| παραλληλογράμμου [ οὕτως ἔχον ] τὸ βάρος ἐν ἑαυτῷ πᾶν συνῆχθαι πρὸς τῷ Η , τοὺ δὲ ΓΔΛ τριγώνου πᾶν | ||
| ὡς ἐπὶ τῆς μοιχείας συμβέβηκεν , ἀλλ ' εἰς μίαν συνῆχθαι τὴν τῆς παρθένου . λεκτέον οὖν τῷ κόρης ἀστῆς |
| ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ | ||
| μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ |
| καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς τὸ ποιήσασθαί τινα κἂν μερικὴν | ||
| τῇ ὑπὸ ΗΖΑ γωνίᾳ : ὅλη ἄρα ἡ ὑπὸ τῶν ΕΖΓ ὅλῃ τῇ ὑπὸ τῶν ΓΖΗ γωνίᾳ ἴση ἐστίν : |
| τὸ ΖΗΛ τρίγωνον , οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον . ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ | ||
| . ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν , οὕτως ἦν καὶ ἡ ΖΗΘΝ πυραμὶς πρὸς |
| ΒΕ . τὰ ἄρα ἀπὸ ΝΖΘ τετράγωνα μετὰ τῶν ἀπὸ ΚΖΜ εἰδῶν ὁμοίων τῷ πρὸς τῇ ΓΑ εἴδει διπλάσιά ἐστι | ||
| τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα περιενεχθέντα εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο |
| τῇ Β ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ | ||
| ἡ ΑΒ , καὶ ἔστω ῥητὴ ἡ ΑΒ , καὶ συμπεπληρώσθω τὸ ΒΓ : ἄλογον ἄρα ἐστὶ τὸ ΒΓ , |
| : καὶ κέντρῳ τῷ Η καὶ διαστήματι τῷ ἀπέχοντι αὐτοῦ σημείῳ ἐπὶ τῆς ΗΖ τμήματα οθʹ κύκλον γράψομεν τὸν ἐσόμενον | ||
| θρέψοντα προάγει , καὶ τὴν ἐκ τῶν θηρατῶν ἐπιβουλὴν διδάσκει σημείῳ τινὶ ἀτεκμάρτῳ , καὶ τῶν τόπων ὧν οὐ χρὴ |
| αὐτοῖς τινος ὀργάνου διακρίνοντος αὐτοῖς τὰ τοιαῦτα , ἵνα ὥσπερ γνώμονί τινι καὶ κανόνι χρώμενοι τὰ μὴ ἐφαρμόζοντα ἀπωθῶνται : | ||
| τὸ ΞΣ : ὅλον ἄρα τὸ ΤΣ ὅλῳ τῷ ΦΧΥ γνώμονί ἐστιν ἴσον . ἀλλ ' ὁ ΦΧΥ γνώμων τῷ |
| καὶ ἐπὶ τοῦ λθʹ ἐλέγομεν , καὶ τὸ παραλελειμμένον τῷ στοιχειωτῇ τῆς εἰς ἀδύνατον ἀπαγωγῆς ὡσαύτως ἀποδείκνυται καὶ οὐδὲν δεῖ | ||
| γὰρ νοσοῦσι μηδὲν ὅλως ὑγιὲς φέρουσαι . καὶ τῷ μὲν στοιχειωτῇ οὐ περιάπτω τὸ ἁμάρτημα , τῷ γραφεῖ δέ : |
| , τὸ ὑπὸ Η , ΔΛ πρὸς τὸ δὶς ὑπὸ ΓΔΛ : ὡς ἄρα τὸ ἀπὸ ΚΛ πρὸς τὸ ὑπὸ | ||
| ΔΛ εὐθείας περιφέρεια τοιούτων ρκ , οἵων ὁ περὶ τὸ ΓΔΛ ὀρθογώνιον κύκλος τξ , ἡ δ ' ἐπὶ τῆς |
| ἅμα τῷ κλύσματι τὰ ἐν τῇ γαστρὶ καὶ τοῖς ἐντέροις περιεχόμενα πάντα , ὥστε θαυμάσαι , εἴτε κόπρος εἴτε ὑγρὸν | ||
| [ ἀπὸ ] τοῦ κέντρου [ καὶ τῆς ΑΒ ] περιεχόμενα . Μέση ἀνάλογον . , ] ὥστε τὸ ὑπὸ |
| ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα | ||
| ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν |
| ΒΖ ] τῇ ΓΖ , καὶ τὸ [ ΔΕΒΖ ] παραλληλόγραμμον , καὶ ἡ διάμετρος ἴση [ τῷ ] διαστήματι | ||
| δέ : καὶ τοῦ ΓΚ ἄρα παραλληλογράμμου πρὸς τὸ ΛΖ παραλληλόγραμμον λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΑΒΓ τριγώνου |
| τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
| . ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
| μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
| ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
| ὡς καὶ ἐν Τιμαίῳ διδάσκει λέγων ὁ Πλάτων πάντα τὰ εὐθύγραμμα σχήματα ὡς εἰς στοιχεῖα ἁπλούστατα ἀναλύων τὰ τρίγωνα , | ||
| δὲ τῶν ΕΖ , ΗΘ ὅμοιά τε καὶ ὁμοίως κείμενα εὐθύγραμμα τὰ ΜΖ , ΝΘ : λέγω , ὅτι ἐστὶν |
| ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ : | ||
| ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς |
| ἐκπέσῃ , ἐμβληθεῖσα μένει , οἱ μόνον αὐτῇ τῇ τριβῇ προσχρώμενοι , θεωροῦντες ἐκ τοῦ ἀνὰ λόγον ἐμβαλλόμενα καὶ μένοντα | ||
| εἰσι πᾶσαι . Ἐπεὶ δὲ μέλλομεν τῇ εἰς ἀδύνατον ἀπαγωγῇ προσχρώμενοι δεικνύναι συλλογιστικὴν οὖσαν συζυγίαν τὴν ἐξ ὑπαρχούσης τῆς μείζονος |
| σχηματιζέσθω ἡ γυνὴ ἐπὶ δίφρου ὑπτία πρὸς αὐγὴν λαμπρὰν , συνημμένα ἔχουσα τὰ σκέλη πρὸς ἐπιγάστριον , καὶ μηροὺς ἀπ | ||
| καὶ χιτῶσι περιεχόμενα πλείοσι , τὰ δὲ καὶ ἀλλήλοις πως συνημμένα καὶ κοινὴν περιοχὴν ἔχοντα καθάπερ καὶ τὰ τῶν ἀπίων |
| ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ ὁμοίως ἡ ΧΨ κάθετος , ἣν δεῖ ἐλάσσονα δεῖξαι τῆς ΥΩ καθέτου | ||
| ἀπὸ τῆς ΚΓ μείζονα λόγον ἔχει ἤπερ ιβʹ τὰ ἀπὸ ΧΨ πρὸς ιεʹ τὰ ἀπὸ ΩΦ : ὥστε καὶ λϚʹ |
| Ἀλκαῖος Γανυμήδῃ ἔοικεν αἰγίθαλλος διακωλύειν τὸ πρᾶγμα . τῷ δὲ τόνῳ ὡς ἀρύβαλλος . , . . , . ᾄδεις | ||
| , πάθος κινοῦσα , σχεδὸν τῇ πικρίᾳ μόνον καὶ τῷ τόνῳ τοῦ Δημοσθενικοῦ χαρακτῆρος λειπομένη , τοῦ δὲ πιθανοῦ καὶ |
| πελάζειν , ἀνάπελός τις οὖσα . Ἀμύγδαλα , παρὰ τῷ κελύφει , τῷ ξυλώδει καλύμματι τῷ μετὰ τὸ χλωρὸν τῷ | ||
| πῶς ἀναλίσκουσιν . ἐνθέντα δὲ εἰς τὸ στόμα σὺν τῷ κελύφει βρύκειν τοῖς ὀδοῦσι τὸν ἐχῖνον . δυσχρηστούμενον οὖν τῇ |
| : τὰ μικρὰ ξύλα τὰ ὡσανεὶ ἧλοι πεπηγμένα ἐν τῷ ἄξονι : θραύων δὲ σάρκας : ἀντὶ τοῦ θραυόμενος . | ||
| . αἱ χνόαι ἢ τὰ ἐμβαλλόμενα [ πρὸς ] τῷ ἄξονι , ὥστε μὴ ἐξιέναι τὸν τροχόν : ἄλλως : |
| ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
| μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
| εἴρηκεν , ὡς τοῖς σωματικοῖς στοιχείοις ἕκαστα γνωρίζεται καὶ τῷ ὁμοίῳ τὸ ὅμοιον , καίπερ ἱκανῶς ἐληλεγμένου , τοῖς φθάσασιν | ||
| [ ἔλαβεν . ] ἐνταυθοῖ ] ἐνταῦθα , ἐν τῷ ὁμοίῳ βίῳ . ἔσθι ' ] ναὶ τρῶγε . , |
| περιεχόντων τὴν πυραμίδα , ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον , ἓν τρίγωνον | ||
| [ . ] παρελάβομεν , διὰ τὸ ἴσον ὑποκεῖσθαι τὸ πολύγωνον τῶι κύκλωι ἐφαρμόζον αὐτῶι , ἐσόμεθα καὶ κύκλωι ἴσον |
| : ἴση ἄρα ἐστὶν ἡ ὑπὸ ΑΒΕ γωνία τῇ ὑπὸ ΖΗΛ . ἔστι δὲ καὶ ὅλη ἡ ὑπὸ ΑΒΓ ὅλῃ | ||
| ΑΒΕ , ΕΒΓ , ΕΓΔ , ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ , ΛΗΘ , ΛΘΚ , καὶ ὅτι τὸ ΑΒΓΔΕ |
| ἔστω γὰρ ἡ ΓΖΘ . φανερόν , ὅτι τὸ ὑπὸ ΓΚΘ ἴσον τῷ ἀπὸ ΑΓ : τέτμηται γὰρ ἡ ΘΚ | ||
| ΚΘ , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΚΘ , ἡ δὲ ὑπὸ ΚΓΒ τῇ ὑπὸ ΓΑΔ , |
| τὸ δὲ δὶς ὑπὸ τῶν ΑΗ , ΗΒ μέσον , ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΗ , ΗΒ τῷ | ||
| λόγον οὐκ ἔχει , ὃν ἀριθμὸς πρὸς ἀριθμόν . Ἔστω ἀσύμμετρα μεγέθη τὰ Α , Β : λέγω , ὅτι |
| γωνιῶν μείζων ἐστίν . Ἔστω τρίγωνον τὸ ΑΒΓ , καὶ προσεκβεβλήσθω αὐτοῦ μία πλευρὰ ἡ ΒΓ ἐπὶ τὸ Δ : | ||
| μὴ ὑπάρχοντος ἡλίου . κείσθω κάτοπτρον τὸ ΔΖ , καὶ προσεκβεβλήσθω τῇ ΕΔ ἐπ ' εὐθείας ἡ ΔΒ , ἄχρις |
| δ τὴν Ϛ ἀπ ' αὐτῆς ἀναγράφεις τετράγωνον ἴσον τῷ παραλληλογράμμῳ . ἀλλ ' εἴτε τὸ τί ἐστι τετραγωνίζειν λέγοις | ||
| ΗΘ , ΕΚ , ΖΛ : καὶ τῷ μὲν ΑΘ παραλληλογράμμῳ ἴσον τετράγωνον συνεστάτω τὸ ΣΝ , τῷ δὲ ΗΚ |
| , ἀριθμῷ εἴτ ' οὖν εἴδει . εἰ μὲν γὰρ εἴδει μία ἑκάστη τῶν ἀρχῶν , ἀριθμῷ δὲ πολλαί , | ||
| , τὰ δὲ στερεὰ καὶ προμήκη καὶ ἀλλήλοις ἀντεμπλεκόμενα ἁλύσεως εἴδει δακτύλιοι καὶ δάκτυλοι . ἐρεῖς δὲ κημοὶ καὶ φιμοί |
| δεδομένων ἄνευ θέσεως . τὰ δὲ ἑξῆς τούτοις Ϛʹ ἐν παραλληλογράμμοις ἐστὶ καὶ παραβολαῖς εἴδει δεδομένων χωρίων . τῶν δὲ | ||
| πρὸς ἑκάτερον τῶν παραλληλογράμμων . ἀσύμμετρον ἄρα τὸ τετράγωνον τοῖς παραλληλογράμμοις . ῥητὸν δὲ τὸ τετράγωνον : ἄλογα ἄρα τὰ |
| ὑπὸ ΒΗΓ γωνία τῇ ὑπὸ ΓΘΖ , ἀλλὰ ἡ ὑπὸ ΒΗΓ ἴση ἐστὶν τῇ ὑπὸ ΒΑΓ ἐν κύκλῳ , ἡ | ||
| τῶν ΒΓ , ΕΖ , δύο δὲ γωνιῶν τῶν ὑπὸ ΒΗΓ , ΕΘΖ , εἴληπται τῆς μὲν ΒΓ περιφερείας καὶ |
| τρίγωνον διὰ τὸ ἴσον εἶναι τὸ ΑΒΔ τρίγωνον τῷ ΑΓΔ τριγώνῳ . ἐπισταθὲν δὲ ὁμοίως τὸ ΑΒΓ τρίγωνον κατὰ τὴν | ||
| ' αὑτὸ συμβεβηκότα τοῖς καθόλου ὑπάρχουσιν , οἷον τῷ ἁπλῶς τριγώνῳ τὸ ἔχειν τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας : |
| ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
| ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
| ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ | ||
| ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν |
| καὶ γοητεύουσαν ταῖς ἡδυπαθείαις . . ΕΝ ΔΕ ΘΕΜΕΝ ΚΥΝΕΟΝ ΤΕ ΝΟΟΝ . Ἐπένευσεν ἡ Εἱμαρμένη καὶ τὸν προφορικὸν λόγον | ||
| δ ' ἀμφοτέρων ἐπίσης ἀπέχει ἡ σωφροσύνη . . ἙΝΔΕΚΑΤΗ ΤΕ ΔΥΩΔΕΚΑΤΗ Τ ' . Ἡ ἑνδεκὰς ἐτιμᾶτο μὲν καὶ |
| καὶ σελήνην καὶ τοὺς ε πλανήτας ἰσοταχῶς καὶ ἐγκυκλίως καὶ ὑπεναντίως τῷ κόσμῳ κινεῖσθαι . Οἱ γὰρ Πυθαγόρειοι πρῶτοι προσελθόντες | ||
| φίλων τοῖς μάλιστα συνοῦσι , σκυθρωποὺς καὶ βαρεῖς ὄντας . ὑπεναντίως δὲ οὗτοι τοῖς ὀργίλοις ἰδίως καλουμένοις καὶ ἀκροχόλοις περὶ |
| τὴν δὲ ” ζώνην ὑπὲρ τοῦ Κριοῦ , πλὴν τὸ Τρίγωνον , ὅ ἐστι „ μεταξύ : τὸν δ ' | ||
| τὰ δὴ ἐν δεξιῷ , καὶ τὸ ὑπὲρ τὸν Κριὸν Τρίγωνον , νοτόθεν τοῦ νοτίου Ἰχθύος ἡ κεφαλή . . |
| στερεοῦ . ἐγγεγράφθω καὶ εἰς τὸν ΑΒΓΔ κύκλον τῷ ΕΟΖΠΗΡΘΣ πολυγώνῳ ὅμοιόν τε καὶ ὁμοίως κείμενον πολύγωνον τὸ ΑΤΒΥΓΦΔΧ , | ||
| . Καὶ ἐπεὶ ὅμοιόν ἐστι τὸ ΑΒΓΔΕ πολύγωνον τῷ ΖΗΘΚΛ πολυγώνῳ , ἴση ἐστὶν ἡ ὑπὸ ΒΑΕ γωνία τῇ ὑπὸ |
| ζῶντες ἐκινοῦντο κατ ' ἀλλήλων ἐν τοῖς ὅλοις . . ΚΑΙ ΤΕ ΣΥΝΑΙΚΤΗΝ . Ὁμοῦ ὥρμων μεθ ' ὁρμῆς συνελαύνοντες | ||
| ᾖ ἀσθενὴς , σπεύδει τὸ ἐργάζεσθαι . . Ἡ ΤΕ ΚΑΙ ΑΠΑΛΑΜΝΟΝ ΠΕΡ . Ἥ τις ἀγαθὴ ἔρις καὶ τὸν |
| προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
| β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
| ἡ δὲ ΦΩ τῆς παραλλάξεως τοῦ ἡλίου , καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν | ||
| ἀνακειμένου , ὄτι μέγιστός ἐστιν ὁ ἀνδριὰς καὶ ἀξιοθαύμαστος . ΤΩ δεσπότῃ μου καὶ σοφῷ στεφηφόρῳ Λέοντι , τῷ κρατοῦντι |
| πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο πολύγωνα ἰσόπλευρά τε καὶ ἰσογώνια τὰ ΑΒΓ ΔΕΖ , καὶ | ||
| κύκλοι οἱ ΑΒΓ , ΖΗΘ , καὶ ἐν αὐτοῖς ὅμοια πολύγωνα ἔστω τὰ ΑΒΓΔΕ , ΖΗΘΚΛ , διάμετροι δὲ τῶν |
| μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ ὀξύ , τῷ δὲ | ||
| , ὁ χρόνος ἐστίν , ἐν ᾧ προανατέλλει τῷ ΑΔΓ ὁρίζοντι , ὁ δὲ χρόνος , ἐν ᾧ τὴν ΛΒ |
| πρεσβεῖα τὴν γένεσιν ἑαυτῇ , τὰ δὲ δεύτερα τῷ ἀγενήτῳ προσνέμειν : ἥδε ἐστὶ ἡ ἐπίληπτος διαίρεσις , ἀταξίαν τινὰ | ||
| καὶ τὸν ποιητὴν αὐτὸν τῷ τὸν μὲν ἀργέστην τῷ νότῳ προσνέμειν ” ἀργεστᾶο Νότοιο , ” τὸν δὲ ζέφυρον τῷ |
| τὸν μὲν χρῆσθαι πολλοῖς , τὸν δ ' οὐδ ' ἀκολούθῳ . ἀλλ ' ἕνα ποιῶ κοινὸν πᾶσιν βίοτον , | ||
| περιπτύξαι : περιπλακῆναι , περιλαβεῖν . Ὀπάονι : ἐρωτικῇ , ἀκολούθῳ . Λοφιῆς : κεφαλῆς . Ἔμφρονι : ἐθελουσίῳ . |
| ΑΒΓ , καὶ τῇ ΒΓ παράλληλος ἡ ΑΔ , καὶ διαχθεῖσα ἡ ΔΕ τῇ ΒΓ συμπιπτέτω κατὰ τὸ Ε σημεῖον | ||
| γὰρ διὰ τοῦ Γ τῇ ΔΑ παράλληλος ἡ ΓΕ καὶ διαχθεῖσα ἡ ΒΑ συμπιπτέτω αὐτῇ κατὰ τὸ Ε . Καὶ |
| . χιτῶνι καὶ μεταμπίσχουσα τὰς ψυχάς . σαρκῶν ἀλλογνῶτι περιστέλλουσα χιτῶνι . . . . λέγει δὲ καὶ Ἐ . | ||
| γε μὴν ξανθότατόν ἐστι . τὸ δὲ ὑπὸ τούτῳ τῷ χιτῶνι κυανοῦν ἐστὶ χρόᾳ καὶ χαῦνον , ὥσπερ οὖν πεπρημένη |
| : ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ , | ||
| , καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ |
| λαβεῖν , ὅτι οἱ ἔχοντες ἀρκτικὸν τὸν τροπικὸν ὑποπεπτώκασι τῷ γραφομένῳ κύκλῳ ὑπὸ τοῦ πόλου τοῦ ζωδιακοῦ κατὰ τὴν τοῦ | ||
| ἔχοντι , ὑπὸ δὲ τοῦ πρώτου νοῦ τελειουμένῳ καὶ ἐντελεχείᾳ γραφομένῳ . τὸ γὰρ ἀμέριστον καὶ ἡνωμένον τῆς τελειότητος ἐκεῖθεν |
| οἱ γεωμέτραι τὴν [ γραμμὴν ] πλάγιον τοῦ τετραγώνου πλευρὰν καταγομένην δι ' αὑτῆς τὸ παραλληλόγραμμον ἐπίπεδον καταμετρεῖν . εἰ | ||
| γένεσιν τοῦ Διαγόρου , τὴν ἔχουσαν κοινωνίαν ἀπὸ Καλλιάνακτος ἤτοι καταγομένην . . Ἤγουν σὺν ταῖς εὐτυχίαις τοῦ Διαγόρου καὶ |
| πέντε καταντῶσιν οἱ πάντες , κἂν τοῖς ὀνόμασι διαφέρωνται . Διαίρεσις δέ ἐστι λόγος τομὴν ἀκριβῆ τῶν ὑποκειμένων μετ ' | ||
| οἰκεῖον προσέφερον ἀεὶ τοῖς τε πράγμασι καὶ τοῖς μανθάνουσι . Διαίρεσις κατὰ τοὺς Πυθαγορείους τῆς ὅλης μαθηματικῆς ἐπιστήμης εἰς γένη |
| οὕτω περιέχεσθε τῆς ἡγεμονίης , οἰκὸς καὶ ἐμὲ μᾶλλον ὑμέων περιέχεσθαι , στρατιῆς τε ἐόντα πολλαπλησίης ἡγεμόνα καὶ νεῶν πολλὸν | ||
| τέσσαρα , ἐν οἷς ἐλέγομεν καὶ τὴν τῆς ψυχῆς ἰδέαν περιέχεσθαι κατὰ τὸν ἐναρμόνιον λόγον , ὁ μὲν τέσσαρα τοῦ |
| περὶ καλοῦ τι λέγειν οὔτε περὶ ἐναντίου προσήκει λέγειν τῷ γεωμέτρῃ καθὸ γεωμέτρης : κοινὰ γὰρ ταῦτα καὶ πλείοσιν ὑπάρχοντα | ||
| ἅπτεσθαι τοῦ ἐφάπτεσθαι : τὸ μὲν γὰρ ἐφάπτεσθαι εἴρηται τῷ γεωμέτρῃ ὡς δεῖ ἐκδέχεσθαι , τὸ δὲ ἅπτεσθαι , ἵνα |
| χρείαν τῆς κατὰ τὴν χώραν διαιρέσεως τῷ τοὺς φθάσαντας ὅρους συγχεῖσθαι ὑπὸ τῆς τοῦ Νείλου ἀναβάσεως , τὴν δὲ γεωμετρίαν | ||
| ἄλλα , τοσούτῳ καὶ πρὸς τὸ συγκιρνᾶσθαι τῷ οἰκείῳ καὶ συγχεῖσθαι ἑτοιμότερον . εὐθὺς γοῦν ἐπὶ μὲν τῶν ἀλόγων εὑρέθη |
| δύο τέχναι καὶ τῷ ἀποτελέσματι τῆς ἑτέρας ἡ ἑτέρα ὡς ὀργάνῳ χρήσηται , ἀτιμοτέρα μὲν ἡ ποιοῦσα , τιμιωτέρα δὲ | ||
| , ὁπηνίκα ταῖς τέχναις τοῦ Ἡφαίστου , ἀντὶ τοῦ τῷ ὀργάνῳ , τῷ τῇ τέχνῃ τοῦ Ἡφαίστου κατασκευασθέντι , λέγω |
| ΝΟΝ ΕΙΔΟΣ ΚΑΤΑ ΔΕ ΤΑ ΤΗΣ ΡΥΘΜΟΠΟΙΙΑΣ ΣΧΗΜΑΤΑ ΠΑΡΑΛΛΑΤΤΕΙ ΕΝ ΤΩΙ ΦΙΛΟΝ ΩΡΑΙΣΙΝ ΑΓΑΠΗΜΑ ΘΝΑΤΟΙΣΙΝ ΑΝΑΠΑΥΜΑ ΜΟΧΘΩΝ ΕΣΤΙ ΔΕ ΠΟΥ | ||
| ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ [ [ ΩΣΤΕ ] ΤΗΝ ΜΕΝ ΠΡΩΤΗΝ ΞΥΛΛΑΒΗΝ ΕΝ ΤΩΙ [ ] ΜΕΓΙΣΤΩΙ ΧΡΟΝΩΙ ΚΕΙΣΘΑΙ [ ΤΗΝ ΔΕ ΔΕΥΤΕΡΑΝ |
| δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ : | ||
| τὸ Ξ κέντρον γεγραμμένου κύκλου τοῦ ΜΝΠΦ αἱ ΡΟ ΥΟ ΤΟ , καὶ ἀπὸ τῶν διχοτομούντων τὰς ΟΟ περιφερείας σημείων |
| σημεῖον , πρὸς τὴν πυραμίδα , ἧς βάσις μὲν τὸ ΘΟΕΠΖΡΗΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον . καὶ | ||
| στερεοῦ , λοιπὴ ἄρα ἡ πυραμίς , ἧς βάσις τὸ ΘΟΕΠΖΡΗΣ πολύγωνον , ὕψος δὲ τὸ αὐτὸ τῷ κώνῳ , |
| περίκειται καὶ λίαν ὑψηλὴ καὶ τὸ ἱερὸν καὶ τὸ ὕδωρ ἀπολαμβάνουσα ἐν κοίλῳ τόπῳ καὶ βαθεῖ . τὰς μὲν οὖν | ||
| κύκλον δεδομένον τῷ μεγέθει τὸν ΔΑΓ διῆκται εὐθεῖα ἡ ΒΓ ἀπολαμβάνουσα τμῆμα τὸ ΒΑΓ δεχόμενον γωνίαν δοθεῖσαν τὴν ὑπὸ τῶν |
| ἔτη ἕως τοῦ ζητουμένου ἔτους , τουτέστιν ἔτη ͵αξη , παρακείμενα αὐτοῖς ἔν τε τῇ εἰκοσαπενταετηρίδι τῶν συνόδων καὶ τοῖς | ||
| πυοποιήσεως , ἀτμῶν τινων δριμέων ἢ ποιότητος φερομένων ἐπὶ τὰ παρακείμενα μόρια , καὶ δάκνοντα καὶ ἀνιῶντα ταῦτα , γίνονται |
| ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
| εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
| παράκειται παρὰ τὴν ΑΗ τρίτην ἀνάλογον πλάτος ἔχον τὴν ΑΖ ἐλλεῖπον εἴδει τῷ ὑπὸ ΗΚΘ ὁμοίῳ τῷ ὑπὸ ΗΑΒ . | ||
| παρὰ τὴν ζ καὶ τὴν γ παραλληλόγραμμον οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ |
| ΒΔ , ΔΓ ἴσον ὑπόκειται τῷ ἀπὸ τοῦ τετάρτου μέρους ἀναγραφομένῳ τετραγώνῳ τῆς Α . ὥστε τὸ δὶς ὑπὸ τῶν | ||
| ὀρθογώνιον ἴσον ἐστὶ τῷ ἀπὸ τοῦ λοιποῦ τμήματος τοῦ ΑΘ ἀναγραφομένῳ τετραγώνῳ . Ἀπορεῖται [ ] , ὅτι πόθεν δῆλον |
| ἴσον ἐστὶ τὸ ΓΘ τῷ ΕΗ , ἔστι δὲ καὶ ἰσογώνιον , τῶν ΓΘ , ΕΗ ἄρα ἀντιπεπόνθασιν αἱ πλευραὶ | ||
| μονὰς κορυφή , ἀλλ ' ἐπίπεδον αὐτῇ τὸ πέρας γίνεται ἰσογώνιον τῇ βάσει : ἐὰν δὲ πρὸς τῷ μὴ εἰς |
| τοῦ αὐτοῦ ἀπαραλλάκτως ἔχεται τοῦ σημαινομένου ὁμοτονεῖ , ὅσα δὲ διαλλάσσει τῷ σημαινομένῳ οὐκέτι . τὸ μὲν οὖν φίλος καὶ | ||
| ᾤκησεν Ἀνταῖος , οὐχ ὁ παλαίσας Ἡρακλεῖ : ἐκεῖνος γὰρ διαλλάσσει τοῖς χρόνοις : ἀλλ ' ἕτερος , ὃς τὴν |
| ὑπὸ ΔΓΗ τῇ ὑπὸ ΔΖΗ : ἐν γὰρ τῷ αὐτῷ τμήματι τοῦ κύκλου εἰσίν . ἡ δὲ ὑπὸ ΔΖΗ ἐδείχθη | ||
| ὑπὸ ΘΑΓ ἴση ἐστὶ τῇ ἐν τῷ ἐναλλὰξ τοῦ κύκλου τμήματι γωνίᾳ τῇ ὑπὸ ΑΒΓ . ἀλλ ' ἡ ὑπὸ |
| : τὸ Η ἄρα σημεῖον κέντρον ἐστὶ τῶν κύκλων . ἀνεστάτω ἀπὸ τοῦ Η σημείου τῷ μὲν τοῦ ΓΔ κύκλου | ||
| . ἔστω δὲ ἡ δοθεῖσα γωνία πρότερον ὀρθή , καὶ ἀνεστάτω ἀπὸ τῆς ΑΒ ἐπίπεδον ὀρθὸν πρὸς τὸ ὑποκείμενον , |
| Δ , καὶ ἀπ ' αὐτοῦ πρὸς ὀρθὰς ἀγαγὼν τῇ ΕΓ τὴν ΔΒ , καὶ ἐπιζεύξας τὴν ΕΒ , καὶ | ||
| ἡ ΑΕ τῇ ΕΒ : ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ : τὰ Γ , Δ ἄρα σημεῖα οὐκ ἴσον |
| ἐπὶ ταῖς ΛΒ , ΛΕ περιφερείαις τοῦ περὶ τὸ ΒΕΛ τρίπλευρον γραφομένου κύκλου . ὥστε καὶ τῆς ΒΕ πρὸς ἑκατέραν | ||
| τοῦ μεσημβρινοῦ , ἰσόπλευρόν τε καὶ ἰσογώνιον γίνεται τὸ ΓΔΕ τρίπλευρον τῷ ΓΔΗ , ὥστε καὶ τὴν ΓΕ τῇ ΓΗ |
| ἐπὶ τῶν ΑΒ ΓΔ , καὶ ἤχθωσαν κάθετοι αἱ ΕΖΗ ΘΚΛ , ἔστω δὲ ὡς ἡ ΕΗ πρὸς ΗΖ , | ||
| δύο ὀρθῶν καὶ αὐταὶ κἀκεῖναι ] : ἔσται δὴ τὸ ΘΚΛ ἐπίπεδον κεκλιμένον πρὸς τὸ ΑΒΓΔ ἐν τῇ ὑπὸ ΘΓΑ |
| ἡ ΖΝ ١ ٢٦ ٤١ ٤٠ ٣٢ Τὸ ΓΕ ٥ ٥١ ١٨ ١٢ ἡ ΒΗ ١ ٤٤ ٣٠ ἡ ΑΒ | ||
| . ٥ ٢٨ ٣٨ ἡ πλευρὰ τοῦ ΕΓ ٢ ٥٤ ٥١ τὸ ΒΓ τὸ καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ |
| , ὡς ἐπὶ τἀγαθὸν καὶ τὴν ἀρχὴν τὴν πρώτην , κείσθω διωμολογημένον καὶ διὰ πολλῶν δεδειγμένον : καὶ δὴ καὶ | ||
| . Καὶ ὁ μὲν κατὰ τὰς ἡλικίας λόγος ὧδέ πη κείσθω ἱκανῶς ῥηθείς νῦν δὲ καὶ περὶ τῶν λοιπῶν ῥητέον |
| ὑπὸ ΒΑΔ , ἡ δὲ ΓΔ τὸ ΔΒΑΓ τμῆμα ἔχον δοθεῖσαν γωνίαν τὴν ὑπὸ ΔΑΓ : δοθὲν ἄρα καὶ τὸ | ||
| κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν δοθεῖσαν εὐθύγραμμον γωνίαν δίχα τεμεῖν . χρῆται γὰρ ἐν τούτῳ |
| τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις | ||
| τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον |
| καὶ Δωρικῶς : ἄλλη ἀλλαχοῦ . . ΠΑΡΑΚΛΙΝΟΥΣΙ . Τὸ ΠΑ μακρὸν ἐδέξατο , καὶ τὸ ΚΛΙ βραχύ : ὢ | ||
| ! [ ] [ ἀναγκ ] [ ] [ ] ΠΑ ? ? [ ] [ ] ΟΞΩ ! [ |
| ἐπιδεχόμενον , διὰ τῶν καθ ' ἕκαστα καὶ καθόλου τῷ ὁριστῷ τὸν ὁρισμὸν ὑπάρχειν δεικνύομεν , πρῶτον μὲν τοῦτο ἀδύνατον | ||
| μὲν γὰρ ἀληθεῖ ὁρισμῷ καὶ πάντα συνᾴδει τὰ προσόντα τῷ ὁριστῷ καὶ διὰ τοῦτο καὶ τἄλλα τὰ λεγόμενα περὶ αὐ |
| : οὐκ ἄρα ἴση ἐστὶν ἡ ὑπὸ ΛΒΕ τῇ ὑπὸ ΖΕΑ . ὀρθὴ δὲ ἡ πρὸς τῷ Ε ὀρθῇ τῇ | ||
| πρὸς ὀρθὰς αὐτὴν τέμνει : ὀρθὴ ἄρα ἐστὶν ἡ ὑπὸ ΖΕΑ : πάλιν , ἐπεὶ εὐθεῖά τις ἡ ΖΕ εὐθεῖάν |
| Ζ ἐπὶ τὸ Ε ἐπιζεύξαντες τὴν ΖΓΕ , ἕξομεν τὴν ΓΒ μέσην τῶν ΑΒ ΒΗ . καὶ ἡ ἀπόδειξις φανερά | ||
| , ὅτι καὶ λοιπὸν τὸ ΑΒ πρὸς τὸ αὐτὸ τὸ ΓΒ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ . μετὰ γὰρ |
| τῆς ἐν ἡμῖν σοφῆς δημιουργίας οὐδέτερον , τοῖς αἰσθητοῖς ἀεὶ ἀνάλογα προβαλλομένης τὰ αἰσθητήρια : τῷ μὲν γὰρ ῥᾳδίως αἰσθάνεσθαι | ||
| ' ὕπνον φαντάσματα τῶν ἐν ταῖς ἐγρηγόρσεσι παθῶν ἢ ἐνεργειῶν ἀνάλογα . δόξειε δ ' ἂν Ἀριστοτέλης τῇ φυτικῇ τὸν |
| πτέρναν „ τῇ μὲν φωνῇ βαρβαρισμός ἐστι , τῷ δὲ σημαινομένῳ κατόρθωμα : τῷ γὰρ ὄφει λέγεται περὶ τῆς γυναικός | ||
| τούτοις διάστασις , καθ ' ἣν οἱ μὲν περὶ τῷ σημαινομένῳ τὸ ἀληθές τε καὶ ψεῦδος ὑπεστήσαντο , οἱ δὲ |
| εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς | ||
| μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ |
| , τὸ ΜΛΓ πρὸς τὸ ΜΑΓ , καὶ τὸ διπλάσιον ΒΛΓ πρὸς τὸ ΒΑΓ : καὶ συνθέντι ἄρα πρὸς συγκείμενον | ||
| δὲ τὸ ΔΛ τετράπλευρον τῷ ΑΕΗ τριγώνῳ , τὸ δὲ ΒΛΓ τῷ ΑΓΘ : ὡς ἄρα τὸ ὑπὸ ΖΕΔ πρὸς |
| ΘΚΛ , τριῶν δὲ παραλληλογράμμων τῶν ΚΖΓΛ , ΛΓΗΘ , ΘΚΖΗ . καὶ φανερόν , ὅτι ἑκάτερον τῶν πρισμάτων , | ||
| δειχθήσεται . ὅτι μὲν οὖν ἰσόπλευρόν τε καὶ παραλληλόγραμμον τὸ ΘΚΖΗ τετράπλευρον , δῆλον : ὅτι δὲ καὶ ἰσογώνιον , |
| Κηφέως εἴρηκε συμφώνως τοῖς φαινομένοις , περὶ δὲ τῶν ἄλλων διαφώνως . τούτου δ ' ἔτι πρότερον διαμαρτάνειν μοι δοκεῖ | ||
| καὶ Ἄρατον συμφώνως ἀποφαίνονται τῷ φαινομένῳ , ὁ δὲ Ἄτταλος διαφώνως . Ὁ μὲν γὰρ Ἄρατος ἀκολουθῶν τῷ Εὐδόξῳ ἐπὶ |
| τομή ἐστι κυλίνδρου , οἵα καὶ ἐν τῷ πρὸ τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν | ||
| τὰς ἀποδείξεις ποιοῦνται , ὡς γεωμετρία ἀποδείκνυσιν ἐν τῷ πρώτῳ θεωρήματι καὶ δευτέρῳ καὶ τοῖς ἐφεξῆς , ἢ ἀναγκαιότερον , |
| Κρόνου μὲν οὖν ἐναντιουμένου καταψύξεις , Ἄρεως δὲ ῥιψοκινδυνίας . Ἐκκείσθω πάλιν τὰ παρὰ Δωροθέῳ τοιαῦτα οὕτω περὶ κλήρου στρατιᾶς | ||
| ἀδίκως δίκην εἰσάγοντι , ὁ δὲ δικαίως ἐγκαλῶν νικήσει . Ἐκκείσθω δὲ καὶ τὰ ἐκ τῶν ἐπῶν τοῦ Δωροθέου μεταφρασθέντα |
| , πρὸς τοὺς περιγραφομένους περὶ τὴν ἕλικα τομέας ὁμοταγεῖς τῷ ΟΘΝ , οὕτως πάντες οἱ ἐν τῷ ΑΖΓ τομεῖς οἱ | ||
| ἐν τούτῳ καὶ τὸ Θ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΘΝ περιφέρειαν διελθὸν ἐπὶ τὸ Ν παραγίγνεται . Ὁμοία ἄρα |
| : ἀγνοεῖται γὰρ τοῦ αἰπόλου τὸ ὄνομα . πῶς οὐχ ὑπεγράφη ἐν τῷ εἰδυλλίῳ τούτῳ τὸ τοῦ αἰπόλου ὄνομα , | ||
| καὶ μακάριον νομίζων , ὡς ἡ κοινὴ τοῦ θεοῦ νόησις ὑπεγράφη , μηθὲν μήτε τῆς ἀφθαρσίας ἀλλότριον μήτε τῆς μακαριότητος |
| ΑΗΒ γωνία καθ ' ὑπόθεσιν ἴση ἐστὶν τῇ ὑπὸ ΔΘΕ γωνίᾳ : ὅμοιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ | ||
| περιέχωσι , τὸ δὲ Δ σημεῖον ᾖ ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης , ἡ ἀπὸ τῆς |
| ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
| συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |
| ἐλαμβάνετο περιφανείας . δεῖ ἄρα τὸ σημεῖον οὐ μόνον ἐν ὑγιεῖ εἶναι συνημμένῳ ἡγούμενον , τουτέστι τῷ ἀπ ' ἀληθοῦς | ||
| μὲν πρὸς πλοῦν , καλῷ μεγέθει ὁλκάδος , καὶ κατασκευῇ ὑγιεῖ , καὶ πλήθει ὀργάνων , καὶ ὑπηρεσίας ἀκριβείᾳ , |
| οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
| κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
| τῶν ζῳδίων κύκλου τὸ Ε , καὶ κέντρῳ τῷ Β γεγράφθω ὁ ἐπίκυκλος τῆς σελήνης ὁ ΖΗΘ , περιαγέσθω δ | ||
| πάλιν κέντρῳ τῷ Γ , διαστήματι δὲ τῷ ΓΒ κύκλος γεγράφθω ὁ ΔΚΒ , καὶ πάλιν κέντρῳ τῷ Α , |
| . οὕτω φαίνεται [ τὸ ] πρὸς λόγον τὸ μέν ἐμβεβλημένον καὶ τὸ ἀλαθέως ὀρθῶς ἐπ ' ἐσχάτῳ κείμενον : | ||
| σῦριγξ καὶ χνόη τὸ εἰς τὴν ὀπὴν ἔνθα ὁ τροχὸς ἐμβεβλημένον ξύλον . τὸ δὲ χνόαι βαρύτονον : τὰ εἰς |
| τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
| προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
| τὴν βαθεῖαν ὁδὸν τῆς ἀμετρήτου θαλάσσης ἐδήλωσαν , αὐτοὶ δὲ ἑδραῖα καὶ ἀσφαλῆ πάντα ἐν τῷ βίῳ διεσάφησαν , καὶ | ||
| τῶν σωμάτων : τὰ μὲν γὰρ ἔχοντα μείζονας μόνιμα καὶ ἑδραῖα , τὰ δὲ ἐπὶ μικροῦ βεβῶτα εὔεικτα καὶ μαλακὰ |
| , φυλάττων τὴν τῶν πραγμάτων τάξιν καὶ ἀκολουθίαν . ΚΕΦΑΛΑΙΑ ΤΟΥ ΠΡΩΤΟΥ ΛΟΓΟΥ Αʹ . Πῶς δεῖ γυμνάζειν τὸν καθ | ||
| ἀπὸ τῶν πρὸς τὴν Ἰὼ λεγομένων ἔστι συμβαλεῖν . ΤΑ ΤΟΥ ΔΡΑΜΑΤΟΣ ΠΡΟΣΩΠΑ : Κράτος καὶ Βία : Ἥφαιστος : |
| πράγματος , αἱ δὲ διαφοραὶ μόνου πράγματος . Οὐ τῷ προφορικῷ φησιν , ἐπεὶ οὐκ ἔσται ὁ ἄγγελος λογικὸς μὴ | ||
| οὐκ ἂν εἴποι τοὺς ὄρνιθας ἀγχινοίᾳ τε διαφέρειν καὶ τῷ προφορικῷ κεχρῆσθαι λόγῳ ; οἵ γε οὐ μόνον τὰ παρόντα |