, ἦν ἂν ῥητή , ὡς οὖσα τῷ τριάκοντα ἀριθμῷ γνωρίμη , ἐπεὶ δὲ καὶ λεπτῶν ἐστι πρώτων καὶ δευτέρων | ||
ἔφη πρὸς τὸν Σέλευκον ὅτι οὐκ ἀπολέλειπται ἄλλη θεραπαινὶς ἥτις γνωρίμη ἐστὶ τῷ νεανίσκῳ ; καί φησιν ὁ βασιλεὺς ὅτι |
πολλὴ λέγειν , τῶν Ἄβαντες μὲν ἐξ Εὐβοίης εἰσὶ οὐκ ἐλαχίστη μοῖρα , τοῖσι Ἰωνίης μέτα οὐδὲ τοῦ οὐνόματος οὐδέν | ||
, ὅτι καὶ ἡ ΔΛ τῆς ΔΘ ἐλάττων ἐστίν : ἐλαχίστη μὲν ἄρα ἡ ΔΗ , ἐλάττων δὲ ἡ μὲν |
τῆς σήψεως ἐπιτεινομένης ἥ τε δύναμις ἀσθενεστέρα γίνεται οὐκ ἔτι δυναμένη φέρειν τὸ μέγεθος τῶν πυρετῶν οὔτε [ ἔτι δύνασθαί | ||
τοῦ Κυπρίων βασιλέως , καὶ ὅμως οὐκ ἠγανάκτησεν ἡ θεὸς δυναμένη λίθον αὐτὴν ὥσπερ τὴν Νιόβην ἀπεργάσασθαι . ἐῶ γὰρ |
διὰ πάντων εἴρηται αὕτη μόνη καὶ δοκεῖ εἶναι τριπλῆ καὶ πενταπλῆ μετάληψις , ἕκαστον γὰρ αὐτῶν δεῖ λυθῆναι τοῖς προειρημένοις | ||
αἱ ΒΓ : ἡ μὲν γὰρ ΒΘ τῆς ΘΓ ἐστι πενταπλῆ , ἡ δὲ ΒΓ τῆς ΓΘ ἐστιν ἑξαπλῆ . |
κατὰ μέν τινας τὸ αὐτό : κατὰ δέ τινας ἡ ἄλογος καὶ καθ ' ὑπερβολὴν δαπάνη . ἔστι γὰρ λάπτω | ||
οὕτως τὸ μεῖζον πρὸς τὸ ἔλαττον . αὕτη δέ ἐστιν ἄλογος : οὐχ ὑποπίπτει γὰρ ἀριθμῷ . Τοῦτό ἐστι τὸ |
λειότατα ποιήσα , ἐπίπασσε , καὶ ἑνώσας πάντα χρῶ . Αὕτη ἄνευ τρήσεως ἀφίστησι λεπίδας , ἀνάγει ὀστᾶ διεφθορότα : | ||
νυκτὸς μάλιστα : ἡ δὲ χροιὴ αὐτοῦ ἰκτερώδης δείκνυται . Αὕτη ἡ νοῦσος τῆς προτέρης ἧσσον μικρῷ θανατώδης . Τοῦτον |
τὸ Δ , καὶ ἐπὶ τῆς ΑΔ γεγράφθω ἡμικύκλιον τὸ ΑΖΔ , καὶ ἤχθω τις εἰς τὸ ἡμικύκλιον παράλληλος τῇ | ||
, ΖΒ , ΖΕ . ἐπεὶ οὖν ἐλάττων ἡ ὑπὸ ΑΖΔ τῆς ὑπὸ ΒΖΕ γωνίας , ἔλαττον ἄρα τὸ ΑΔ |
δὲ λοξὴ , ὡς τὰ ὀνόματα σημαίνει : ἄλλη δὲ στεφανιαία , ἡ δὲ μετωπιαία , ἡ δὲ παρείας , | ||
ὀστᾶ . ῥαφαὶ δὲ εὑρίσκονται ἐπὶ τῶν πλείστων πέντε . στεφανιαία ἡ διὰ τοῦ βρέγματος . ὀβολιαία ἡ διὰ τῆς |
ΒΓ διπλῆ , ἡ δὲ ΑΕ τῆς ΕΒ διπλῆ , λοιπὴ ἄρα ἡ ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ | ||
ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν ἴση . |
Μο λ . ἐπὶ τὰς ὑποστάσεις . ἔσται ὁ μὲν ἐλάσσων Μο λ , ὁ δὲ μείζων Μο ο , | ||
τὸ φανερὸν ἡμισφαίριον . ἀλλ ' ἔστω ἡ ΕΖ περιφέρεια ἐλάσσων τεταρτημορίου : καὶ ἡ ΕΚ ἄρα ἐλάσσων ἐστὶ τεταρτημορίου |
, ΖΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι . [ ἀποτομὴ ἄρα ἐστὶν ἡ ΓΔ . Λέγω δή , ὅτι | ||
ΖΘ , ΖΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ [ προσαρμόζουσα δὲ ἡ ΖΚ |
τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ | ||
Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν |
: ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ | ||
. αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ |
ψεῦδος : οὕτω γὰρ ἂν κατάφασις ὑπῆρχεν ἢ ἀπό - φασις , ἀλλ ' ἐὰν προστεθῇ τι , δῆλον ὅτι | ||
δίκαιος οὐκ ἔστιν . ἡ μὲν γὰρ ἁπλῆ ἀπό - φασις , ὡς εἴρηται , ἁρμόζει καὶ ἐπὶ τῶν λίθων |
συναμφότερος χρόνος ἑκάστου κύκλου ὅ τε ὑπὲρ γῆς καὶ ὁ συνεχὴς ὑπὸ γῆν ἴσος φαίνεται . ἔτι δὲ ὁ τοῦ | ||
ἔπαισεν , πὺξ ἐπάταξεν , πὺξ ἔπληξεν : ἡ δὲ συνεχὴς τῶν χειρῶν συναγωγή , πυκνῶς εἰς πλῆθος ἐπιφερομένη , |
ΛΘ , ΘΒ . ἐδείχθη δὲ καὶ ὅλος ὁ ΜΝΞ γνώμων ὅλῳ τῷ ΓΗ ἴσος : καὶ λοιπὸν ἄρα τὸ | ||
γνώμων τετραπλάσιός ἐστι τοῦ ΖΗ τετραγώνου . ὁ ΞΟΠ ἄρα γνώμων καὶ τὸ ΖΗ τετράγωνον πεντα - πλάσιός ἐστι τοῦ |
προτάσεων , ὅταν ἡ πρὸς τὸ ἔλαττον ἄκρον ἐνδέχεσθαι λαμβάνηται πρότασις , ἀεὶ γίνεται συλλογισμός , πλὴν ὁτὲ μὲν ἐξ | ||
εἶναι ἀπόφασις . φανερὸν ἄρα γέγονεν ὅτι μιᾷ προτάσει μία πρότασις ἀντιφατικῶς μάχεται . ἐν οἷς τὸ πρῶτον κεφάλαιον . |
ἄκρου . ὅτι ἐν τοῖς Σαμίοις ἐφάνη λευκὴ χελιδὼν οὐκ ἐλάττων πέρδικος . Φερεκύδης ὁ Σύριος ὑπὸ φθειρῶν καταβρωθεὶς ἐν | ||
ἔσται . εἰ γὰρ μή , ἔσται ἢ ἴσος ἢ ἐλάττων . ἔστω πρῶτον ἴσος . καὶ ἐπεὶ ὑπόκειται ἡ |
ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν | ||
τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων |
τὸ φιλοτέχνημα , τὸ δὲ γύναιόν ἐστιν ἡ Τυραννίς , λελυμένη τοὺς πλοκάμους καὶ κατηφὴς καὶ λέγουσα τάδε : ἥδ | ||
ἡ δέ τις διῃρημένη ἑρμηνεία καλεῖται , ἡ εἰς κῶλα λελυμένη οὐ μάλα ἀλλήλοις συνηρτημένα , ὡς ἡ Ἑκαταίου καὶ |
Η , διαστήματι δὲ τῷ ΗΒ , κύκλος γεγράφθω ὁ ΒΚΘ : παράλληλος ἄρα ἐστὶν ὁ ΓΔΕ κύκλος τῷ ΒΚΘ | ||
τῇ ΖΞ , ὅμοιόν ἐστι τὸ μὲν ΛΚΕ τρίγωνον τῷ ΒΚΘ , τὸ δὲ ΒΚΘ τῷ ΒΔΖ , καὶ ἔτι |
μὲν δοθὲν εὐθύγραμμον τὸ ΑΒΓΔ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Ε : δεῖ δὴ τῷ ΑΒΓΔ εὐθυγράμμῳ ἴσον | ||
μὲν δοθὲν τρίγωνον τὸ ΑΒΓ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Δ : δεῖ δὴ τῷ ΑΒΓ τριγώνῳ ἴσον |
δ ' ἐστὶ περὶ τὴν διχομηνίαν . Ἔστι δὲ ὁ μηνιαῖος χρόνος ἡμερῶν κθ ∠ ʹ λγʹ . Ἐν δὲ | ||
κατὰ τὰς ἡμέρας καὶ κατὰ τοὺς ἐμβολίμους . Ὁ γὰρ μηνιαῖος χρόνος οὐκ ἀκριβῶς εἴληπται . Ἔστι γὰρ ὁ μηνιαῖος |
σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ μήκει τῇ ΖΗ , ἀποτομὴ τρίτη ἐστὶν ἡ ΚΘ . ῥητὴ δὲ ἡ ΚΛ , | ||
πρὸς ὀρθὰς ἤχθω ἡ ΑΘ : γίνεται δὴ ἡ ΑΒ τρίτη ἀνάλογον τῶν ΓΒ ΒΖ . καὶ γὰρ τοῦτο φανερὸν |
ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ | ||
ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο |
δέδοται καὶ οὐχὶ ἡ ΕΖ καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς | ||
τὰ τρίγωνα , καὶ ἡγούμενα μὲν εἶναι τὰ ΑΒΕ , ΕΒΓ , ΕΓΔ , ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ , |
προσλαβὼν τὸν ἕτερον , ποιεῖ τετράγωνον . ταῦτα δὲ λήμματα προεδείχθη καὶ ἔστιν τὸ ὀρθογώνιον γ , δ , ε | ||
ἔχει ὃν ⃞ος ἀριθμὸς πρὸς ⃞ον ἀριθμόν . Τοῦτο δὲ προεδείχθη , καί εἰσιν αἱ πλ . τῶν κύβων , |
πανταχοῦ τοῦ ἀέρος οὐ μία μεμερισμένη , ἀλλὰ μία πανταχοῦ ὅλη : καὶ τὸ τῆς ὄψεως δέ , εἰ παθὼν | ||
περιφέρεια τῇ ΔΟ περιφερείᾳ , κοινὴ προσκείσθω ἡ ΑΟ : ὅλη ἄρα ἡ ΚΟ ἴση ἐστὶ τῇ ΑΔ : ὥστε |
ἐδείχθη δὲ καὶ ἡ ΓΑ ἀποτομή . Ἐὰν ἄρα εὐθεῖα ῥητὴ ἄκρον καὶ μέσον λόγον τμηθῇ , ἑκάτερον τῶν τμημάτων | ||
, καὶ τῇ Δ σύμμετρος ἔστω μήκει ἡ ΕΖ . ῥητὴ ἄρα ἐστὶ καὶ ἡ ΕΖ . καὶ γεγονέτω ὡς |
τίνες ἂν ἰσοκρατῶς ἀπομάχεσθαι δυνηθεῖεν , ὁπότε καὶ παρεσκευασμένοις ἀγὼν ἄνισος ; ὁ τοίνυν Ἄβελ τέχνας μὲν λόγων οὐκ ἔμαθε | ||
διὰ τοῦτο δοκεῖ πλεονέκτης εἶναι . ἔστι δὲ ὁ ἄδικος ἄνισος : τοῦτο γὰρ περιεκτικὸν ὄνομα καὶ κοινόν ἐστι πᾶσι |
ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
ἡλίου τῆς ἐπιπροσθούσης αὐτῷ κορυφῆς : ὥστ ' ἂν αὕτη σταδιαία ᾖ , μείζονα δεήσει σταδιαίας εἶναι τὴν τοῦ ἡλίου | ||
προαστείων : ἀπὸ δὲ τοῦ αὐχένος ἐπὶ τὰς κορυφὰς ἄλλη σταδιαία λείπεται πρόσβασις ὀξεῖα καὶ πάσης βίας κρείττων : ἔχει |
ὡς γὰρ ἡ διπλῆ πρὸς τὴν ὅλην , οὕτως ἡ ἁπλῆ πρὸς τὴν ἡμίσειαν τῆς ὅλης . ἔστω γὰρ λόγου | ||
ψυχῇ ὡς φάρμακα ὀφείλει τὴν φύσιν τῆς ψυχῆς διερευνᾶν πότερον ἁπλῆ ἢ σύνθετος , καὶ εἰ σύνθετος , ἐκ ποίων |
] ἰσχυρός . ἡμέτερον + ἀλλ ' ἐπεὶ δοκεῖς : ἔκθεσις τοῦ δράματος . οἱ δὲ στίχοι εἰσὶ τροχαϊκοὶ κεʹ | ||
οὕτω φησί : διήγησίς ἐστι τῶν ἐν τῇ ὑποθέσει πραγμάτων ἔκθεσις εἰς τὸ ὑπὲρ τοῦ λέγοντος πρόσωπον ῥέουσα . Θεόδωρος |
, οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ , | ||
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη |
κἀν τοῖς Ἀναλυτικοῖς λέγεται , πᾶς ὅρος ἢ ἀπόδειξις θέσει διαφέρουσα ἢ ἀρχὴ ἀποδείξεως , εἰ μέσος καὶ αἴτιος , | ||
ἀξιόλογος ἐν αὐτῇ , προσαγορευομένη μὲν Πανάρα , εὐδαιμονίᾳ δὲ διαφέρουσα . οἱ δὲ ταύτην οἰκοῦντες καλοῦνται μὲν ἱκέται τοῦ |
ἐμβολίμων ὁμοίως ἐχρήσαντο . Καὶ δοκεῖ μάλιστα πάντων αὕτη ἡ περίοδος τοῖς φαινομένοις συμφωνεῖν . Ἡ σελήνη ὑπὸ τοῦ ἡλίου | ||
κῶλα ζʹ καὶ τὰ τῆς ἀντιστροφῆς τοσαῦτα . τὸ αʹ περίοδος ἐξ ἰαμβικῆς καὶ τροχαϊκῆς συζυγίας : ἡ μέντοι τροχαϊκὴ |
αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . | ||
σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ . |
ἑτερομήκης , κατὰ δὲ τὸ δὶς Ϛʹ προμήκης . ἔτι προμήκης ἐστὶν ὁ κατὰ πάσας τὰς σχέσεις τῶν πολλαπλασιασμῶν πλέον | ||
τριδακτύλων , μέγεθος ἀλεκτρυόνος μεγάλου , χρῶμα ὄρτυγος , κεφαλὴ προμήκης , ῥύγχος ὀξύ , τράχηλος λεπτός , ὀφθαλμοὶ μεγάλοι |
τὴν πρᾶξιν τοῦ ἀγαθοῦ : καὶ ἔστιν αὐτῆς ἔργον ἡ εἰρημένη ἀλήθεια , ἥτις ἐστὶ περὶ τὸ ἀγαθὸν καὶ κακόν | ||
κατὰ τῆς κυλινδρικῆς ἐπιφανείας , καθ ' ἧς ἔσται ἡ εἰρημένη ἕλιξ . ἔξεστιν δὲ διελόντα τὴν τοῦ κυλίνδρου πλευρὰν |
ἴση ἡ ΓΗ . ἐπεὶ δέ ἐστιν ὡς ἡ ΑΕ διάστασις , τουτέστιν ἡ ΓΗ , πρὸς τὴν ΓΖ , | ||
εἰπεῖν , τὴν πρώτην καὶ πρώτων διάκρισιν : ὅθεν ἐπειδὴ διάστασις αὐτῷ γέγονεν ἀπό τε τῶν πρὸ αὐτοῦ καὶ ἀφ |
, πρὶν παθεῖν , διδαχθῆναι , πηλίκον ἐστὶν ἡσυχία . Ϛγʹ . Νουμηνίῳ . Οὐ θρηνητέον οἵων φίλων ἐστερήθημεν , | ||
γʹʹ , τῶν αὐτῶν ἔσται καὶ ἡ μὲν ΒΖ ὑποτείνουσα Ϛγʹ δεκάτου , ἡ δὲ ὑπὸ ΒΖΕ γωνία τοιούτων ρνʹ |
δʹ μόνα ἑξηκοστὰ δ . διοίσει δ ' ἡ ἀκριβὴς συζυγία τῆς μέσης μόνῳ τῷ παρὰ τὴν ἡλιακὴν ἀνωμαλίαν διαφόρῳ | ||
τῆς ἀποφατικῆς τὸ ὅσον ἐπ ' αὐτῇ ἀσυλλόγιστός ἐστιν ἡ συζυγία : ἐπειδὴ δὲ οὐκ ἀδύνατόν ἐστιν μεταλαμβάνειν αὐτὴν εἰς |
ΕΜΠΕΠΤΑΣ , ὁ αὐτός φησι , πύρινος ἄρτος κοῖλος καὶ σύμμετρος , ὅμοιος ταῖς λεγομέναις κρηπῖσιν , εἰς ἃς ἐντίθεται | ||
ΗΘ , ῥητή ἐστι καὶ ἡ ΑΒ ἡ τρίπηχυς καὶ σύμμετρος μήκει τῇ προτεθείσῃ πηχυαίᾳ τῇ ΗΘ : ὁ γὰρ |
” τὰ μύρια ὀλίγα ἐστίν “ ἀκαταλήπτῳ . πᾶσα γὰρ ἀκατάληπτος φαντασία ἀκαταλήπτῳ φαντασίᾳ ἐστὶν ἴση . ἐπεὶ οὖν ἡ | ||
μεμοιραμένων οὐδείς : αἰσθητὸν γὰρ τὸ γενόμενον , αἰσθήσει δὲ ἀκατάληπτος ἡ νοητὴ φύσις . | ἐπειδὴ τοίνυν ἀοράτως τόδε |
οὐδενὶ τῷ Γ ἐνδέχεται : εἰ οὖν ἡ ἐλάττων αὕτη μεταληφθείη , ἔσται συλλογιστικὴ ἡ συζυγία . ὁμοίως δὲ καὶ | ||
οὕτω φυλάττοιτο ἔχουσα , οὐδὲν συναχθήσεται συλλογιστικῶς . εἰ μέντοι μεταληφθείη εἰς τὴν καταφατικήν , ἔσεται συλλογιστικὴ ἡ συζυγία : |
μετέχειν . ὡς δὲ δὴ καὶ ἀναγκαία καὶ προσήκουσα ὑμῖν αὕτη ἡ ἐπιμέλεια ἐκ τῶνδε ἐνθυμήθητε . Λακεδαιμόνιοι ὑμῖν ἐπολέμουν | ||
Λακεδαιμονίου ἐξελασθεὶς ἐκ τῆς Σπάρτης ἀπίκετο ἐς τὰς Ἀθήνας : αὕτη γὰρ ἡ πόλις τῶν λοιπέων ἐδυνάστευε μέγιστον . Ἐπελθὼν |
ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
, καὶ ἡ μὲν τοῦ ἡμικυκλίου γωνία ἁπάσης γωνίας ὀξείας εὐθυγράμμου μείζων ἐστίν , ἡ δὲ λοιπὴ ἐλάττων . Ἔστω | ||
θεωρημάτων , ἐν δὲ τῷ παρόντι στοιχείῳ ἐγγραφῆς ἢ περιγραφῆς εὐθυγράμμου εἰς εὐθύγραμμον ἐπί τινι τῶν ἐν αὐτῷ θεωρημάτων ὅλως |
λοιπὴ γάρ ἐστιν ὅλη ἐπ ' εὐ - θείας ἡ Λυκιακὴ παραλία ταύτῃ , καὶ ἡ τῶν Ῥοδίων περαία μέχρι | ||
δὲ ἐκπηδᾷ καὶ ἔχει τὸ θήραμα ⋮ Πάρδαλις Καρικὴ καὶ Λυκιακὴ οὐκ ἔστι μὲν θυμική , οὐδὲ οἵα σφόδρα ἁλτικὴ |
οὖν , μέγιστον τῶν καθ ' αὑτὴν ἐσχηκυῖα ἀξίωμα καὶ γεγενημένη θυγάτηρ μὲν Νεοπτολέμου τοῦ βασιλέως τῶν Ἠπειρωτῶν , ἀδελφὴ | ||
καὶ τὴν τάξιν τῶν κεφαλαίων , εἰ μὴ προσηκόντως εἴη γεγενημένη . εἰ δὲ ταῦτα πάντα κατὰ τρόπον εἴη διατεθειμένα |
ἐν θεοῖς ὁλοτελής ἐστι , πάντα ἐν ἑαυτῇ καὶ αὐτὴ περιέχουσα κατὰ τὸ ἑαυτῆς ἰδίωμα . Ἡ μὲν γὰρ ἐν | ||
ἀριθμόν : ἡ γὰρ ὑστάτη τελειότης αὐτὸς ἦν ἡ πᾶν περιέχουσα ἐν ἑαυτῇ . τοῦ δὲ κενοῦ παράδειγμα μὲν ἐν |
ὄφελος τοῦ μένειν ἄνευ τοῦ ταχθῆναι : ὅ περ μάλιστα ὑπόθεσίς ἐστι καὶ ζήτησις τοῦ Ἀγαμέμνονος : ἀλλ ' ἄγετ | ||
ἠραιωμένον ἀναφλογωθὲν ἐξανάπτει πῦρ ῥέον . Ἡ μὲν τοῦ δράματος ὑπόθεσίς ἐστιν ἡ κατὰ τῆς Ἑλλάδος ἐπιστρατεία τοῦ Ξέρξου καὶ |
ΗΒΓ τρίγωνον : ὅλον ἄρα τὸ ΑΒΓΔ παραλληλόγραμμον ὅλῳ τῷ ΕΒΓΖ παραλληλογράμμῳ ἴσον ἐστίν . Τὰ ἄρα παραλληλόγραμμα τὰ ἐπὶ | ||
ΒΓ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ τῷ ΕΒΓΖ παραλληλογράμμῳ . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ , |
κεφαλαίων αὕτη . Ἐστὶ δὲ πραγματικὴ ἁπλῆ καὶ διπλῆ καὶ τριπλῆ : καὶ ἁπλῆ μὲν , οἷον συμβουλεύει τις βοηθεῖν | ||
ΓΖ . ἐπεὶ οὖν ἡ ΑΓ τῆς μὲν ΒΓ δυνάμει τριπλῆ ἐστιν , τῆς δὲ ΗΖ πενταπλῆ , οἵων ἄρα |
καὶ ἐκκαιόμενον διὰ τὴν κρᾶσιν . ἡ γὰρ κρᾶσις αὐτῶν τοιαύτη ἐστὶν θερμὴ καὶ μελαγχολική , καὶ ἀεὶ ἐν ὀρέξει | ||
, ὃς ἁλιεὺς ἦν ὁμολογουμένως . Ἡ μὲν οὖν Βοιωτία τοιαύτη : αἱ γὰρ Θεσπιαὶ φιλοτιμίαν ἔχουσι μόνον ἀνδρῶν καὶ |
εὐδαιμονεῖν . Θυμῷ χαρίζου μηδὲν ἄνπερ νοῦν ἔχῃς . Θυσία μεγίστη τῷ θεῷ τό γ ' εὐσεβεῖν . Θεῷ μάχεσθαι | ||
ἀκούσαντες ἐπεχείρουν ταράττειν τὸ πλῆθος καὶ θόρυβος καὶ κραυγὴ ἦν μεγίστη , τῶν μὲν ἀσήμως βοώντων , τῶν δὲ βουλομένων |
ρξβ . δῆλον οὖν , ὅτι ὁ Α τοῦ Β ὑφημιόλιός ἐστι καὶ οὐ μετρεῖ αὐτόν . ὁμοίως καὶ οἱ | ||
ὁ β τοῦ γ κοινῶς μὲν ὑποεπιμόριος , ἰδικῶς δὲ ὑφημιόλιός ἐστιν , ὡσαύτως δὲ ὁ γ τοῦ δ κοινῶς |
[ ] ὀρθὴ ἔσται . Κείσθω πρὸς τῷ Δ γωνία ὀρθὴ [ ἡ ΑΔΕ ] : διάμετρος ἄρα ἡ ΑΕ | ||
καὶ θεωρίαν δοίημεν τῷ προβλήματι τούτῳ , ἔοικεν ἡ μὲν ὀρθὴ γωνία σύμβολον εἶναι ζωῆς κατ ' ἀρετὴν ἀνιούσης καὶ |
οἱ δ ' ἐν τοῖς κοίλοις τόποις ἔμειναν νεκροί : διαδεξαμένη δὲ ἡ ἄμπωτις πά - λιν ἀνεκάλυψε καὶ ἔδειξε | ||
δυνάστης ἐτελεύτησεν ἄρξας ἔτη εἴκοσι τέσσαρα , τὴν δὲ ἀρχὴν διαδεξαμένη Ἀρτεμισία ἡ ἀδελφὴ καὶ γυνὴ ἐδυνάστευσεν ἔτη δύο . |
δὲ ἡ κατὰ πολλαπλασιασμὸν ἀριθμῶν , τρίτη κατὰ μέγεθος , τετάρτη τῶν ἁπλῶν σωμάτων , πέμπτη τῶν σχημάτων , ἕκτη | ||
προτάσεως ὑποφορᾶς ἀντιπροτάσεως λύσεως . ἅπαντες γὰρ οἱ λῃσταὶ ] τετάρτη λύσις ἐκ τῆς τῶν ἐπιχειρημάτων κατασκευῆς . ὁ δὴ |
: καὶ τῆς ὑπὸ ΓΗΑ ἄρα μείζων ἐστὶν ἡ ὑπὸ ΑΔΘ γωνία : ὥστε μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ | ||
κοιναὶ τομαὶ ἡ ΑΒ καὶ ἡ ΗΖ , τοῦ δὲ ΑΔΘ κύκλου καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ , |
τρίτος μετὰ ζωήν τε καὶ οὐσίαν : αὕτη μὲν γὰρ ἀπερίγραφος , ὁ δὲ νοῦς περιγεγραμμένος , ἡ δὲ ζωὴ | ||
καὶ διὰ μυρίας ἄλλας αἰτίας , εἰκότως ἀόριστός ἐστι καὶ ἀπερίγραφος ὁ χρόνος τῆς τῶν ἀκροδρύων ἀπαρχῆς ἐπὶ μήκιστον ἐκτεινόμενος |
μεγάλῳ λιμένι , [ καὶ ] συνέστη πασῶν τῶν τριήρων ναυμαχία . οἱ μὲν οὖν Ἀθηναῖοι ταχυναυτούσας ἔχοντες τριήρεις , | ||
. περὶ Ἐπίδαμνον ναυμαχιῶν : οὐχ ὅτι γεγόνεν ἐν Ἐπιδάμνῳ ναυμαχία , ἀλλὰ διὰ τὴν αἰτίαν τῆς Ἐπιδάμνου ἐν τοῖς |
καὶ τῆς ἀναγκαῖον μὴ εἶναι καταφάσεως οὔσης ἀπόφασίς ἐστιν ἡ διαγώνιος ἡ οὐκ ἀναγκαῖον μὴ εἶναι . διὰ τοῦτο οὖν | ||
ῥητοῖς καὶ τοῖς μὴ ῥητοῖς , οἷον ἡ τοῦ τετραγώνου διαγώνιος ὡς μὲν ἐν ῥητοῖς λόγοις πρὸς τὴν πλευρὰν ἄλογος |
ὅλης τῆς ἐπιδέσεως τελαμωνιδίου ὡς διδακτυλιαίου καὶ ποσὸν στενοτέρου ἡ μεσότης τῇ ῥινὶ προστίθεται , οὗ τὰ χαλάσματα δι ' | ||
ἐν ταῖς λύπαις . περὶ δὲ τὰς ἐν σώματι ἡδονὰς μεσότης μὲν σωφροσύνη , ὑπερβολὴ δὲ ἀκολασία , ἔλλειψις δέ |
. Ἀλλ ' ἐν ᾧ μὲν χρόνῳ τὸ Ν τὴν ΝΒ περιφέρειαν διελθὸν ἐπὶ τὸ Β παραγίγνεται , ἡ ΑΕ | ||
ἡ τοῦ εἰκοσαέδρου πλευρὰ ἡ ΜΒ τῆς τοῦ δωδεκαέδρου τῆς ΝΒ , δείξομεν οὕτως . Ἐπεὶ γὰρ ἰσογώνιόν ἐστι τὸ |
ἐστίν , δηλοῖ συνοχὰς καὶ ἔριδας : εἰ δὲ καὶ κλιμακτὴρ πρόκειται τῷ ἔτει ἐκείνῳ , ἴσως καὶ τεθνήξεται . | ||
βιώσιμοι χρόνοι κατὰ τὰς προκειμένας αἱρέσεις συντρέχωσιν , ἀπαραβάτως ὁ κλιμακτὴρ ἐπακολουθήσει : ἐὰν δὲ ἡ μὲν ὑπόστασις διάστασιν ἔχῃ |
ὑπὸ ΑΕΒ ὀρθή ἐστιν . καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς , ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ : | ||
ΑΒΓ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΔ ἡμίσειά ἐστιν ὀρθῆς . ὅλη ἄρα ἡ ὑπὸ ΔΑΓ γωνία |
οὖν περὶ τὸν ἀστεῖον ἡ τροπὴ βραχεῖα , ἄτομος , ἀμερής , οὐκ αἰσθητή , | νοητὴ δὲ μόνον , | ||
ὄντος συνεστὼς ἀνύπαρκτος ἔσται . ἄλλως τε , εἰ μὲν ἀμερής ἐστιν ὁ χρόνος , πῶς τὸ μέν τι αὐτοῦ |
πορθεῖσθαι ἀπὸ τῶν σῶν παίδων , ἁλωθήσεται δὲ ὑπὸ τῶν τετάρτων ἀπὸ σοῦ : ἔστι δὲ ὁ Πύρρος . ἅμα | ||
πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ διπλασιεπιτετραμεροῦς πέμπτων ἐν ἐννάτῳ |
πέρατος τοῦ Δ , τὴν ὑπὸ ΔΒΗ , ὑποτείνουσαν τοῦ ὁμοκέντρου τῷ ζῳδιακῷ περιφέρειαν μοιρῶν ιγ ιδ . Ἐπεὶ δὲ | ||
πάροδος τῆς κατὰ τὴν ἀνωμαλίαν , τουτέστιν ἡ γινομένη τοῦ ὁμοκέντρου περιφέρεια τῆς τοῦ ἐπικύκλου : οὕτως γὰρ ἂν οὐ |
ἐστὶ τοῦ τοιούτου μέρους τοῦ ἐξ ἀρχῆς ἀριθμοῦ . . Ἀφῃρήσθω κοινὴ λεῖψις τὰ κ . Ϟοὶ ἄρα τρεῖς λείψει | ||
ὅτι μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ Ε χωρίου . Ἀφῃρήσθω γὰρ τὸ δοθὲν χωρίον τὸ ὑπὸ ΑΒΗ : λοιποῦ |
ἁπλῆ τίς ἐστι κατηγορία , ἡ δὲ τῶν πρός τι σύνθετος , ῥᾷον δὲ τὰ ἁπλᾶ μανθάνομεν τῶν πολυσχεδῶν ; | ||
καὶ ὁ τῇδε ἵππος ἐκ τῶν τῇδε φύσεων ἀνομοίων οὐσῶν σύνθετος ᾖ . πάντα γὰρ ταῦτα κωμῳδοῦντός ἐστι μᾶλλον ἢ |
εἰσέβαινε ῥυθμὸν μετ ' αἰσχύνης ὁμοῦ μέλλουσα καὶ τρέμουσα , ἄλλη δὲ συγκαθῆπτε ταύτηι χεῖρα κἀχόρευεν . ὦ πρᾶγμα πάνδεινον | ||
, σφαίρῃ ἀθύρουσιν περιηγέι : † ἡ μὲν ἔπειτα † ἄλλη ὑπ ' ἐξ ἄλλης δέχεται καὶ ἐς ἠέρα πέμπει |
χαλεπὸν εἶναι καὶ ἐλέφαντι ἐνεγκεῖν : καὶ ἄνωθεν ἡ κατάβασις ὀξεῖα ἦν : ὁ δὲ καὶ ἐνταῦθα ἔπαιεν . εἰ | ||
ὀφείλει εἶναι , οὐ περισπωμένη γίνεσθαι : ἄτοπον γάρ . ὀξεῖα τοίνυν ὀφείλει τίθεσθαι καὶ ἐνταῦθα ἐπὶ τῷ δείν ' |
παρέχοντεϲ . ἐπὶ δὲ τῶν κλονωδῶν οὐδὲν τοιοῦτον , ἀλλὰ μείζων μὲν ἐπὶ τούτων ἐϲτὶν ἡ διαϲτολή , ὥϲτε τῶν | ||
κυλίνδρῳ , εἰ δὲ μείζων ὁ ἄξων τοῦ ἄξονος , μείζων καὶ ὁ κύλινδρος τοῦ κυλίνδρου , καὶ εἰ ἐλάσσων |
ἦσαν τὰ ἐπίπεδα , ὡς ἐδείχθη . Πάλιν οὖν ἄνωθεν ἑτερομήκης ἀριθμὸς λέγεται , οὗ ἐπιπέδως σχηματογραφηθέντος τετράπλευρος μὲν καὶ | ||
τῆς εἴλης τετράγωνον ᾖ , ὁ ἀριθμὸς τῶν ἱππέων γίνεται ἑτερομήκης . Δοκεῖ δὲ τὸ ῥομβοειδὲς σχῆμα ἀναγκαιότατον παρειλῆφθαι : |
οἶδεν ὑμῶν , ὅτι ὁμοίως ἥ τε ἐν τῷ νόμῳ γεγραμμένη κυρία ἐστὶν ἡμέρα καὶ ἡ ὑπὸ τῶν ἀντιδίκων συγχωρηθεῖσα | ||
[ ἣ δ ' ἦν ἐν ἑκάστῳ κατὰ ] φύσιν γεγραμμένη [ ἐν τῇ διανοίᾳ , νῦν δ ' ] |
ἡ Η , τὸ ὑπὸ τῶν ΑΖΓ τοῦ ὑπὸ τῶν ΒΖΕ ὑπερέχει τῷ ὑπὸ τῶν Η ΔΖ . Ἐπεὶ γὰρ | ||
ΑΒΓ περίμετρος αὐτοῦ πρὸς τὴν ΒΖ περιφέρειαν ἐλάσσονα οὖσαν τῆς ΒΖΕ περιφερείας . λέγω δὴ ὅτι οὐδὲ πρὸς μείζονα τῆς |
, ι : εἰ δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς | ||
, ἀφελόμενον ἀπὸ τοῦ κέρδους τοῦ ἠδικηκότος , ὅπερ ὡς ὑπεροχή ἐστιν αὐτοῦ πρὸς τὸν ἠδικημένον , καὶ προστεθὲν τῷ |
, κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου | ||
, καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη |
τοῦ Α παρὰ τὴν ΒΔ ἡ ΑΖ : τεταγμένως ἄρα κατῆκται . ἔσται δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ | ||
δὲ τὴν Ρ , καὶ ἀπό τινος σημείου τοῦ Σ κατῆκται ἡ ΣΟ , καὶ ἀναγέγραπται ἀπὸ μὲν τῆς ἐκ |
λεπτὰ μὲν πρῶτα ξ , δεύτερα δὲ κατ ' ἐπιδιαίρεσιν ͵γχ : εἶτα μείζονος ἀκριβείας δεηθέντες διὰ τὸ ἐν τοῖς | ||
παραδείγματος ἀστείου καὶ εἰσαγωγῆς ἕνεκεν ἕως δευτέρων λεπτῶν τουτέστιν ἕως ͵γχ διαιρεῖσθαι τὴν μονάδα ἤτοι τὸν πόδα : τοῦτο γὰρ |
καὶ μία καὶ εἰκὰς κοινή , ἡ δὲ δευτέρα καὶ εἰκὰς περὶ χρῆμα ἐπιτελεῖ τὰ τοῦ ὀνείρου , ἡ τρίτη | ||
περὶ χρῆμα ἐπιτελεῖ τὰ τοῦ ὀνείρου , ἡ τρίτη καὶ εἰκὰς ἐν ἡμέραις η , ἡ δὲ δʹ καὶ εἰκὰς |
δὲ Λακεδαιμονίων , καὶ πάλιν Ἀθηναίων διαφέρουσα μὲν ἡ παλαιὰ ἐξηλλαγμένη δὲ ἡ νῦν , καὶ οὐχ ἡ αὐτὴ μὲν | ||
οὐκ ἐχόντων ἄλλοθεν δύ - ναμιν . ἡ μὲν οὖν ἐξηλλαγμένη καὶ περιττὴ καὶ ἐγκατάσκευος καὶ τοῖς ἐπιθέτοις κόσμοις ἅπασι |
Μο δ ἴσος ⃞ῳ . καὶ γίνεται πάλιν διπλῆ ἡ ἴσωσις : τῆς γὰρ ὑπεροχῆς αὐτῶν τυγχανούσης ʂ ιϚ Μο | ||
τῶν ιγ Μο τοῦ αου ⃞ον , εὐχερὴς ἦν ἡ ἴσωσις . ἀλλ ' ἐπεὶ οὐ τοῦτο , ἀπῆκταί μοι |
ΒΣ , ΣΦ , τουτέστι τὸ ἀπὸ τῆς ΒΦ , τετρα - πλάσιόν ἐστι τοῦ ἀπὸ τῆς ΝΒ : διπλῆ | ||
τοῦ κόσμου τάχος τοῦ τοῦ ἡλίου τάχους μεῖζόν ἐστιν ἢ τετρα - πλάσιον , καὶ ὁ μὲν κόσμος διὰ τοῦ |
ἐστιν , οἵων ὁ γνώμων ξ , τοιούτων ἡ μὲν ἰσημερινὴ σκιὰ κϚʹ ∠ , ἡ δὲ χειμερινὴ ξεʹ ∠ | ||
ἑξηκοστὰ Ϛʹ , ἡ δὲ θερινὴ εʹ , ἡ δὲ ἰσημερινὴ ηʹ ἐξ ἑκατέρου μέρους τοῦ ἰσημερινοῦ ἑξηκοστὰ δʹ , |
καὶ Σαλαμῖνος . νεῶν ] τῶν Περσῶν . ἀρωγὴ ] βοήθεια . οὔτις ] οὐδεμία . ἀλλήλοις ] τοῖς ἐν | ||
ἀδυναμοῦντι : εἴη ὁ σὸς παῖς , ὁ Ἐτεοκλῆς , βοήθεια : διὰ βραχέος χρόνου : νῦν τῶν τειχέων : |
καὶ τῆς ὀρθίας πρὸς τὴν πλαγίαν . καὶ διὰ τὰ δεδειγμένα ἐν τῷ τεσσαρακοστῷ πρώτῳ θεωρήματι τὸ ΓΚΜ τρίγωνον τοῦ | ||
, πάνθ ' ἅμα καὶ μιᾷ δείξει καὶ τὰ μήπω δεδειγμένα καὶ τὰ ἤδη ὡς καὶ τὰ ἐν τῷ δωδεκάτῳ |
ἡ ΘΟ πρὸς ΟΔ , οὕτως ἐστὶν ἡ τῶν ἀπὸ ΟΑ ΑΔ πρὸς τὸ ἀπὸ ΟΔ : καὶ τὸ ἀπὸ | ||
ΗΑ . ὡς δὲ ἡ ΖΗ πρὸς ΗΑ , ἡ ΟΑ πρὸς ΑΞ : ὡς ἄρα ἡ ΓΑ πρὸς τὴν |
ἐνερευθὲϲ ὑπάρχει , καὶ περὶ τὸ μέτωπον ϲυναίϲθηϲίϲ τιϲ καὶ διαδρομὴ καθάπερ ϲκωλήκων ἢ μυρμήκων γίνεται . προξυρήϲαντεϲ τοίνυν τὰϲ | ||
, ἤτρου , βουβώνων , μηρῶν , φρικώδης ἀντίληψις , διαδρομὴ νυγματώδης , νάρκα ποδῶν καὶ περίψυξις τῶν γονάτων , |
ἐστὶν ἡ διὰ τῶν Η Μ Κ : τοῦτο γὰρ προδέδεικται . ιγʹ . Ἀλλὰ δὴ μὴ ἔστωσαν αἱ ΑΒ | ||
ΕΑ , ἐλαχίστη δὲ ἡ ΑΖ : ταῦτα γὰρ ἅπαντα προδέδεικται . ἡ ΕΑ ἄρα πρὸς τὴν ΑΖ μείζονα λόγον |
δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων ρλ ἔγγιστα , οἵων ἐστὶν ὁ περὶ τὸ ΖΚΝ ὀρθογώνιον κύκλος τξ : | ||
, χαλεπῶς μὲν ἤνεγκεν , ἐνθυμούμενος καὶ οἵων τιμῶν καὶ οἵων ἐλπίδων ἀπεστερεῖτο , ὅμως δὲ συγκαλέσας τοὺς συμμάχους ἐδήλωσε |
αὐτοῦ τῆς τῶν τεχνῶν ἐπιτηδεύσεως ἕτερον . γίνεται δὲ ἡ δεῖξις ἐκ τῶν ἡμῖν προτέρων καὶ σαφεστέρων πρὸς τὸ σαφέστερον | ||
ταῦτα γὰρ τὰ δεικνύμενα διὰ συλλογισμοῦ . καὶ ἔστιν ἡ δεῖξις γεγονυῖα διὰ τοῦ τὸ ἑπόμενον τῇ εὐδαιμονίᾳ , ὅ |
τούτῳ δ ' ἀκολουθεῖν τὸ ἀφεστάναι ἴσον τὰς Κασπίους πύλας Θαψάκου τε καὶ τοῦ Κασπίου : τοῦ δὲ Κασπίου πολὺ | ||
τεινούσης πλευρᾶς καὶ τῆς ἀπὸ Βαβυλῶνος καθέτου ἐπὶ τὴν διὰ Θαψάκου μεσημβρινὴν γραμμὴν ἠγμένης καὶ αὐτῆς τῆς διὰ Θαψάκου μεσημβρινῆς |
εὐκράτῳ τροφῇ τὸ φάρμακον ἐπιδίδου . ἔστω δὲ ἡ πικρὰ προσλαμβανομένη τὸν ὀπὸν τῆς σκαμμωνίας . ἀλλὰ τῆς μὲν πικρᾶς | ||
πρὸς ἄλλο δηλητήριον . ἡ δὲ θηριακὴ πρὸς πάντα καὶ προσλαμβανομένη καὶ ἐπιδιδομένη . τῶν δὲ καθαιρόντων τὰ μὲν ἄνωθεν |
τὸ ἐλεῶ τῆς πρώτης καὶ δευτέρας , καὶ ἡ χρῆσις διττή , ἡ μέντοι ἀναλογία τῆς δευτέρας αὐτὸ εἶναι βούλεται | ||
ῥινῶν , ἢ δι ' ἱδρώτων . ἡ δὲ χολέρα διττή ἐστι καθ ' Ἱπποκράτην , ἡ μὲν ὑγρὰ , |
ἀδυνάτῳ ἐκβληθήσεται , τῷ μὲν περιττῷ , ὅτι ἢ αὕτη περιττὴ ἢ αἱ ἄλλαι τέχναι : ἀλλὰ μὴν αἱ ἄλλαι | ||
ἀδυνάτῳ ἐκβληθήσεται , τῷ μὲν περιττῷ , ὅτι ἢ αὕτη περιττὴ ἢ αἱ ἄλλαι τέχναι : ἀλλὰ μὴν αἱ ἄλλαι |