ἐστιν ἡ τοιάδε γνῶσις οἵα περιγράφειν τὸ νοητόν , ἀλλὰ περιγράφεσθαι μᾶλλον ὑπ ' ἐκείνου καὶ ὁρίζεσθαι , μέχρις ὅσου | ||
γὰρ τὸ σωματικὰ εἶναι καὶ ἔν τινι κατέχεσθαι καὶ τόπῳ περιγράφεσθαι οὐκ εἰς τὸ ὁπουδήποτε ὂν ἐνεργεῖ , ἀλλ ' |
τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις | ||
τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον |
, τῇ δὲ γεωμετρίᾳ περὶ τὴν τοῦ μένοντος καὶ ἑστῶτος πηλίκου ἐξέτασιν καταγιγνομένῃ συλλήπτρια ὑπῆρξεν ἡ σφαιρικὴ κινουμένου πηλίκου ἐπιγνώμων | ||
μηδεμίαν ὑπερβαῖνον ὑπερβολήν ; καὶ ἁπλῶς ὅλοις ἐξελεύσῃ τοῖς τοῦ πηλίκου τρόποις . ΜΕΤΑ τὴν λύσιν τοῦ παραγραφικοῦ ἐρεῖς , |
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
μάτην ἄρα οὐδ ' οἱ ἐν Ἀθήναις δικάζοντες πολλοῖς δικαστηρίοις ἐγγράφεσθαι σπεύδουσι ” . καὶ αἱ πολλαὶ δὲ κλήσεις αἱ | ||
, οἱ δ ' ἐφεξῆς δύο , τί τὸ εὐθύγραμμον ἐγγράφεσθαι ἢ περιγράφεσθαι κύκλῳ , οἱ δὲ μετὰ τούτους δύο |
διὰ τοῦ Δ ἡμικύκλια , ἵνα ἡ ἐφαπτομένη ἑκάστου αὐτῶν προσεκβαλλομένη ἐπὶ τὴν τοῦ μείζονος ἡμικυκλίου περιφέρειαν τὴν μεταξὺ τῆς | ||
ἣν ἄγονται καὶ τῆς παρ ' ἣν δύνανται , καὶ προσεκβαλλομένη ἕως τοῦ ἑτέρου μέρους τῆς τομῆς δίχα τμηθήσεται ὑπὸ |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
κγʹ πρόβλημά ἐστι σύστασιν ἀπαιτοῦν γωνίας ἴσης ἄλλῃ δοθείσῃ γωνίᾳ εὐθυγράμμῳ πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ δοθέντι | ||
τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ , |
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
τελειοτάτη ἡ δὶς διὰ πασῶν . ἐκδηλότερόν γε μὴν ἡ σφαιρικὴ δι ' ἀριθμητικῆς τυγχάνει πάντων τῶν προσηκόντων αὐτῇ σκεμμάτων | ||
ἀστρονομία περὶ μόνα τὰ οὐράνια σώματα καταγίνεται , ἡ δὲ σφαιρικὴ περὶ πᾶσαν σφαῖραν καταγίνεται : λέγει γὰρ τὰ συμβαίνοντα |
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται | ||
σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ |
πόρισμά τι ἐκ τῶν εἰρημένων συνάγει . ἔστι δὲ τοιοῦτον πόρισμα ὅτι φανερὸν γέγονεν ἐκ τῶν εἰρημένων ὡς μία κατάφασις | ||
τῇ εἰς ἀδύνατον ἀπαγωγῇ συνανεφάνη . τὸ δὲ νῦν προκείμενον πόρισμα διδάσκει ἡμᾶς , ὅτι περὶ ἓν σημεῖον τόπος εἰς |
πλάτους ἐξ ἀνάγκης πλάτος ἔχουσιν , ὥστε μηδὲν εἶναι μῆκος ἀπλατές , διὰ δὲ τοῦτο μηδὲ γραμμήν . Εἰ δὲ | ||
τοῖς ἄκροις ἐπιπροσθεῖ . τί ἐστι περιφερὴς γραμμή ; μῆκος ἀπλατές , πρὸς ὅπερ ἀφ ' ἑνὸς σημείου τῶν ἐντὸς |
χρῆϲθαι μερῶν . εἰ μὲν οὖν αἵματοϲ πλῆθοϲ εἴη τὸ διατεῖνον , φλέβα τμητέον αὐτίκα μεγάλην τὴν ἐγγὺϲ τοῦ πάϲχοντοϲ | ||
τὸ μὲν λέγεται σπέρμα , ὅπερ καὶ αὐτὸ πνεῦμά ἐστι διατεῖνον ἀπὸ τοῦ ἡγεμονικοῦ μέχρι τῶν παραστατῶν : τὸ δέ |
κλιμακίῳ ἑνί τινι κλίμακος πρὸς κράτημα . γενομένου δὲ τοῦ κρατήματος , καθὼς ἐδηλώθη , στρέφεται ὁ ἄξων , ὅτε | ||
ἐπ ' ὀφθαλμοῦ παραλαμβάνομεν , ἤτοι προπεσεῖν κινδυνεύοντος , ἢ κρατήματος ἕνεκα τῶν ἐπικειμένων αὐτῷ : τὸν δὲ ῥόμβον ἐπὶ |
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
ὥσπερ ὁ ἄνθρωπος εἶδος τοῦ ζῴου λέγεται . ἐγνωκότες οὖν ποσαχῶς λέγεται τὸ εἶδος , φέρε εἴπωμεν καὶ περὶ ποίου | ||
ἢ τρόποις ποιεῖ τις , λέγομεν ποσαχῶς , οἷον : ποσαχῶς διαιρεῖται τὸ θνητόν ; ἢ ποσαχῶς ὀνομάζεται ὁ ἄνθρωπος |
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
, κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου | ||
, καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη |
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ | ||
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο |
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
, ἀλλ ' ὅτι καθόλου . εἰ τοίνυν τὸ μὲν καταφατικῶς κατηγορούμενον συνάγειν ἐπείγεται καὶ τὰ φύσει διῃρημένα , ὡς | ||
ἤτοι ψευδὴς ἢ ὑποκείμενος ἢ κατηγορούμενος , εἴτε ἀποφατικῶς εἴτε καταφατικῶς καθ ' οἷον δήποτε σχῆμα καὶ τρόπον . ὡς |
τε καὶ διαφορεῖν , ἀπερίττου δηλονότι τοῦ παντὸϲ ϲώματοϲ τηνικαῦτα ὑπάρχοντοϲ . εἰ γὰρ περιουϲία τιϲ εἴη καθ ' ὅλον | ||
νόϲῳ κεκρατημένοιϲ ἀπαγορευτέον ἐϲτίν : ἐν ἀρχῇ δὲ τοῦ πάθουϲ ὑπάρχοντοϲ , ὡϲ μήτε τι τῶν ἄκρων ἀποπεϲεῖν μήτε καθελκωθῆναι |
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
δὲ χρὴ λαμβάνειν λεῖπον τὸ χρή . ὥσπερ δὲ οἱ γεωμέτραι προλαμβάνουσιν λήμματα ὧν δέονται , οὕτως καὶ οὗτος εἴωθεν | ||
καὶ μερικὸν καὶ οὐδὲ κυρίως τέλος . εἰ δὲ οἱ γεωμέτραι μὴ χρῶνται τῇ τοῦ τέλους ἀποδόσει , δεικνύντες τὰ |
ὀστέῳ ὑπὸ τὴν ὀξεῖαν καὶ ἀποθραύειν σμιλίῳ ἢ τῇ τοῦ ἐκκοπέως ἀκμῇ , τῆς λαβῆς κρατουμένης καὶ πλησσομένης τῷ σφυρίῳ | ||
, ἵνα μὴ τοῦ ὀστέου ὅλου διακοπέντος ἡ τοῦ ἀντερηρεισμένου ἐκκοπέως ἀκμὴ κενεμβατήσασα διέλῃ τὴν μήνιγγα . τοιγαροῦν ὅταν τὰ |
περὶ ἡμικύκλιον οὗ κέντρον τὸ Σ , γραφῇ τι πολύγωνον ὁποσασοῦν ἔχον πλευράς , ὡς τὸ ΒΕΖΘΛΓ , μενούσης δὲ | ||
ἡ Θ , καὶ διῃρήσθω ἡ ΚΒ περιφέρεια εἰς ἴσας ὁποσασοῦν , καὶ ἐφαπτόμεναι ἤχθωσαν , ὡς καταγέγραπται , ὥστε |
ἤτοι ἐν τόπῳ περιέχεσθαι ἢ κατὰ τόπου φέρεσθαι . διὸ προληπτέον , ὅτι κατὰ τὸν Ἐπίκουρον τῆς ἀναφοῦς καλουμένης φύσεως | ||
τῶν πρὸς τὸν διὰ μέσων τῶν ζῳδίων κύκλον γινομένων , προληπτέον , ὅτι ὀρθὴν γωνίαν ὑπὸ μεγίστων κύκλων λέγομεν περιέχεσθαι |
τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ | ||
ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν |
πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα | ||
Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ |
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ | ||
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ |
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
συνόλης τέχνης , ἢ καί τινα ἱπποφορβίαν αὖ κατὰ συγγράμματα θεασαίμεθα γιγνομένην ἢ σύμπασαν ἀγελαιοκομικὴν ἢ μαντικὴν ἢ πᾶν ὅτι | ||
παρειμένοι καὶ καρηβαροῦντες ὑπὸ τῆς μέθης ὁπότε τι τῶν ἀγομένων θεασαίμεθα πάντες ἐξενήφομεν , ὀρθοὶ τὸ δὴ λεγόμενον ἀνιστάμενοι . |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
. ἐν δὲ τῇ Συήνῃ καὶ τὸ φρέαρ ἐστὶ τὸ διασημαῖνον τὰς θερινὰς τροπάς , διότι τῷ τροπικῷ κύκλῳ ὑπόκεινται | ||
. ἐν τούτῳ δ ' εἶναι πλῆθος ἀνδριάντων ξυλίνων , διασημαῖνον τοὺς [ τὰς ] ἀμφισβητήσεις ἔχοντας καὶ προσβλέποντας τοῖς |
ἀπὸ τῶν ἀρίστων πρόεισιν ἐπὶ τὰ ἐλάττονα , τὸ δὲ προβαλλόμενον πρώτως τὴν πρὸς τὰ ἔσχατα συναφὴν ἐπικοινωνεῖ πως καὶ | ||
εἰδὼς τῆς συνθέσεως τοῦ σοφίσματος , ἐκεῖνος λύσει καὶ τὸ προβαλλόμενον σόφισμα . Περὶ δὲ τῶν . . . οὐκ |
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
ἐπὶ τὰ εὐώνυμα μέρη , ὁ δὲ ἐπ ' ἀσπίδα ἐκπερισπασμὸς ἀπὸ τῶν ἔμπροσθεν ἐπὶ τὰ δεξιὰ νεύειν . Ἐὰν | ||
ἀπὸ τῶν ἔμπροσθεν νεύειν κατόπιν , ὁ δὲ ἐπὶ δόρυ ἐκπερισπασμὸς ἀπὸ τῶν ἔμπροσθεν ἐπὶ τὰ εὐώνυμα μέρη , ὁ |
δείκνυσιν . ἐπί τε τῶν παιδίων σφόδρα λεπτὸν ὂν τὸ περιτόναιον οὐκ αἰσθητὴν παραλλαγὴν τῇ συγκρίσει πρὸς τὰ κατὰ φύσιν | ||
στέγεται ὡς ἐπὶ τὸν περιτόναιον , ἐπειδὴ οὐ διεξέρχεται τὸν περιτόναιον , στεγανοῦ αὐτοῦ ὄντος , καὶ τῇ προσθήκῃ παχύνεται |
καὶ γνώσεσθε τοῦ λοιποῦ ἐν τῷ ἀσφαλεῖ καθεστῶτες κατασπέρχον : κινοῦν εἰς δειλίαν , ἐκπλῆττον . οἱ τοιοῦτοι . . | ||
ἐστι τὸ μὴ ὄν . καὶ μὴν τὸ διδασκόμενον φαντασίαν κινοῦν εἰς μάθησιν ἡμῖν ἔρχεται , τὸ δὲ μὴ ὂν |
μείους ἐμπεριφερομένων , γραμμῶν δὲ τούτους ὀρθῶν τε καὶ λοξῶν τεμνουσῶν ἀπὸ τοῦ κέντρου μὲν ἠργμένων , ἔτι τὰ πέρατα | ||
. τοῦτο τὸ θεώρημα δείκνυσιν , ὅτι δύο εὐθειῶν ἀλλήλας τεμνουσῶν αἱ κατὰ κορυφὴν γωνίαι ἴσαι εἰσίν , ηὑρημένον μέν |
ἀδιάστατον ἀπολείψουσι τὸ σημεῖον , ὅ γε διχάζεται πρὸς τοῦ τέμνοντος . ὁ δὲ αὐτὸς λόγος καὶ ἐπειδὰν φῶσι τὸν | ||
ἐπιφανείᾳ τοῦ κώνου τὴν ΔΖΕ : κοινὴ δὴ τομὴ τοῦ τέμνοντος ἐπιπέδου καὶ τοῦ ΑΒΓ τριγώνου ἡ ΖΗ . καὶ |
λύσις , ἐναντία τῷ πάθει . οὐ γὰρ ἀπὸ τῶν ἀποτελούντων , ἀλλ ' ἀπὸ τῶν ἀποτελουμένων , ὡς καὶ | ||
, μιμοῦνται κατῳνωμένους , περὶ καθαρμούς τε καὶ τελετάς τινας ἀποτελούντων , σύμπαν τοῦτο τῆς ὀρχήσεως τὸ γένος οὔθ ' |
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
ὑποθεμένῳ λόγον τ ' οὐθενὶ προθέντες ἐπικυροῦσι τὴν γνώμην . γραφέντος δὲ τοῦ δόγματος εὐθὺς ἐξ ἑκάστης πόλεως τοὺς ἐπιφανεστάτους | ||
ἡλίου περὶ τὴν ιʹ μοῖραν ὄντος τοῦ Καρκίνου , καὶ γραφέντος περὶ τὸ Θ τοῦ ΚΛ ἐπικύκλου ἤχθωσαν μὲν ἀπὸ |
πενταγώνοις οἱ τρίγωνοι προστιθοῖντο τῇ αὐτῇ τάξει , τοὺς εὐτάκτους γεννήσουσιν ἑξαγώνους καὶ πάλιν ἐκείνοις οἱ αὐτοὶ προσπλεκόμενοι τοὺς ἐν | ||
, δεικνύτωσαν , πῶς ἀλλήλας καταλήψονται ἢ πῶς συμπλακήσονται καὶ γεννήσουσιν ἕτερον . ὅτι μὲν οὖν ἀναιρεῖ κίνησιν μᾶλλον τὸ |
τοῦ Ε πολλαπλάσιον τοῦ τοῦ Ζ πολλαπλασίου οὐχ ὑπερέχει , εἰλήφθω , καὶ ἔστω τῶν μὲν Γ , Ε ἰσάκις | ||
μὲν δοθεῖσα γωνία ὀξεῖα ἡ ὑπὸ τῶν ΖΗΘ , καὶ εἰλήφθω ἐπὶ τῆς ΖΗ τὸ Ζ , καὶ κάθετος ἤχθω |
τῶν λεγομένων κύβων , δοκίδων , πλινθίδων , σφηνίσκων , σφαιρικῶν , παραλληλεπιπέδων , τὴν τῆς προβάσεως τάξιν ἔχουσα τοιαύτην | ||
κύκλοι , δείκνυταί πως διὰ τοῦ Ϛʹ τοῦ πρώτου τῶν σφαιρικῶν : ὅτι δὲ καὶ ἐπὶ τὰ κέντρα τῶν κύκλων |
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς | ||
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ |
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
δὲ τὸ ἔχειν τι σημαντικὸν μέρος διακρίνει τὸν λόγον τῶν αὐτοτελῶν αὐτοῦ μερῶν , ὀνόματός τε καὶ ῥήματος , διότι | ||
περιέχοντος . ἀλλὰ τοῦτο μὲν καθόλου περὶ πασῶν εἴρηται τῶν αὐτοτελῶν ἀποφάνσεων , ἐπὶ δέ γε τῶν μετὰ τρόπου λεγομένων |
τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ | ||
ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ |
καὶ ὑφ ' ἡμῶν διχῶς . Ἔστω γὰρ κύκλου τοῦ ΚΛΘ περιφέρεια ἡ ΛΘ , καὶ δέον ἔστω τεμεῖν αὐτὴν | ||
τοῦ ΔΖ , τὸ δὲ ΗΘ τοῦ ΖΗ καὶ ὁ ΚΛΘ κύκλος μείζων τοῦ ΚΛΔ . Ἐπὶ τὰ προβλήματα πάλιν |
γὰρ τῆς σφαίρας καὶ ἐπὶ τοῦ κατὰ τὸ ἡμικύκλιον ἑτέρου σημείου τὴν μοῖραν περιαγαγούσης , αἱ αὐταὶ ἔγγιστα καιρικαὶ ὧραι | ||
γίνεται δὲ τὰ ἀπ ' ἀρχῆς ἄχρι τέλους ἀπὸ τοῦ σημείου : καὶ αὔξεται ἀπὸ τῶν περιστατικῶν : πόθεν δὲ |
. εἰκονολογίαν . τὸ δι ' εἰκόνος καὶ δι ' ὑποδείγματός τι δηλοῦν : γνωμολογία δὲ ὡς τὸ “ δεινὸν | ||
μερόπων ἀνθρώπων Ἀτρεῖδαι ; . ψιλῶς . τὸ μὴ ἐπὶ ὑποδείγματός φησι . προσπαίζων . τουτέστιν ὁ φιλόσοφος ὡς παιδιᾷ |
: ὅπερ ἔδει ποιῆσαι . Περὶ τὸ δοθὲν τετράγωνον κύκλον περιγράψαι . Ἔστω τὸ δοθὲν τετράγωνον τὸ ΑΒΓΔ : δεῖ | ||
: δεῖ δὴ περὶ τὸ δοθὲν τρίγωνον τὸ ΑΒΓ κύκλον περιγράψαι . Τετμήσθωσαν αἱ ΑΒ , ΑΓ εὐθεῖαι δίχα κατὰ |
. Πάλιν δὲ ὁ Εὔδοξος διασαφεῖ καὶ τοὺς ἐπὶ τῶν κολούρων λεγομένων κύκλων κειμένους ἀστέρας καί φησιν ἐπὶ μὲν τοῦ | ||
δὲ τέμνοντες τὴν σφαῖραν διὰ τῶν πόλων ὥσπερ διὰ τῶν κολούρων τὰ μεταξὺ τῶν παραλλήλων διαστήματα κατὰ πλάτος οὐκ εἰς |
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |
παρόσον πάσης καταλήψεως ἐπίνοια προηγεῖται . μέχρι δὲ τοῦ δεῦρο ἀνεπινόητον εἶναι συμβέβηκε τὸν ἄνθρωπον , ὡς παραστήσομεν : οὐκ | ||
κινήσεων ἀρκέσει λελέχθαι , οἷς ἕπεται τὸ ἀνύπαρκτον εἶναι καὶ ἀνεπινόητον τὴν κατὰ τοὺς δογματικοὺς φυσιολογίαν . Ἑπομένως δὲ καὶ |
ἀρτηρίαν . ἀρτηρία ἐστὶ σώματος ἐπίμηκες κυκλικὸν , δίκην σωλῆνος διχῆ διαιρούντων ἀπὸ καρδίας ἐρχόμενον καὶ ἐπὶ τὸ πᾶν σῶμα | ||
τῶν ἐν αὐτῷ παραδιδομένων . Κατὰ δὲ τῶν ἀνωτάτω μερίζεται διχῆ , καθάπερ ἐν ἀρχῇ προαναπεφώνηται : καὶ ὁ μὲν |
ιδ πρὸς τὸν δ καὶ ἁπλῶς οἱ καθ ' ἑβδομάδα προχωροῦντες πρὸς τοὺς ἀπὸ δυάδος εὐτάκτους ἀρτίους . εἶτα πάλιν | ||
καὶ ἀπὸ ἑξαγώνου καὶ ἑπταγώνου βάσεως καὶ ἐπὶ πλεῖον ἀεὶ προχωροῦντες πυραμίδας συστησόμεθα τοὺς ἀναλογοῦντας ἑκάστῃ πολυγώνους ἐπισωρεύοντες ἀλλήλοις ἀπὸ |
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ | ||
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι |
, καὶ τότε σφιγγέσθω , ἵνα μὴ τῇ εἰκαίᾳ σφίγξει συμπέσῃ . ἐᾶται δὲ ξηρανθῆναι τὸ ἰπωτήριον , ἕως οὗ | ||
θεωρητῶν ἀραιωμάτων ἀποτελεῖται . ὅταν οὖν ἡ μύσις εἰς μῆκος συμπέσῃ , ἐπεκτείνεται τὸ παρεθὲν μέρος : συνέρχεται δέ , |
Ἐν τῷ αὐτῷ δὲ γένει τούτῳ δύο ἡμιτονιαῖα ἑξῆς οὐ τεθήσεται . τιθέσθω γὰρ πρῶτον ἐπὶ τὸ βαρὺ τοῦ ὑπάρχοντος | ||
σημεῖον προσαγορεύουσιν . ὅτι δὲ τοῦτο οὕτως ἔχει , παράδειγμα τεθήσεται , ὅ τινες μὲν Ὀρφέως , τινὲς δὲ τῆς |
, ἢ ἀπὸ τοῦ αἷμα καὶ τοῦ δῆξις σμώδηξ ὕφαιμος ἀνάτασις τῆς σαρκὸς , ἢ ἀπὸ τοῦ σιμοῦ ἤως πατζοῦ | ||
σαρκὸς , ἢ ἀπὸ τοῦ σιμοῦ ἤως πατζοῦ , τουτέστιν ἀνάτασις . ποίης : ἀπὸ βοτάνης . Τὴν κνίδα : |
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
ἐγγείϲωμα δέ ἐϲτι τοῦ ὀϲτέου διαίρεϲιϲ μετὰ τοῦ τὸ πεπονθὸϲ ὀϲτοῦν ὑπεληλυθέναι τοῦ κατὰ φύϲιν κάτω πρὸϲ τὴν μήνιγγα . | ||
γὰρ κωλύεται ἡ χεὶρ ὁτιοῦν ἔργον ποιεῖν : τὸ δὲ ὀϲτοῦν τοῦ βραχίονοϲ βραχύτερον μένει μὴ αὐξανόμενον , καὶ λέγονται |
, οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
πάντας καὶ αἱ χεῖρες πάντων ἐπ ' αὐτόν . „ εἰρηκότες ἐν τῷ προτέρῳ τὰ πρέποντα περὶ τῶν προπαιδευμάτων καὶ | ||
σῴζω , συνάγω . καλῶς οὖν ἀπὸ τῶν καρπῶν φαίνονται εἰρηκότες : οἱ γὰρ εὐθυνοῦντες καὶ πλούσιοί εἰσιν . ἢ |
ὅπερ ἔδει δεῖξαι . Ἐὰν ἀριθμὸς μήτε τῶν ἀπὸ δυάδος διπλασιαζομένων ᾖ μήτε τὸν ἥμισυν ἔχῃ περισσόν , ἀρτιάκις τε | ||
τέτταρες ἔσονται ἢ ἄλλο τι πλῆθος τῶν ἀφ ' ἑνὸς διπλασιαζομένων : τοσαῦτα δὲ καὶ τὰ εἴδη . ἔστι δ |
εἰ τὰ μὲν κινεῖται τὰ δὲ ἠρεμεῖ , πάλιν τοῦτο τριχῶς ἂν συμβαίνοι : ἢ γὰρ τὰ μὲν κινούμενα ἀεὶ | ||
, μάτην , φανερῶς , ἐξ ἐναντίας , διχῶς , τριχῶς , τετραχῶς , πολλαχῶς , φανερῶς , προπετῶς ἄλλως |
ὀργάνων . . . . ἀπήορος : ὁ ἀπηρτημένος καὶ διεστώς : παρὰ τὸ ἀείρω ἀερῶ . . . . | ||
. ἀπήορος , , : ἀπήορος : ὁ ἀπηρτισμένος καὶ διεστώς . παρὰ τὸ ἀείρω ἀπάορος καὶ ἀπήορος . Φιλόξενος |
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου | ||
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις |
δὲ λογιστικὸν ἐν τῷ μέσῳ τῆς κεφαλῆς , τὸ δὲ μνημονευτικὸν ἐν τῷ ἐγκεφάλῳ . πυρρίχη ἦν εἶδος ὀρχήσεως , | ||
, ἐν ᾗ τό τε φανταστικὸν πᾶν γίνεσθαι καὶ τὸ μνημονευτικὸν καὶ τὸ δοξαστικόν , ὅπερ οὖν οὐδ ' ἄμοιρον |
ἀπεῖχε τοῦ μεσουρανήματος ὁ ἀφέτης , τὸν δὲ γενόμενον ἀριθμὸν συγκρινόμενοι πρὸς ὃν ἔχομεν τῆς θέσεως τοῦ ἑπομένου καὶ τοὺς | ||
πρόσθεν πάντες ἐσημειώσαντο , οἱ ἐν τοῖς ἐλάττοσιν ὅροις λόγοι συγκρινόμενοι πρὸς τοὺς ἐν τοῖς μείζοσι μείζονές εἰσι : δειχθήσονται |
τῶν ἀτόμων προσεχῶς , ἐπειδὴ καὶ τὰ ὑπάλληλα καὶ τὸ γενικώτατον πρὸ τῶν ἀτόμων , ἀλλ ' οὐ προσεχῆ . | ||
τοῦτο δέ ἐστιν ἄτοπον . οὐ τοίνυν ἀληθές ἐστι τὸ γενικώτατον . καὶ μὴν οὐδὲ ψεῦδος διὰ τὰς ὁμοίας ἀπορίας |
ἠρεμεῖν καὶ καθεύδειν καὶ ὅσα τοιαῦτα ἐνεργήματα νοοῦντες οὐ κινήματα νοοῦμεν , ἀλλὰ τοὐναντίον , τὸ γὰρ ἑστάναι τῷ κινεῖσθαι | ||
, οἷον Σωκράτους , Πλάτωνος : καὶ γὰρ καὶ τούτους νοοῦμεν καὶ φαντασίαν αὐτῶν φυλάττομεν καὶ μηκέτι ὄντων : φάντασμα |
ἀλλήλαις , ἀχθῶσι δὲ διὰ τῶν ἁφῶν διάμετροι συμπίπτουσαι ταῖς ἐφαπτομέναις , ἴσα ἔσται τὰ πρὸς ταῖς ἐφαπτομέναις τρίγωνα . | ||
τι σημεῖον , καὶ ἀπ ' αὐτοῦ παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις συμπίπτουσαι ταῖς τε ἐφαπτομέναις καὶ ταῖς διαμέτροις , τὸ |
τὰ ἄλλα αὐτοῦ . τί γὰρ δεῖ νῦν στενοχωρίᾳ λόγου περιλαμβάνειν τοσαύτην ἀνδρὸς ἐς ὅπλα ἀρετήν ; ἔστω δὲ καὶ | ||
' αὐτοῦ ταῖς ΒΑ ΒΓ παραλλήλους ἀγομένας τὰς ΜΟ ΜΔ περιλαμβάνειν τὸ Ζ . ἔσται δὴ καὶ συναμφοτέρου τῆς ΑΒΓ |
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
μαθηματικῶς ἐπιχειρεῖν , οἷον περὶ τῶν τεττάρων στοιχείων γεωμετρικῶς ἢ ἀριθμητικῶς ἢ ἁρμονικῶς , καὶ περὶ τῶν ἄλλων ὡσαύτως . | ||
γʹ τῷ δʹ : καὶ οὕτω διῃρημένα μὲν ἀνάλογον ἔχει ἀριθμητικῶς : ἡ αὐτὴ γὰρ ὑπεροχὴ τοῦ δʹ πρὸς τὸ |
τίνα ἐστὶ καὶ ἐν τίσιν , νῦν καὶ τοὺς τόπους παραδείξομεν , ἀφ ' ὧν αἱ χάριτες . ἦσαν δὲ | ||
ἐφαρμόζεται σφαίρας , ἐπειδὰν καὶ τοὺς ἀστρονομίας ἐκθώμεθα λόγους , παραδείξομεν . νυνὶ δ ' ἐπανέλθωμεν ἐπὶ τὸν τῶν [ |
θεωρητικόν , ὁρμητικόν , πρακτικόν : τούτων δ ' ἑκάστου ὑποδιαίρεσις . Τοῦ γὰρ περὶ τὴν θεωρίαν τῆς καθ ' | ||
σφαλλώμεθα . ἔστι δὲ καὶ τῶν πέντε μερῶν τῆς ἰατρικῆς ὑποδιαίρεσις ἑκάστου . φυσιολογικὸν μὲν οὖν ἐστιν αὐτῆς μέρος , |
διὰ τί γίνεται . Τί ἐστιν ἀναστροφή . Τίς ἐστι περισπασμὸς καὶ τί ἐκπερισπασμός . Τί ἐστι στοιχεῖν . Τί | ||
σύνταγμα τόπον πεπυκνωμένον πρὸ τοῦ γενέσθαι αὐτοῦ τὴν ἐπιστροφήν . περισπασμὸς δέ ἐστιν ἡ ἐκ δυεῖν ἐπιστροφῶν τοῦ τάγματος κίνησις |
μοναχῶς ἢ τριχῶς κατασκευάζεται , τὰ δ ' ἐν μέρει τετραχῶς ἢ ἑξαχῶς , εὐεπιχειρητότερα τὰ μερικὰ τῶν καθόλου πρὸς | ||
ἅπαντος τοῦ κατὰ τὰ μεσοπλεύρια . ἐθεάσω δ ' αὐτὸ τετραχῶς δεικνύμενον ὑφ ' ἡμῶν , ἅπαξ μὲν ἐπὶ ταῖς |
τῶν αἰσθητῶν τὴν αἴσθησιν διατίθεσθαι ἄλλως δὲ ὡς σῶμα τὸ αἰσθητήριον : ἄλλο γὰρ τὸ χρώμασιν ἢ θερμοῖς ἢ χυμοῖς | ||
, ὄσφρησις καὶ αἱ λοιπαὶ αἰσθήσεις ἀκοὴ καὶ ἁφή . αἰσθητήριον ἤτοι ὀφθαλμὸς ἢ ῥὶς ἢ γλῶττα , ἃ καὶ |
οἱ ἐν τῷ λογιστικῷ . τρίγωνα μὲν γὰρ καὶ τετράγωνα διαστατά , ἀνθρώπου δὲ λόγος καὶ ζώου ἀμερῆ . καὶ | ||
ὀνομαζόμενα : σώματα δὲ τὰ αἰσθήσει ὑποπίπτοντα , τὰ τριχῇ διαστατά : πράγματα δὲ τὰ διανοίᾳ ληπτά : κοινὸν δὲ |
ἧς ἄξων ὁ ΑΒ , κέντρον δὲ τὸ Ε , ἀσύμπτωτος δὲ ἡ ΕΤ , ἡ δὲ δοθεῖσα γωνία ὀξεῖα | ||
, ΓΕ . Τῶν αὐτῶν ὄντων δεικτέον , ὅτι ἑτέρα ἀσύμπτωτος οὐκ ἔστι τέμνουσα τὴν περιεχομένην γωνίαν ὑπὸ τῶν ΔΓΕ |
κινεῖσθαι τὸ κινούμενον . Κομίζεται δὲ καὶ ἄλλη τις ἐμβριθὴς ὑπόμνησις εἰς τὸ μὴ εἶναι κίνησιν ὑπὸ Διοδώρου τοῦ Κρόνου | ||
τε καὶ μή , ὃ δεῖται ὑπομνήσεως . καὶ ἔστιν ὑπόμνησις ὡς ἐξιούσης τῆς ἐπιστήμης ἀνανέωσις καὶ ἀνάληψις , ὧν |
, ἡ δὲ ἐπ ' εὐθείας αὐτῇ ἐκτός . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , | ||
ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ κῶνος ἔσται . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , |
πρὸς τὰς ἀρχάς . Εὐθέως τοίνυν ὡς πρῶτόν τι καὶ στοιχειωδέστατον διδάσκουσιν ἡμᾶς ὅτι σῶμα μέν ἐστι τὸ τὰς τρεῖς | ||
τοὺς τῆς γενέσεως τρόπους σκοπουμένοις , κατὰ μὲν τὶ δόξει στοιχειωδέστατον καὶ ἀρχοειδέστατον εἶναι πάντων , ἐξ οὗ πρώτου κατὰ |
ἀναβαίνεις , τί ὑπακούεις ; εἰ γὰρ σταυρωθῆναι θέλεις , ἔκδεξαι καὶ ἥξει ὁ σταυρός : εἰ δ ' ὑπακοῦσαι | ||
ζῆν , οὕτως ἀνεξέταστον φαντασίαν μὴ παραδέχεσθαι , ἀλλὰ λέγειν ἔκδεξαι , ἄφες ἴδω , τίς εἶ καὶ πόθεν ἔρχῃ |
προσεχής ἐστιν ὁ συλλογισμὸς οὐδ ' ἁπλοῦς ἀλλὰ σύνθετος ἐκ προσυλλογισμοῦ : εἰ δὲ ἄλλο παρὰ τὸ Ε καὶ τὰ | ||
τὴν γὰρ ἀποφατικὴν πρότασιν ἐν τῷ συλλογισμῷ συμπέρασμα οὖσαν τοῦ προσυλλογισμοῦ οὐ παραληψόμεθα ἐν τῷ συνθέτῳ συλλογισμῷ : συντιθέντες γὰρ |
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
καὶ οὐδὲν καθολικὸν ἴσασιν . τρίτον τὸ ἐκ τῆς τῶν κοινοτήτων ἐνδείξεως τὴν θεραπείαν λαμβάνειν καὶ μήτε τὰ αἴτια αὐτοὺς | ||
ἀμέτρου ἀνιώμενος . εἰ δὲ μηδεὶς εἰς αἴσθησιν ἦλθε τῶν κοινοτήτων , πῶς εὔλογόν ἐστι λέγειν φαίνεσθαι αὐτάς ; μὴ |
φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται | ||
καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν |