγκεφαλαιοῦται , ἀλλὰ καὶ σκαληνοῦ ἡ πρωτίστη σωμάτωσις μέχρις αὐτῆς στερεοῦται , αʹ βʹ |
| οὐδὲν κωλύει ἐπιστητὸν εἶναι , οἷον καὶ ὁ τοῦ κύκλου τετραγωνισμὸς εἴ γ ' ἔστιν ἐπιστητόν , ἐπιστήμη μὲν αὐτοῦ | ||
| ψευδογράφημα περὶ ἀληθές , οἷον τὸ Ἱπποκράτους [ ἢ ὁ τετραγωνισμὸς ὁ διὰ τῶν μηνίσκων ] . . Α . |
| μάλιστα ὁμοιουμένου διὰ τὸ ἐπιπέδων τριγώνων κατάρχειν , ὧν τὸ συμμετρότατον τετράγωνον ἰσότητα ὀρθογωνίου καὶ πλευρῶν ἔχει , καὶ πρὸς | ||
| ὑπερβάλλοντα κατὰ τὸν τῆς κράσεως λόγον φαίνεται . πάντων δὲ συμμετρότατον ἐξετάζουσιν , ἄνθρωπος , καὶ κανών τις ὅδε συμμέτρου |
| σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν | ||
| τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν |
| μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
| τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
| βεβήκασι τῶν ΣΝ , ΟΔ , ἔστι δὲ καὶ ἡ ΟΒ τῇ ΣΚ ἴση , δύο δὴ τρίγωνά ἐστι τὰ | ||
| πέντε συμφωνεῖν τὸν ΟΒ πρὸς τὸν ΞΒ : ὁ ἄρα ΟΒ ἔσται παρυπάτη μέσων . καὶ τῷ ΞΟ ἴσον ἔθηκα |
| καὶ ἀνὴρ καὶ πόλις , ἥτις ἂν τῶν κρειττόνων ἐπιτηδευμάτων ἀφεμένη καὶ μήτε ὁρῶσα μηδὲν μήτε ἀκούουσα τῶν φερόντων εἰς | ||
| καὶ κολαζομένη ἐκεῖνον καὶ σεαυτὴν κολάζειν . εἰ γὰρ καὶ ἀφεμένη πορεύσῃ , ἑτέρου ἄρα πειραθήσῃ ἀνδρὸς τοῦ προτέρου ἀπαλλαγεῖσα |
| ρξβ . δῆλον οὖν , ὅτι ὁ Α τοῦ Β ὑφημιόλιός ἐστι καὶ οὐ μετρεῖ αὐτόν . ὁμοίως καὶ οἱ | ||
| ὁ β τοῦ γ κοινῶς μὲν ὑποεπιμόριος , ἰδικῶς δὲ ὑφημιόλιός ἐστιν , ὡσαύτως δὲ ὁ γ τοῦ δ κοινῶς |
| λε # ʂ β . θέλομεν δὴ ταῦτα πλευρὰν εἶναι κυβικὴν τῶν γενομένων ΚΥ κζ , τουτέστι ʂ γ : | ||
| , εὑρίσκομεν Μο η . θέλομεν δὲ τοὺς ʂ η κυβικὴν εἶναι πλευρὰν τῶν η Μο : Μο ἄρα β |
| , τὸ πρός τι πῶς ἔχον , ᾧ δὴ πρότερον ἐφαρμόσαντες ταῖς θέσεσι τὰς κατὰ τὸ καλούμενον ἀμετάβολον σύστημα δυνάμεις | ||
| τὰς ΕΖΒ καὶ ΗΘΓ καθέτους γίνεσθαι καὶ πρὸς αὐτήν . ἐφαρμόσαντες δὴ τῇ χορδῇ κανόνιον καὶ μεταλαβόντες ἐπ ' αὐτοῦ |
| . σφῶν : τῶν Λακεδαιμονίων . εἰρημένον : ἀντὶ τοῦ ὁρισθέντος . κύριον : κεκυρωμένον , βέβαιον Κορίνθιοι : τὸ | ||
| ὅσον κατὰ τὴν τοῦ ὁρισμοῦ ἀπόδοσιν ἔστιν ἐρωτᾶν περὶ τοῦ ὁρισθέντος , διὰ τί ἐστι , καὶ διὰ τί τοῦτ |
| ἀνωμαλίας ἡ κατ ' ἐπίκυκλον ὑπόθεσις , ὡς ἔφαμεν , περιεχέτω τὸν τρόπον τοῦτον . νοείσθω γὰρ ἐν τῇ τῆς | ||
| ὃς καλείσθω ζῳδιακός . ἡ δὲ κλίσις τῶν ἐπιπέδων τούτων περιεχέτω γωνίαν τοιούτων κγ να κ , οἵων ἐστὶν ἡ |
| τὴν οἰκουμένην ἐν σφαίρᾳ καταγράφειν . Ἔκθεσις τῶν ἐντασσομένων τῇ καταγραφῇ μεσημβρινῶν καὶ παραλλήλων . Μέθοδος εἰς τὴν ἐν ἐπιπέδῳ | ||
| γεωγραφήσοντα τὰ μὲν διὰ τῶν ἀκριβεστέρων τηρήσεων εἰλημμένα προϋποτίθεσθαι τῇ καταγραφῇ καθάπερ θεμελίους , τὰ δ ' ἀπὸ τῶν ἄλλων |
| καὶ διάμετρος ἐκβληθεῖσα ἡ ΑΓΔ , καὶ ἀπὸ τοῦ Δ διῆκται πρὸς τὴν κοίλην περιφέρειαν ἡ ΔΛΞ , περιφέρεια ἄρα | ||
| καὶ ἀπὸ τῆς κατὰ τὸ Α ἐπαφῆς εἰς τὸν κύκλον διῆκται εὐθεῖα ἡ ΑΓ , ἡ ἄρα ὑπὸ ΘΑΓ ἴση |
| Η , διαστήματι δὲ τῷ ΗΒ , κύκλος γεγράφθω ὁ ΒΚΘ : παράλληλος ἄρα ἐστὶν ὁ ΓΔΕ κύκλος τῷ ΒΚΘ | ||
| τῇ ΖΞ , ὅμοιόν ἐστι τὸ μὲν ΛΚΕ τρίγωνον τῷ ΒΚΘ , τὸ δὲ ΒΚΘ τῷ ΒΔΖ , καὶ ἔτι |
| ἐκβεβλήσθω ἡ ΑΒΕ , καὶ κείσθω ἡ ΒΕ ἴση τῇ ἡμισείᾳ τῆς ἐκ τοῦ κέντρου , καὶ ἐν τῷ ὀρθῷ | ||
| αὐτὰς ἐνθέρμους καταβάπτομεν εἰς γλεῦκος καὶ θάλασσαν ἑψημένην ἐφ ' ἡμισείᾳ , καὶ ἀνελόμενοι ἐπιτιθέμεθα εἰς τὴν ληνὸν νύκτα καὶ |
| κατὰ πάντων φέρεται , ὅλον τὸ ἐντὸς τῆς περιφερείας πλάτος καταμετρήσει , πλάτος δὲ καταμετροῦν ἕξει πλάτος : τὸ γὰρ | ||
| ὁ πῆχυς τὸ μῆκος τῷ λαβεῖν τι μῆκος , ὃ καταμετρήσει τὸ ὅλον . ἡ γὰρ ὥρα τί ἐστιν ἄλλο |
| κατέλεγε . Τοὺς γοῦν πολλάκις ἐν τῇ κατ ' ἀλλήλων συμπλοκῇ ἀρίστους ἀναφανέντας Ἀθανάτους ὠνόμασε καὶ οὕτως ξυνέβη πάντας τοὺς | ||
| δυνάμει ἐργάζονται . ἐπεὶ οἱ σχοινοπλόκοι συμπεριάγονται τῇ τῶν σχοινίων συμπλοκῇ διὰ τῆς τροχιλίας . τούτους ἐκάλουν καὶ σχοινιοσυμβόλους . |
| ὑπεπίτριτος , τοῦ δὲ δώδεκα ὑποδιπλάσιος , μείζων δὲ ὁ ὑπεπίτριτος λόγος τοῦ ἡμίσεως . τὸ ΑΒ ἄρα πρὸς τὸ | ||
| Τ τὰ η : ὅ τε γὰρ ιη τοῦ κδ ὑπεπίτριτος καὶ ὁ Ϛ τοῦ η . Τὸ τοιοῦτον πολύγωνον |
| τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
| συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
| ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
| δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
| ٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ | ||
| ٤ ἡ ΑΒ ٢ ٥٩ ٢٨ ἡ ΓΖ ٢ ١٤ ١٢ ٤ ١٢ ἡ ΒΗ ٢ ١٣ ٤٣ ἡ ΑΗ |
| τε καὶ ἀσκήσει καὶ ἐκ τάξεως ἐς τάξιν ἄλλην εὐπετῶς μετακινήσει , τοῦτο ἐπασκητέον . τοσόνδε μέντοι συμβουλεύσαιμ ' ἂν | ||
| δόξαν παρέξουσιν ἐκείνοις , καὶ αὐτὸ τὸ στράτευμα ἐν τῇ μετακινήσει ἀσθενέστερον ἅμα καὶ ἀτακτότερον καθιστᾶσιν . ἀλλὰ τοὺς ψιλοὺς |
| ἔσχατος δὲ ὁ βορειότερος τῶν ἐν τῇ ἑπομένῃ πλευρᾷ τοῦ ῥόμβου . Μεσουρανοῦσι δὲ τῶν λοιπῶν ἀστέρων πρῶτοι μὲν ὅ | ||
| καὶ τούτῳ , καθόσον ἐστὶ παραλληλόγραμμον . ἐπὶ δὲ τοῦ ῥόμβου ἄνισοι μὲν αἱ διάμετροι , διχοτομοῦνται δὲ ὑπὸ τούτων |
| ἡμερῶν κθ ∠ ʹ λγʹ , εἰσὶ δὲ ἐν τῇ ὀκταετηρίδι σὺν τοῖς ἐμβολίμοις μῆνες Ϛθ , ἐπολυπλασίασαν τὰς τοῦ | ||
| ἐλαχίστῳ μορίῳ . Ἀπὸ δὲ σημείου ἐπὶ σημεῖον ἀποκαθίσταται ἐν ὀκταετηρίδι , ὡς μὲν λέγει Εὔδοξος ἐν τῇ Ὀκταετηρίδι , |
| γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν | ||
| ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν |
| ἂν ἡμῖν δοκῇ , τοσοῦτον ἐμβάλλωμεν , τήν τε τῶν χοινικίδων κατασκευὴν διὰ τὴν [ τῶν ] εἰρημένην δυσχρηστίαν περιῃρήκαμεν | ||
| τείνεσθαι , καθ ' ἑκάστην δὲ τάσιν ὅλον διὰ τῶν χοινικίδων διεκμηρύεσθαι , περί τε τὰς ἀπολήψεις κακοπαθεῖν αὐτὸν καὶ |
| ἀρχῆς τοῦ Καρκίνου , ὁμοταγῆ δὲ καὶ ἐν τῶι αὐτῶι ἐπιπέδωι γινόμενον πάντοτε τῶι ὁρίζοντι κατὰ τὴν τοῦ εἰρημένου δωδεκατημορίου | ||
| δὲ γραμμαὶ λέγονται παρ ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας |
| ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ | ||
| ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ |
| ; πρῴην Ἱππόλυτον τὸν Εὐριπίδου θρήνων οὐκ ἠξίωσα τοσούτων , ὅσωνπερ ἄν , εἰ παρῆν καὶ ἑώρων τὸ πάθος ; | ||
| . Ἀλλὰ μὴν πλειόνων γε μέτρων ὂν ἢ ἐλαττόνων , ὅσωνπερ μέτρων , τοσούτων καὶ μερῶν ἂν εἴη : καὶ |
| ΓΘΖ ἐστιν ἴση . ἡ δὲ ὑπὸ ΓΘΖ τῇ ὑπὸ ΔΘΗ ἴση : κατὰ κορυφὴν γάρ : καὶ ἡ ὑπὸ | ||
| Β τοῦ ΓΗΒ τριγώνου ἴση τῇ πρὸς τῷ Η τοῦ ΔΘΗ τριγώνου , ἡ δὲ πρὸς τῷ Β τῇ πρὸς |
| τέλειος καὶ αὐτάρκης ἀπόδειξις , παρ ' ὅσον τῇ θέσει παρήλλακται . ἄλλως γὰρ ὑφ ' ἑνὸς ὁ ὅρος συνείρεται | ||
| ἐστι μόρια , καὶ [ οὐ ] πάντως τῷ δηλουμένῳ παρήλλακται , ὡς ἔχει τὰ ἀντωνυμικά , ἐμοῦ ἥρπασεν , |
| τὸ μὴ ταὐτὸν εἶναι τὸ τῷ ὁρισμῷ καὶ τὸ τῇ ἀποδείξει δεικνύμενον , τὰς ἐπιστήμας ἐκεῖσε παρέθετο ὡς τοῦ ὅτι | ||
| ῥητόν , οὕτως ἂν ἐκλήψοιτο ὅτι δὲ τὸ ὅτι ἔστιν ἀποδείξει δείκνυται , δηλοῦσιν αἱ ἐπιστῆμαι : ὁ γὰρ γεωμέτρης |
| ΔΕΖ , τὴν δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ . Συνεστάτω γὰρ πρὸς τῇ ΔΖ εὐθείᾳ καὶ τοῖς πρὸς αὐτῇ | ||
| ] ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ ῥητόν ἐστιν . Συνεστάτω οὖν τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ , |
| τοῦ Α παρὰ τὴν ΒΔ ἡ ΑΖ : τεταγμένως ἄρα κατῆκται . ἔσται δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ | ||
| δὲ τὴν Ρ , καὶ ἀπό τινος σημείου τοῦ Σ κατῆκται ἡ ΣΟ , καὶ ἀναγέγραπται ἀπὸ μὲν τῆς ἐκ |
| , τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
| τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
| ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας | ||
| Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ |
| ἐγέγραπτο εὔορκον εἶναι προσθεῖναι καὶ ἀφελεῖν ὅτι ἂν ἀμφοῖν τοῖν πολέοιν δοκῇ , Λακεδαιμονίοις καὶ Ἀθηναίοις . τοῦτο γὰρ τὸ | ||
| Ἀττικαῖς : ἀντὶ τοῦ ἐπὶ τοὺς Ἀττικούς . σημείωσαι τοῖν πολέοιν τὴν Πελοπόννησον διεθορύβει : διὰ πάσης τῆς Πελοποννήσου θόρυβον |
| ἀνδρῶν τἀναντία εὐχομένων καὶ τὰς ἴσας θυσίας ὑπισχνουμένων οὐκ εἶχεν ὁποτέρῳ μᾶλλον ἐπινεύσειεν αὐτῶν , ὥστε δὴ τὸ Ἀκαδημαϊκὸν ἐκεῖνο | ||
| ΕΖ πρὸς τὴν ΠΡ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΠΡ ὁποτέρῳ τῶν ΜΖ , ΝΘ ὅμοιόν τε καὶ ὁμοίως κείμενον |
| προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
| β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
| τυχεῖν : ἐπὶ τῶν ἐκ κακῶν εἰς ἀγαθὰ μεταβαινόντων . Ἀμελοῦς γωνία : ἐπὶ τῶν ῥᾳθύμως καὶ ἀργῶς καθημένων . | ||
| ἀργῶς καὶ ῥαθύμως καθημένων . Ἔστι δὲ καὶ χωρίον Λιβύης Ἀμελοῦς γωνία καλούμενον . Ἀμουσότερος Λειβηθρίων : ἐπὶ τῶν ἀμούσων |
| τὸ Δ , καὶ ἐπὶ τῆς ΑΔ γεγράφθω ἡμικύκλιον τὸ ΑΖΔ , καὶ ἤχθω τις εἰς τὸ ἡμικύκλιον παράλληλος τῇ | ||
| , ΖΒ , ΖΕ . ἐπεὶ οὖν ἐλάττων ἡ ὑπὸ ΑΖΔ τῆς ὑπὸ ΒΖΕ γωνίας , ἔλαττον ἄρα τὸ ΑΔ |
| τροπῇ τοῦ δ εἰς ζ καὶ τοῦ ε εἰς η ἐκβληθέντος τοῦ ι , οἱονεὶ τὸ μὴ ἔχον διέχειαν ἢ | ||
| σὺ δὲ πετάσῃς ἵνα πλήξῃς ἐκεῖνον , εὐθὺς τεθνήξῃ , ἐκβληθέντος τοῦ κέντρου : ζωὴ γὰρ ἐν σοὶ ἐνυπάρχει τὸ |
| ἀκτῖνα ἐκπέμπει , ὡς τοῦτο πάρεστιν ὁρᾶν ἐπί τε τῶν ἐσόπτρων γινόμενον καὶ πάντων ἁπλῶς τῶν κατὰ ἀνάκλασιν φωτιζόντων . | ||
| προσαγαγεῖν καὶ ἑτέρας διαφόρους ἀκτῖνας ἀπὸ ἐπιπέδων ὁμοίων καὶ ἴσων ἐσόπτρων , ὥστε τὰς ἀνακλάσεις ὑφ ' ἓν ἐκείνων ἁπάσας |
| ἐν μὲν τοῖς ἀορίστοις τῷ ὅρῳ τοῦ ζητήματος ἤτοι τῇ ὑποκειμένῃ ὕλῃ προσέχειν δεῖ : ἐν δὲ τοῖς ὡρισμένοις τοῖς | ||
| . ὅθεν ἀκολούθως καὶ τῷ ἔθει τῷ παλαιῷ καὶ τῇ ὑποκειμένῃ ὑποθέσει ἀπὸ Διὸς πεποίηται τὴν ἀρχήν . ὅτι διὰ |
| ἀφεψήματοϲ πιτύρων καὶ ϲικύου ἀγρίου ῥίζηϲ καὶ κενταυρίου νί - τρου τε καὶ μέλιτοϲ ἢ ἅλμῃ ϲὺν μέλιτι καὶ ἐλαίῳ | ||
| ἐγὼ μέντοι καὶ τοιούτῳ χρῶμαι ἐναργῶς ποιοῦντι . ἀφρονί - τρου γο . βʹ . βρέχων ἐν οἴνῳ Ἀμιναίῳ κυάθων |
| ἀνυπέραρτος ἐν δαπάναις καὶ παρασκευαῖς . δʹ Λιτότης δὲ ἕξις ἀρκουμένη τοῖς τυχοῦσιν . εʹ Κοσμιότης δὲ ἐπιστήμη περὶ τὸ | ||
| ἐν ταῖς ἐνέδραις γὰρ εὐκόλως λανθάνειν δύναται , ὀλίγῳ τόπῳ ἀρκουμένη , καὶ συντόμως μετατίθεται πρὸς τὰς χρείας . Διὸ |
| ἔχει τὸ διὰ τεσσάρων καὶ ἔτι τόνον . ἐὰν δὲ ἐπιτάξωμεν τῷ μουσικωτάτῳ ποιῆσαι τόνους ἐφεξῆς καὶ καθ ' αὑτοὺς | ||
| Ἀσρούβαν μετὰ παντὸς ἴωμεν τοῦ στρατοῦ , Μασσανάσσην δὲ τόνδε ἐπιτάξωμεν ἐφεδρεύειν τῷ Σύφακι , ἢν ἄρα καὶ παρὰ δόξαν |
| καὶ τῆς ΓΔ . καὶ τὴν μεγίστην ἄρα τῶν τοῦ τραπεζίου πλευρῶν τὴν ΒΔ ἀναγκαῖον ἔλαττον δύνασθαι τῆς τε διαμέτρου | ||
| ἴσον γίνεται τῷ δὶς ὑπὸ ΔΕΖ , ἐπὶ δὲ τοῦ τραπεζίου ἴσον γίνεται τῷ ὑπὸ συναμφοτέρου τῆς ΔΗ ΕΖ καὶ |
| μεγεθοποιεῖ τὰ λεγόμενα , καθάπερ τὰ σώματα ἡ τῶν μελῶν ἐπισύνθεσις , ὧν ἓν μὲν οὐδὲν τμηθὲν ἀφ ' ἑτέρου | ||
| ἐπεὶ κατὰ σύνοδον πολλῶν ἰδιωμάτων νοεῖται , ἡ δὲ πλειόνων ἐπισύνθεσις οὐχ ἁπλῆς τινος καὶ ἀλόγου αἰσθήσεώς ἐστιν ἔργον ἀλλὰ |
| Δ ἐπὶ τὴν ΒΖ αἱ ΓΛ καὶ ΔΜ , καὶ ὑποτεθέντος τοῦ ἀστέρος κατὰ τὸ Κ σημεῖον ἐπεζεύχθωσαν μὲν αἱ | ||
| πειρᾶται ζητεῖν τὸ ἀδύνατον , ἀλλὰ καὶ ἡμᾶς ἀξιοῖ . ὑποτεθέντος μέντοι τοῦ λόγου τοῦ ὃν ἔχει ἡ ΚΘ πρὸς |
| δύο σημείων τῶν Β Ε κλάσαι τὴν ΒΝΞΕ καθόλου τῇ δοθείσῃ εὐθείᾳ ἴσην τῶν κλασμάτων τὸ πλῆθος δοθὲν ἔχουσαν . | ||
| ΒΓ . Διὰ τοῦ δοθέντος ἄρα σημείου τοῦ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ παράλληλος εὐθεῖα γραμμὴ ἦκται ἡ ΕΑΖ |
| : καὶ τῆς ὑπὸ ΓΗΑ ἄρα μείζων ἐστὶν ἡ ὑπὸ ΑΔΘ γωνία : ὥστε μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ | ||
| κοιναὶ τομαὶ ἡ ΑΒ καὶ ἡ ΗΖ , τοῦ δὲ ΑΔΘ κύκλου καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ , |
| κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ | ||
| γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ |
| ταῦτα τὰ ἔτη καὶ τὰς ἡμέρας ἐν τῇ τῶν χρόνων ἀφέσει ποιοῦμαι . Καθάπερ δὲ ἑκάστης περιόδου τὸ ιβʹ τῶν | ||
| ἄλλως τε καὶ ἐπὶ τῶν συνοδικῶν ἢ πανσεληνιακῶν τῇ αὐτῇ ἀφέσει † εὑρεθήσεται , εἴγε εἰς ἓν ζῴδιον ὅ τε |
| τὸ φανερὸν ἐξαλλάσσει . Τῶν δὲ ἐν τῷ ἡμικυκλίῳ τῷ ἀπολαμβανομένῳ ὑπὸ τοῦ ἰσημερινοῦ πρὸς τῷ θερινῷ τροπικῷ ἴσων περιφερειῶν | ||
| δὲ ΑΓ ἐλάσσων ἐστὶν ἑκατέρας αὐτῶν τῷ ὑπὸ τῆς ἐπισκοτήσεως ἀπολαμβανομένῳ μέρει τῆς τοῦ ἐκλείποντος διαμέτρου . Ἔστω τὸ τῆς |
| τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
| λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
| νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η | ||
| διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ |
| ὅλων , ἀπὸ δὲ τοῦ ἐξ ἀρχῆς κύκλου ἴσαι περιφέρειαι ἀπειλημμέναι εἰσὶν αἱ ΑΛ , ΔΜ : ἡ ἄρα ἀπὸ | ||
| ὅλων , ἀπὸ δὲ τῶν ἐξ ἀρχῆς κύκλων ἴσαι περιφέρειαι ἀπειλημμέναι εἰσὶν αἱ ΜΝ , ΠΡ , ἡ ἄρα ἀπὸ |
| τε τὸ συνεχεῖς ἤδη γίγνεσθαι τοὺς παραλλήλους καὶ τὴν τῶν ἐξαρμάτων διαφορὰν μηκέτι μηδεμιᾶς ὅλης μοίρας συνάγεσθαι καὶ διὰ τὸ | ||
| , τουτέστιν εἰς ρπʹ ἴσα τμήματα , πρὸς τὴν τῶν ἐξαρμάτων , ἤτοι κλιμάτων , ἐπίγνωσιν καὶ χρώσαντες τὴν σφαῖραν |
| ἐκ πλειόνων μέν εἰσιν ἁπλῶν λόγων ἡνωμένων δὲ ὑπὸ τοῦ συναπτικοῦ προσαγορευομένου συνδέσμου , οἷον εἰ ἡμέρα ἐστίν , ἥλιος | ||
| ἐν οἷς συμπλέκει λόγους , ἔχων δὲ καὶ τὴν τοῦ συναπτικοῦ , ἐν οἷς ἀκολουθίας ἐστὶ παραστατικός , οὐκ ἀπὸ |
| τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον | ||
| Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ |
| μὲν αβ τοῦ γδ διπλάσιον , τὸ δὲ γδ τοῦ εζ τριπλάσιον . ἐπεὶ οὖν τὸ μὲν γδ τοῦ εζ | ||
| γδ λόγου πηλικότης πολλαπλασιασθῇ ἐπὶ τὴν τοῦ γδ πρὸς τὸ εζ λόγου πηλικότητα , ποιεῖ τὴν τοῦ αβ πρὸς εζ |
| ὁ Ε : καὶ ὁ μὲν ΓΔ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ , ὁ δὲ ΑΖ τὸν | ||
| ἐλάσσονα τὸν ΗΓ , ὁ δὲ ΗΓ τὸν ΖΘ μετρῶν λειπέτω μονάδα τὴν ΘΑ . Ἐπεὶ οὖν ὁ Ε τὸν |
| γένοιτ ' ἔτι , τῆς ἰδιότητος πρὸς ἑτέραν μεμιγμένης καὶ συμπλεκομένης οὐχὶ συμφώνους ἁφάς ; τὸ ταῦτα διορᾶν ἐστιν εὐψύχου | ||
| , ὥστε ἴδια μὲν οὐκ ἔχει , τοῖς δὲ τῆς συμπλεκομένης στάσεως ὡς καὶ ἄνω ἔφαμεν διαιρεθήσεται κεφαλαίοις . Ἔστι |
| ὁμοίων ἐπιπέδων περιεχόμενα ἴσων τῷ πλήθει καὶ τῷ μεγέθει . Στερεὰ γωνία ἐστὶν ἡ ὑπὸ πλειόνων ἢ δύο γραμμῶν ἁπτομένων | ||
| ἡμέραι : πᾶσα γὰρ τετρὰς ἱερὰ ὡς καὶ στερεά . Στερεὰ δὲ λέγεται , διότι πάντα τὰ συνεστῶτα ἐκ στιγμῆς |
| , ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
| τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
| οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ κα ἴσον ἐστὶ τῷ ὑπὸ τῶν ἐκ | ||
| μ παρὰ ῥητὴν τὴν οὖσαν τριῶν μονάδων ἤτοι τὴν ΓΔ παραβληθὲν πλάτος ποιεῖ τὴν ΕΔ ἤτοι μία θ ιϚ . |
| γε τῷ τοσούτῳ χρόνῳ βραχείας γεγενημένης τῆς κατὰ μῆκος παραχωρήσεως ἀνεπαίσθητος ἔτι ἐτύγχανεν ἡ διὰ τὴν προειρημένην αἰτίαν διαφορά . | ||
| , πολυΐστωρ , ἐπινοητικός , πλὴν ἀλλοτρίων μὲν ἐλεγκτικώτατος ἁμαρτημάτων ἀνεπαίσθητος δὲ ἰδίων , ὑπὸ δὲ ἔρωτος τοῦ ξένας νοήσεις |
| ΜΞ ἐστιν ἡ ῥητὸν καὶ μέσον δυναμένη . ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΗ τῇ ΗΕ , ἀσύμμετρον ἄρα ἐστὶ | ||
| εἰσὶ σύμμετροι αἱ ΜΝ , ΝΞ ] . καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΕ τῇ ΕΔ μήκει , ἀλλ ' |
| τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
| πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
| ἡ φίλησις γίνηται : καὶ τὸ δίκαιον δὲ ἐν τῇ ἰσότητι σώζεται . ἀλλ ' οὐχ ὁμοίως ἔχει τὸ ἴσον | ||
| πάθεσιν εἴκουσι . παυσάσθωσαν οἷοί εἰσι , καὶ ἀγαπήσουσι πάντας ἰσότητι ἀρετῆς . τί δὲ οἴεσθε , ὦ ἄνθρωποι , |
| , ΒΕΓ τρίγωνα . ἔστιν ἄρα , ὡς τὸ ἀπὸ ΤΝ πρὸς τὸ ἀπὸ ΤΟ , οὕτως τὸ ἀπὸ ΒΕ | ||
| διελθὸν ἐπὶ τὸ Ξ παραγίγνεται : ὁμοία ἄρα ἐστὶν ἡ ΤΝ τῇ ΞΡ . Ἔστω τῆς μὲν ΤΜ ἡμίσεια ἡ |
| τε ἀγκῶνας πυκνὰ πονεῖν τῶν τοιούτων ὀργάνων . τῆς δὲ ἐπιζυγίδος τὸ μὲν πάχος ἀρκεῖν γενόμενον τοῦ πέμπτου μέρους τῆς | ||
| καὶ ἐυεργέστερον ἀντὶ τοῦ ὀρθοῦ ἄξονος ἀπὸ τῆς τῶν μεσοστατῶν ἐπιζυγίδος ἀρτήματι κρεμάσαι τὸν κάμακα τοῦτον ὡς κριὸν , οὕτως |
| Τοπικῶς λέγει κατὰ κοινὸν τόπον καταφορὰν ποιουμένων τῶν λεγόντων καὶ καταδρομῇ κεχρημένων πρὸς τὸ ὑποκείμενον , εἴτε κατὰ τυράννου , | ||
| διὰ τί δὲ μὴ δικανικοῦ εἴδους ἐστὶν , εἴ γε καταδρομῇ κέχρηται , λέγομεν , ἐπειδὴ οὔτε ἐν δικαστηρίῳ ἐλέχθη |
| ἂν εὑρίσκηται : καὶ ἐὰν τὸ ἕτερον μέρος τῶν ἀντιδίκων ὁποτερῳοῦν τούτων χρήσηται , τῇ ἀντιλήψει λέγω ἢ τῇ μεταλήψει | ||
| , ἢ ἐξ ἀντισπάστου καὶ βακχείου . τὸ τρίτον ὅμοιον ὁποτερῳοῦν τῶν ἐν τῇ παρόδῳ . τὸ τέταρτον ἐκ διτροχαίου |
| ὡς ι τὸ πλῆθος . διὸ καὶ περιλαβεῖν ταύτας μιᾷ προτάσει ἐνδεχόμενον εὑρόντες οὕτως ἐγράψαμεν : ἐὰν ὑπτίου ἢ παρυπτίου | ||
| , ἐν δὲ τῷ τρίτῳ καὶ τετάρτῳ καὶ ἕκτῳ καθολικῇ προτάσει εἶναι πάντως : μὴ γινομένης δὲ τῆς ἀποδείξεως δι |
| , τὸ ΔΖ ιζ ιδ β λ κ . ٦ ٢٤ ٢٠ ٠ ٥٥ ٢٥ ٤ ١٠ Πόθεν δῆλον , | ||
| ٢ ٤٨ ١٠ ١٢ ٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη |
| οὐκ ἠκολούθησεν αὐτῷ . ἐκοινώνησε δὲ καὶ Ἀμεινίᾳ Διοχαίτα τῷ Πυθαγορικῷ , ὡς ἔφη Σωτίων , ἀνδρὶ πένητι μέν , | ||
| ἄρτιον ἡ μονὰς ἀλλὰ περιττόν . Ἀριστοτέλης δὲ ἐν τῷ Πυθαγορικῷ τὸ ἕν φησιν ἀμφοτέρων μετέχειν τῆς φύσεως : ἀρτίῳ |