| εὐκράτῳ τροφῇ τὸ φάρμακον ἐπιδίδου . ἔστω δὲ ἡ πικρὰ προσλαμβανομένη τὸν ὀπὸν τῆς σκαμμωνίας . ἀλλὰ τῆς μὲν πικρᾶς | ||
| πρὸς ἄλλο δηλητήριον . ἡ δὲ θηριακὴ πρὸς πάντα καὶ προσλαμβανομένη καὶ ἐπιδιδομένη . τῶν δὲ καθαιρόντων τὰ μὲν ἄνωθεν |
| καὶ ὑφ ' ἡμῶν διχῶς . Ἔστω γὰρ κύκλου τοῦ ΚΛΘ περιφέρεια ἡ ΛΘ , καὶ δέον ἔστω τεμεῖν αὐτὴν | ||
| τοῦ ΔΖ , τὸ δὲ ΗΘ τοῦ ΖΗ καὶ ὁ ΚΛΘ κύκλος μείζων τοῦ ΚΛΔ . Ἐπὶ τὰ προβλήματα πάλιν |
| γωνία ὀρθή . καὶ λο πὴ ἡ ὑπὸ ΚΕΑ γωνία περιεχομένη ὑπὸ τοῦ ἑπομένου τμήματος τοῦ ζῳδιακοῦ καὶ τῆς βορείας | ||
| παρὰ τῆς ἐπὶ τῆς βάσεως γωνίας , ὑπὸ τριῶν ἐπιπέδων περιεχομένη , τὴν κατὰ κορυφὴν ὑπὸ τεττάρων συγκλειομένη , ὥστε |
| μὴ εἴη βαθύ : τοῦτο γὰρ σημεῖόν ἐστι κακοήθους καὶ διαβρωτικοῦ χυμοῦ , καὶ τὰ ἐν βάθει διαβιβρώσκοντος . εἰ | ||
| καὶ καλεῖται ὀδονταλγία . γίνεται δὲ αὕτη ἀπὸ ῥεύματος τοῦ διαβρωτικοῦ , ὡς καὶ αὐτὴν τὴν οὐσίαν γεώδη οὖσαν τρίζειν |
| ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος | ||
| μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν |
| ὀρθὰς ἔχει , ἀλλὰ ταὐτὸν ὑπόκειται τριγώνῳ τε εἶναι καὶ σκαληνῷ . εἰ δὲ μὴ ταὐτὸν ἀλλ ' ἕτερον , | ||
| ἡ ὑπὸ ΑΓΒ τῆς ὑπὸ ΓΔΒ . Ἐὰν ἐν κώνῳ σκαληνῷ τμηθέντι διὰ τῆς κορυφῆς ἐπιπέδοις τισὶν ἐπὶ παραλλήλων βάσεων |
| ἐπικύκλου ε ιγ ἔγγιστα . ἤχθω δὴ ἐπὶ τῆς ὁμοίας καταγραφῆς ἀπὸ τοῦ Κ κέντρου κάθετος ἐπὶ τὴν ΒΕ ἡ | ||
| ὕστερόν ἐστι βραχυτέρα . Ἔστω γὰρ ὡς ἐπὶ τῆς δευτέρας καταγραφῆς , καὶ τῶν αὐτῶν ὑποκειμένων ὁ ἥλιος ἔν τινι |
| θηλυκὸν Δραγγηίς , ἡ χώρα Δραγγηνή , ὡς ἔθος . Σωφηνή γὰρ καὶ Ἀραξηνή . Δραγμός , πόλις Κρήτης , | ||
| ὑπιέναι ὁρμῶντας τὸ τεῖχος ἐβάλλοντο . . . . . Σωφηνή , χώρα τῶν πρὸς Ἀρμενίαν . . . παρὰ |
| ἀδιάφορος οὖσα ὥσπερ καὶ ἡ κάθετος . διττὴ δὲ ἡ κάθετός ἐστιν , ἡ μὲν ἐπίπεδος , ἡ δὲ στερεά | ||
| ὅλως τὸ τῆς ὀρθῆς εἶδος . σύμβολον γὰρ καὶ ἡ κάθετός ἐστιν ἀρρεψίας καὶ ἀχράντου καθαρότητος καὶ μέτρου θείου καὶ |
| ἡμερῶν ὑμᾶς , μένοντας οἴκοι καὶ οὐ στρατευομένους οὐδ ' ἐνοχλουμένους , Θήβας μὲν πολιορκουμένας αὐτὰς καθ ' αὑτὰς χωρὶς | ||
| , καὶ μήθ ' ὑπὸ καύματος μήθ ' ὑπὸ ψύχους ἐνοχλουμένους . καὶ τὰς ὀπώρας δὲ παρ ' αὐτοῖς παρ |
| ΗΘΚ τεσσάρων ὀρθῶν ἐλάσσονες ὑπόκεινται : πολλῷ ἄρα αἱ ὑπὸ ΛΞΜ , ΜΞΝ , ΝΞΛ τεσσάρων ὀρθῶν ἐλάσσονές εἰσιν . | ||
| οἱ περὶ δια - μέτρους τὰς ΚΘ ΛΜ οἱ ΘΝΚ ΛΞΜ , ἰσημερινοῦ δὲ διάμετρος ἔστω ἡ ΑΗ : ὁ |
| ἑκατέρᾳ : καὶ γωνία ἡ ὑπὸ ΒΑΓ γωνίᾳ τῇ ὑπὸ ΕΔΗ ἴση : βάσις ἄρα ἡ ΒΓ βάσει τῇ ΕΗ | ||
| πλείονα σημεῖα ἢ δύο . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΕΔΗ , καὶ ὑπερβολὴ ἡ ΑΓ τῆς ΑΒ ἐφαπτέσθω κατὰ |
| ἐλαίῳ . Ἡ δὲ δι ' ἐχιδνῶν θηριακὴ Ἀνδρομάχου συνεχῶς λαμβανομένη ἐν τοῖς διαλείμμασι , δυσαλώτους ἀποδείξει ἐν τοῖς παροξυσμοῖς | ||
| οὖσα ἔδεσμα , καὶ ὡς ἐν φαρμάκου χρήσει τὸ πλέον λαμβανομένη : ἄλλως δὲ ἄθετος , πάνυ τε ὀλιγότροφος οὖσα |
| ΑΓ . καὶ ἐπεὶ τὸ ΑΒΓ ὀρθογώνιόν ἐστιν , ἐν ἡμικυκλίῳ ἄρα ἐστίν , οὗ διάμετρος ἡ ΑΓ : περιγραφὲν | ||
| ὥστε καὶ ἡ πρὸς τῷ Ε ὀρθή ἐστιν : ἐν ἡμικυκλίῳ ἄρα ἐστίν : διάμετρος ἄρα ἐστὶν ἡ ΑΘ . |
| κατὰ μὲν τὴν ἔννοιαν θεωρίαν ἔλαβον , ἀπὸ δ ' ὀργανικῆς ἕξεως προκόψαντες . οὗτοι γὰρ τὴν μὲν αἴσθησιν ὡς | ||
| δεχόμενοι μαλακαῖς τισι καὶ συνενδιδούσαις κατασκευαῖς ἐπράυνον τὴν ἐκ τῆς ὀργανικῆς βίας δύναμιν . ὁ δὲ βασιλεὺς ἅμα τῇ κατὰ |
| αὐτοῦ τῆς τῶν τεχνῶν ἐπιτηδεύσεως ἕτερον . γίνεται δὲ ἡ δεῖξις ἐκ τῶν ἡμῖν προτέρων καὶ σαφεστέρων πρὸς τὸ σαφέστερον | ||
| ταῦτα γὰρ τὰ δεικνύμενα διὰ συλλογισμοῦ . καὶ ἔστιν ἡ δεῖξις γεγονυῖα διὰ τοῦ τὸ ἑπόμενον τῇ εὐδαιμονίᾳ , ὅ |
| ἡ ΑΒ τῇ ΓΔ , ἀλλὰ καὶ γωνία ἡ ὑπὸ ΑΒΘ τῇ ὑπὸ ΔΓΚ ἐστιν ἴση . καὶ περιφέρεια ἄρα | ||
| καὶ ἔστω ὡς ὁ ΒΑΘ : μέγιστος ἄρα ἐστὶν ὁ ΑΒΘ κύκλος : ἡ γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση |
| πίθοιο : πῶς ἡ γυνὴ ἐλθοῦσα ἐπὶ κακοποιΐᾳ ἐπέσχεν ὥσπερ φειδομένη ; ῥητέον οὖν ὅτι ὥσπερ νομίσασα πάντα ἐξεληλυθέναι τὰ | ||
| . ἡ γὰρ βαρβάρων ὠμότης οὔτε παίδων ἐλευθέρων οὔτε παρθένων φειδομένη δεινὰς τοῖς ἠτυχηκόσι παρίστα συμφοράς . διόπερ αἱ γυναῖκες |
| μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ | ||
| ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ |
| ᾗ καὶ Ἀφροδίτη ἡ ἐν Κορίνθῳ ἡ Μελαινὶς καλουμένη νυκτὸς ἐπιφαινομένη ἐμήνυεν ἐραστῶν ἔφοδον πολυταλάντων ) οὐχ Ὑπερείδης μνημονεύει ἐν | ||
| : ᾗ καὶ Ἀφροδίτη ἡ ἐν Κορίνθῳ ἡ Μελαινὶς νυκτὸς ἐπιφαινομένη ἐμήνυεν ἐραστῶν ἔφοδον πολυταλάντων . Ἀπελλῆς δὲ ὁ ζωγράφος |
| , μέχρι Ῥοδίας νεὼς ἐς Σιδονίαν ἐμβαλούσης καὶ τῆς πληγῆς εὐτόνου γενομένης ἄγκυρα ἐκπίπτουσα τῆς Σιδονίας ἐς τὴν Ῥοδίαν ἐπάγη | ||
| ὅσων ἂν εὔχρηστον φαίνηται μοιρῶν . ἔπειτα ποιήσαντες ἐξ ὕλης εὐτόνου καὶ τεταμένης δύο κύκλους τετραγώνους ταῖς ἐπιφανείαις καὶ ἀκριβῶς |
| πολλαπλασίαν κατὰ τοὺς δοθέντας ἀριθμοὺς [ ἢ καὶ μείζονας ἢ πολλαπλασίας ] , καὶ περὶ κέντρον τὸ Η διὰ μὲν | ||
| τοὺς εἰσιόντας τε καὶ πάλιν ἐξιόντας , κριοφόρους δὲ δύο πολλαπλασίας τοῖς μεγέθεσιν : εἶχε γὰρ ἑκατέραν πηχῶν ἑκατὸν εἴκοσι |
| ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ | ||
| . στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ |
| ἐξ οὗ φανερόν , ὅτι ἐν ἑνὶ ἐπιπέδῳ ἐστὶ τὸ ΗΘΚΛΜ πεντάγωνον . Δεῖ εἰδέναι ἡμᾶς , ὅτι , ἐάν | ||
| ΘΝ , ἔχει δὲ καὶ τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΗΘΚΛΜ πολύγωνον διπλασίονα λόγον ἤπερ ἡ ΑΒ πρὸς τὴν ΗΘ |
| κεκλιμένοι . πάλιν , ἐπεὶ ἡ ἀπὸ τοῦ Ψ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς | ||
| ταπεινότατός ἐστιν . ἐπεὶ γὰρ ἡ ἀπὸ τοῦ Ϡ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς |
| μύξας ἐξιέναι δι ' αὐτῶν . εἰσὶ δὲ νευρώδεις καὶ χονδρώδεις , ἀντιληπτικοὶ ὀσμῶν : γίνεται δὲ καὶ δι ' | ||
| δὲ στέαρ οὔτε πιμελὴν ἔχειν τοὺς ἰχθῦς τούτους διὰ τὸ χονδρώδεις εἶναι . ἰδίως δ ' ὁ ἀκανθίας τὴν καρδίαν |
| τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ ἀπὸ τοῦ Ι ἐπὶ τὸ Α | ||
| . ὑπερπιπτέτω οὖν , εἰ δύνατον , καὶ ἔστω ἡ ΚΙ , καὶ τετμήσθω ἡ ΖΗ τῇ ΒΓ ὁμοίως κατὰ |
| προσπέσῃ ὄψις ἴσας ποιοῦσα γωνίας , αὐτὴ δι ' ἑαυτῆς ἀνακλασθήσεται . ἔστω ἔνοπτρον ἐπίπεδον τὸ ΑΓ , ὄμμα δὲ | ||
| παράλληλος ἤχθω ἡ ΖΗ . λέγω , ὅτι ἡ ΖΗ ἀνακλασθήσεται πρὸς ἴσην γωνίαν μεταξὺ τῶν Ε , Θ . |
| λαγωοῦ ξηράνας καὶ τρίψας δίδου πίνειν μετὰ τὴν ἀπὸ τῶν ἐμμήνων κάθαρσιν . [ γʹ . Ἐὰν γυνὴ ἄῤῥενα γεννῆσαι | ||
| τῶν ὑπερκειμένων καὶ ἰϲχνάνϲεωϲ ἀχροίαϲ τε καὶ ἀνορεξίαϲ , ἐποχῆϲ ἐμμήνων καὶ μαϲθῶν ὄγκοϲ , ὡϲ ὑπόνοιαν ϲυλλήψεωϲ ἐπί τινων |
| ἦν τὸ ἐν ὄρει δένδρον πλοῖον δυνάμει ὂν καὶ ὁ ἀσχημάτιστος χαλκὸς ἀνδριάς . παρὰ τὴν διαίρεσιν κἀκεῖνο τὸ σόφισμα | ||
| - τέσσαρα πρὸς τὰ ὀνόματα , καὶ πηλὸς ἀνείδεος καὶ ἀσχημάτιστος πρὸς τὰ ἐξ αὐτοῦ εἰδοποιούμενα σκεύη . Συνηγορεῖται δὲ |
| ἁψαμένοις γίνεται ἔνδηλος ἡ θερμότης ἢ ἡ ψυχρότης ἢ ἡ σκληρότης ἢ ἡ μαλακότης ἢ ἑκάστη τῶν λοιπῶν ἐναντιώσεων : | ||
| δέρμα καὶ περιτεταμένον , μὴ προσδοκήσῃς ἱδρῶτας . ἡ γὰρ σκληρότης τοῦ δέρματος οὐ δέχεται : εἰ δὲ εὕρῃς αὐτὸ |
| βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ | ||
| Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς |
| ὑπὸ ΕΑΒ . ἐπεὶ οὖν δύο τρίγωνα τὰ ΖΕΒ , ΖΑΒ ἐπὶ μιᾶς βάσεως συνέστηκε , καὶ ἡ ἀπὸ τοῦ | ||
| ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα , οὕτως ἡ ὑπὸ ΖΑΒ πρὸς τὴν ὑπὸ ΒΑΓ : καὶ ἡ ὑπὸ ΖΑΒ |
| γραμματεῖ . εὐτραπελίας . εὐτραπελία ἐστὶν ἕξις τις ἐν μεσότητι θεωρουμένη βωμολοχίας καὶ ἀγροικίας : ἔστι δὲ περὶ σκώμματα ἣ | ||
| , ὅτι ἡ ἀνωμαλία τῶν ἐνιαυσίων χρόνων πρὸς τὸν μέσον θεωρουμένη οὐ μείζονα περιέχει διαφορὰν ∠ ʹ καὶ δʹ μέρους |
| , μάλιστα ἀπὸ βαλανείου ἢ δρόμου καὶ τῶν εὐτόνων γυμνασίων πνιγμοὺς καὶ ἀλγήματα ἐπιφέρει : ἐφ ' ὧν φλεβοτομία ταχέως | ||
| τι τῶν συνταραττόντων συμπλέκοντας . τοὺς δ ' ἀπὸ μυκήτων πνιγμοὺς κουφίζει ὀξύμελι μετὰ νάρδου πινόμενον καὶ ὀρνίθων τῶν κατοικιδίων |
| : τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ : | ||
| κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου |
| , οἰνάνθης , ἀκακίας , σιδίων : τὴν γὰρ ἐπὶ στεγνώσει γεγενημένην ἐμπνευμάτωσιν οὐ τὰ στύφοντα λύει , τὰ δὲ | ||
| ῥύσις , ἀλλὰ μᾶλλον πάθος τι ἐνδείκνυται , τῇ δὲ στεγνώσει ἐναντία ἐστὶν ἡ ῥύσις , οὐ κένωσιν , ἀλλὰ |
| δεδομένῳ εὐθεῖα γραμμὴ ἀχθῇ δεδομένην ποιοῦσα γωνίαν , δέδοται ἡ ἀχθεῖσα τῇ θέσει . πρὸς θέσει γὰρ δεδομένῃ εὐθείᾳ τῇ | ||
| , ἡ δὲ ἀπὸ τῆς τομῆς ἐπὶ τὴν δευτέραν διάμετρον ἀχθεῖσα παράλληλος τῇ διαμέτρῳ δυνήσεται χωρίον , πρὸς ὃ τὸ |
| δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ | ||
| ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ |
| ἔχον τὴν ὑπὸ τῶν ΒΑΓ , περὶ δὲ τὴν ὑπὸ ΒΑΓ γωνίαν αἱ πλευραί , τουτέστι συναμφότερος ἡ ΒΑΓ ὡς | ||
| ὑπὸ ΒΔΕ , ΒΑΓ : αἱ ἄρα ὑπὸ ΒΔΕ , ΒΑΓ ἐλάττονές εἰσι δυοῖν ὀρθῶν . εἰσὶ δὲ αἱ ὑπὸ |
| ἐλάττονές εἰσιν , ἴση δὲ ἡ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΕΓ , αἱ ἄρα ὑπὸ ΑΒΓ , ΔΕΓ δύο ὀρθῶν | ||
| ὑπὸ ΑΕΒ πρὸς τὸ ἀπὸ ΕΒ , οὕτως τὸ ὑπὸ ΔΕΓ πρὸς τὸ ἀπὸ ΕΓ . ἀλλὰ καὶ ὡς τὸ |
| μὲν οὖν περιφερόγραμμοι τὰς συνελισσούσας αἰτίας ἀπομιμοῦνται , αἱ δὲ εὐθύγραμμοι τὰς τῶν αἰσθητῶν , αἱ δὲ μικταὶ τὰς τὴν | ||
| παραλληλόγραμμον τῷ ΔΖ παραλληλογράμμῳ . καὶ ἐπεὶ δύο γωνίαι ἐπίπεδοι εὐθύγραμμοι ἴσαι εἰσὶν αἱ ὑπὸ ΔΕΖ , ΝΛΜ , καὶ |
| . Ἐκ τοῦ σχήματος ἔλαβε τὴν ἀρχὴν , εἰπὼν ὑπὸ γλωχῖνα : ἐπὶ γὰρ τῶν ἐχόντων γωνίας ἡ λέξις , | ||
| . ληθαῖον : τὸ λήθην τῶν κακῶν ἐμποιοῦν . ποτὶ γλωχῖνα : πρὸς τὴν γωνίαν τοῦ θρόνου . λέχριος : |
| ὅτι δακνώδεις τῇ χειρὶ καλεῖ ὁ Ἱπποκράτης , τοὺς ἐπὶ σήψει χυμῶν γινομένους , οὐ δακνώδεις δὲ ἐπαναδιδομένους δὲ τῇ | ||
| περὶ τῶν λειπομένων ἐροῦμεν . Οἱ τοίνυν συνεχεῖς πυρετοὶ ἐπὶ σήψει γεγενημένοι χυμῶν , ὁποῖοι μὲν ἄν τινες ὦσιν , |
| ἐρεῖ τις , ὅτι κοινὸν μέτρον ἁπασῶν ὁ χρόνος φορᾶς νεύσεως πτήσεως βαδίσεως αὐξήσεως ψύξεως καὶ τῶν τοιούτων : ἐν | ||
| τρίχα τεμεῖν τὴν γωνίαν ἢ περιφέρειαν ἐξέθεντό τινες ἄνευ τῆς νεύσεως . ἔστω δὲ ἐπὶ περιφερείας ὁ λόγος : οὐδὲν |
| ἡ γένεσις εὑρεθῇ ὑπὸ μηδεμιᾶς κακωτικῆς ἀκτῖνος ἀναιρουμένη , τὴν προγεγονυῖαν σύνοδον ἢ πανσέληνον μοιρικῶς ἐπιγνόντας ἐπί τε τῶν νυκτὸς | ||
| πρὸ τοσούτων γεγονέναι τὴν ἐν τῇ νεομηνίᾳ τοῦ Θὼθ μεσημβρίας προγεγονυῖαν μέσην σύνοδον Ὑδροχόῳ μοίραις κε γ . ἐν γὰρ |
| καὶ τὸν αὐτὸν τόπον συνάγεσθαι καὶ τῆς κατὰ κορυφὴν θέρμης ἀθροιζομένης εἰκότως καὶ ἔκκαυσιν γίνεσθαι , καθ ' ὃν τρόπον | ||
| Νείλου : καθ ' ἕκαστον γὰρ ἔτος ἀεὶ νέας ἰλύος ἀθροιζομένης πρὸς τὰ στόματα τοῦ ποταμοῦ καθορᾶται τὸ μὲν πέλαγος |
| τὸ ΒΓ διὰ παντὸς φαίνεται τοῦ ὄμματος μεθισταμένου ἐπὶ τῆς ΒΓΔ περιφερείας . μγʹ . Ἔστι τις τόπος , οὗ | ||
| τῇ ὑπὸ ΒΓΖ . δύο δὴ τρίπλευρά ἐστιν τό τε ΒΓΔ καὶ τὸ ΒΓΖ τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς |
| τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος γραφόμενος μὴ ἐρχέσθω διὰ τοῦ Γ , ἀλλ ' ὑπερπιπτέτω αὐτό : | ||
| ἤτοι διὰ τοῦ ἑτέρου αὐτῶν ἢ δι ' οὐδετέρου . ἐρχέσθω πρότερον διὰ τοῦ Κ καὶ τεμνέτω τὴν ΖΗ κατὰ |
| δὲ τοῦ ὀϲτέου καὶ τοῦ ὄνυχοϲ ἀπαθῶν μεινάντων ἡ ἐκτὸϲ γωνία τοῦ ὄνυχοϲ ὑποδυομένη καὶ νύττουϲα τὴν ἐπιπεφυκυῖαν αὐτῇ ϲάρκα | ||
| βάσει τοῦ κυλίνδρου , καὶ ὑποκείσθω ἡ πρὸς τῷ Α γωνία ὀξεῖα , καὶ διὰ τοῦ Γ ἤχθω κάθετος ἐπὶ |
| γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ : ἴση ἄρα διὰ τὸ πρὸ τούτου | ||
| γωνία τὴν ἡμίσειαν αὐτῆς ὑποτείνουσα δεδομένη ἔσται καὶ ὅλον τὸ ΑΔΖ τρίγωνον , δῆλον : ἐπεὶ δὲ τῆς ΑΓ εὐθείας |
| οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ , ἔσται ὡς τὸ ἀπὸ τῆς ΒΔ πρὸς τὸ | ||
| στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ . ὡς δὲ τὸ Ξ στερεὸν |
| ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς | ||
| ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ |
| δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
| τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
| τῆς ΔΒ καὶ τῆς ΒΘ καὶ ἔτι τῆς ΕΘ , καθέτων δ ' ἀγομένων ἐπὶ μὲν τὴν ΔΒ τῆς ΖΚ | ||
| κώνου , οὗ βάσις μὲν ὁ ὑπὸ τῶν πτώσεων τῶν καθέτων γραφόμενος κύκλος , κορυφὴ δὲ ἡ αὐτὴ τῷ ἐξ |
| , κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα | ||
| , κωνικὴν ποιήσει ἐπιφάνειαν τῆι ΑΠ εὐθείαι , ἣ δὴ περιαγομένη συμβαλεῖ τῆι κυλινδρικῆι γραμμῆι κατά τι σημεῖον : ἅμα |
| [ ] ὀρθὴ ἔσται . Κείσθω πρὸς τῷ Δ γωνία ὀρθὴ [ ἡ ΑΔΕ ] : διάμετρος ἄρα ἡ ΑΕ | ||
| καὶ θεωρίαν δοίημεν τῷ προβλήματι τούτῳ , ἔοικεν ἡ μὲν ὀρθὴ γωνία σύμβολον εἶναι ζωῆς κατ ' ἀρετὴν ἀνιούσης καὶ |
| ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
| ' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
| ἀπευθυσμένου κατέχεται τὰ σκύβαλα καὶ συνεστῶτα ἐκκρίνεται : καὶ ῥυπαρῶν ἑλκώσεων οὐσῶν περὶ τὸ ἔντερον , τὸ αὐτὸ ἁρμόζει κλύσμα | ||
| ἢ καὶ αἱμορροΐδων ἢ καὶ κονδυλωμάτων ἢ καὶ τῶν ἐμπυρωδῶν ἑλκώσεων ἢ νομῶν , τὰς δὲ γυναῖκας καὶ ἐκτρωσμοῖς ἢ |
| Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΓΒ τετράγωνον τὸ ΓΕΖΒ , καὶ ἐπεζεύχθω ἡ ΒΕ , καὶ διὰ μὲν τοῦ Δ ὁποτέρᾳ | ||
| τῆς τομῆς τῇ ΑΒ παράλληλος ἤχθω ἡ ΕΖ , καὶ ἐπεζεύχθω ἡ ΕΒ . δεικτέον , ὅτι ἡ ΖΕ πρὸς |
| Καὶ αὗταί εἰσιν αἱ τέσσαρες ἀρχαὶ τοῦ παρυφισταμένου ἐν τῷ διαγράμματι : ἐπεὶ δὲ τὸ παρυφιστάμενον εἴπομεν ἔχειν τόπους τρεῖς | ||
| κεῖνται καὶ οὐκέτι αἱ ἀντιφάσεις χωρὶς ὡς ἐν τῷ α διαγράμματι . ἐν οἷς ἐστι καὶ δεύτερον διάγραμμα . ἀπορεῖ |
| ἐν δὲ τῷ προβλήματι τούτῳ κάθετον ἐπίπεδον προτίθεται ἀγαγεῖν ὁ στοιχειωτής : πρός τε γὰρ εὐθεῖάν ἐστιν ἡ ἀγωγή , | ||
| δεδομένον καὶ τὸ ζητούμενον , οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ |
| . οὐδεμία δὲ τούτων οὔτε συναμφότερος μέση , ἡ δὲ συγκειμένη ἐξ αὐτῶν ἐκ δύο ὀνομάτων καλεῖται . ἀμφοτέρων τοίνυν | ||
| καὶ ταῦτα σύμμετρα ἀλλήλοις . ἐπεὶ γοῦν ἡ ΒΓ ὅλη συγκειμένη ὡς ἐκ δύο οἷον τῆς ΖΔ καὶ τῆς ΒΖ |
| χειρουργίας ἢ φαρμακείας προσπεσεῖν . γίνεται δὲ τὰ πολλὰ ἐξ ἀποστημάτων μὴ κατὰ τρόπον θεραπευθέντων . τὰς μὲν οὖν πλαγίας | ||
| ἑξηκοστὰ μϚʹ . ἐντεῦθεν αὐτοῖς οἱ λόγοι διάφοροι καὶ τῶν ἀποστημάτων καὶ τῶν μεγεθῶν ἡλίου καὶ σελήνης ἐπιλελογισμένοι εἰσίν . |
| Ταρρακωνησίᾳ , ἐπιζευγνύει δὲ τὰ εἰρημένα πέρατα πρός τε τῷ Ἄνᾳ ποταμῷ καὶ τῷ Δορίῳ ποταμῷ . Ἡ δὲ ἀπὸ | ||
| δὲ καὶ ἡ Βαιτουρία ξηρὰ ἔχουσα πεδία τὰ παρήκοντα τῷ Ἄνᾳ . Αὐτὴ δ ' ἡ Τουρδητανία θαυμαστῶς εὐτυχεῖ : |
| δακτύλῳ ὄψει λεῖον , καὶ ἀδυναμίη αὐτὴν λαμβάνει ὑπὸ τῶν ἐμμηνίων , καὶ πυρετὸς καὶ ῥῖγος ἴσχει , ὀδύνη τε | ||
| συλλήψεως ἡ τῆς μήτρας σύμμετρος θερμασία καὶ ἡ πρόσφατος τῶν ἐμμηνίων κάθαρσις καὶ ὄρεξις : ταῦτα γὰρ ὁμοῦ συνελθόντα κατέσχε |
| αἴσθησις ὡς τετράς , ἐπειδὴ τετραπλῆ κοινῆς πασῶν οὔσης τῆς ἁφῆς κατ ' ἐπαφὴν πᾶσαι ἐνεργοῦσιν αἱ αἰσθήσεις . ἐνάτη | ||
| ἢ τὸ ἀγώνιον : προφανῆ δὲ καὶ τὰ περὶ τῆς ἁφῆς , ὡς διαφόρως περὶ τὰ διάφορα τῶν σωμάτων διατίθεται |
| ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ | ||
| μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ |
| τὴν προσβολὴν τῆς ἀναθεωρήσεως σύγκρισις γίνηται συνεθιζομένοις καὶ ἐπὶ τῆς σφαιρικῆς εἰκόνος γυμνῇ τῇ τῶν ἄστρων φαντασίᾳ . προσεντάξαντες οὖν | ||
| . τοσαῦτα περὶ μουσικῆς καὶ ἀριθμητικῆς , ἀλλὰ καὶ τῆς σφαιρικῆς πρώτη ἐστίν . εἰ μὲν γὰρ λάβῃς τὴν ἀκίνητον |
| : ἡ δὲ κόμη αὐγοειδής , τῶν μὲν ὥσπερ ἄφετος ἀνειμένη , τῶν δὲ ἐπ ' εὐθὺ ἰοῦσα καὶ | | ||
| γὰρ δριμύτητος ἀφαιρουμένης ἡ κατάλοιπος ὀσμὴ μαλακή τις οὖσα καὶ ἀνειμένη προσεμφερὴς τῇ μίνθῃ γίνεται , δι ' ὃ μεταφυτεύειν |
| καὶ τῆς γνώσεως ἕτερον ἡ ἐπιστροφή , ἡ μὲν γὰρ νεῦσις , ὡς εἴρηται , πρὸς ἕτερον ἢ πρὸς ἑαυτό | ||
| νεῦσις δὲ πῶς οὐχ ἁμαρτία ; Ἀλλ ' εἰ ἡ νεῦσις ἔλλαμψις πρὸς τὸ κάτω , οὐχ ἁμαρτία , ὥσπερ |
| κηρωτῆς ὑγρᾶς , ἔμμοτος καλλίστη γίνεται πρὸς τὰ νευρότρωτα καὶ νύγματα καὶ μυῶν διακοπὰς καὶ τὰ ἐν τῇ κεφαλῇ ἕλκη | ||
| χαλεπάς . καὶ τεθνεώτων δὲ πονηρὰ τὰ ἐκ τῶν ἀκανθῶν νύγματα ἀπαντᾷ , ὥς φασιν . Ἔστι δὲ ἐν τῇ |
| τῆς σκιᾶς καὶ οἱ τῆς σελήνης κύκλοι μέγιστοι . καὶ ἐκβεβλήσθω ἡ ΕΓ ἐπὶ τὴν περιφέρειαν τοῦ τῆς σκιᾶς κύκλου | ||
| παράλληλος ἤχθω ἡ ΒΗ , καὶ ἐπεζεύχθω ἡ ΗΓ καὶ ἐκβεβλήσθω ἐπὶ τὸ Θ : ἴση ἄρα ἐστὶν ἡ ὑπὸ |
| : εὐμαρῶϲ γὰρ κακοῦνται . Περὶ ψυχρολουϲίαϲ ἐκ τῶν ὑγιεινῶν Γαληνοῦ . Ψυχρὰ λουτρὰ τοῖϲ ἀμέμπτωϲ ὑγιαίνουϲιν ἁρμόδια : κρατύνει | ||
| εἰδέναι , ὅτι οἱ Ἱπποκράτειοι τρόποι ἄλλοι εἰσὶν παρὰ τοὺς Γαληνοῦ : ἀφοριστικῷ γὰρ κέχρηται καὶ ὑφηγηματικῷ . ἐνταῦθα οὖν |
| τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
| διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
| σημεῖον στῇ καὶ ἡ εὐθεῖα , τότε νοουμένων αὐτῶν ἐν ἐπιπέδῳ δυνατὸν ἀπὸ τοῦ σημείου ἐπὶ τὴν εὐθεῖαν κάθετον ἀγαγεῖν | ||
| ΨΧ καὶ ἡ ΒΓ τέμνουσιν ἀλλήλας , ἐν ἑνί εἰσιν ἐπιπέδῳ διὰ τὸ δεύτερον τοῦ ιαʹ : ἐν δὲ τῷ |
| συναγομένας καὶ ὀξείας γινομένας , τὰς δὲ λοιπὰς διισταμένας καὶ ἀμβλείας ἀναφαινομένας . καὶ ἔοικεν καὶ τὸ ὄνομα τῷ ῥόμβῳ | ||
| ἡ σελήνη φαντάζεται . Ἀπὸ δὲ τοῦ σχήματος τούτου πρὸς ἀμβλείας ἤδη γωνίας προϊόντες οἱ κύκλοι τὸ ἀμφίκυρτον τῆς θεοῦ |
| τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
| Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
| ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ | ||
| ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν |
| Διονύσιος , ἀλλὰ κατὰ σύνθετον ὑποπυθμένες , ὅπως ἐπὶ τῶν πελειάδων ἀκούωμεν , ὅτι τέσσαρες μὲν ἦσαν ἐπὶ τῶν ὤτων | ||
| Διονύσιος , ἀλλὰ κατὰ σύνθετον ὑποπυθμένες , ὅπως ἐπὶ τῶν πελειάδων ἀκούσωμεν , ὅτι τέσσαρες μὲν ἦσαν ἐπὶ τῶν ὤτων |
| ΑΞ ἄρα ἴση τῇ ΤΓ . ἐπεὶ οὖν ὅλη ἡ ΑΧ ὅλῃ τῇ ΧΓ ἐστιν ἴση , ἐξ ὧν ἡ | ||
| δύο , ὅπερ δὴ καὶ ὁρᾶται : ἔστι γὰρ τοῦ ΑΧ ὄντος δευτέρου ξου [ ͵γχου ] δύο ἑξηκοστά . |
| τοὺς ἰδίους ἀριθμοὺς τὰς συναλοιφὰς ἀναδέχονται ; ἔστω δὲ ἐν ὑποδείγματι τὸ ἔργον τοὖργον , τὰ ἔργα τἆργα . καὶ | ||
| πάλιν τὰς μακροτέρας τε καὶ ὑψηλοτέρας : οἷον ὡς ἐν ὑποδείγματι ἔστωσαν τρία μεγέθη ἀλλήλων ἀπέχοντα ἱκανὸν διάστημα τὰ ΒΓ |
| , τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
| τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
| τῇ ὑπὸ ΔΖΕ γωνίᾳ . ἔστιν δὲ καὶ ἡ ὑπὸ ΑΖΓ γωνία τῇ ὑπὸ ΒΖΕ γωνίᾳ : ὅλη ἄρα ἡ | ||
| καὶ ἐπεζεύχθωσαν αἱ ΔΚ ΚΒ ΚΕ ἐπεὶ οὖν τὸ ὑπὸ ΑΖΓ μετὰ τοῦ ἀπὸ ΖΚ ἴσον ἐστὶν τῷ ἀπὸ ΑΚ |
| φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται | ||
| καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν |
| μοίρας ια κβ , καὶ ἡ μὲν ἀπ ' ἄρκτων ἀνέκλειπτος περιφέρεια γίνεται μοιρῶν ρλη λη , ἡ δ ' | ||
| . Ἐπὶ γὰρ τοῦ ἡλίου ἡ μὲν ἀπ ' ἄρκτων ἀνέκλειπτος περιφέρεια γίνεται μοιρῶν ρλ λη , ὡς ἐπὶ τοῦ |
| διαφόρως μὲν κατὰ Γεμῖνον καὶ ἄλλους τινὰς τῶν καὶ τὰς μικτὰς λαμβανόντων γραμμὰς εἰς τὴν διαίρεσιν . ὁ δὲ γεωμέτρης | ||
| περιφεροῦς , μικτῆς δὲ οὐδαμοῦ μέμνηται : καίτοι γωνίας οἶδεν μικτὰς τὴν τῶν ἡμικυκλίων , τὴν κερατοειδῆ , καὶ σχήματα |
| τοῦ Εὐριπίδου ἐπὶ σοφίᾳ . δαιομένη δὲ , διαμερίζουσα , διαιροῦσα , κατατέμνουσα τὰ Αἰσχύλου ῥήματα . καταλεπτολογήσει δὲ , | ||
| ποιεῖται τὴν πρόοδον , διαιρετικῇ μὲν καὶ διοριστικῇ τὰς οὐσίας διαιροῦσα τῶν πραγμάτων , ἀποδεικτικῇ δὲ τὰ καθ ' αὑτὰ |
| τοῦ κατὰ πρόσωπον μέρους τοῦ πρὸς μεσημβρίαν βλέποντος τριπλῷ περιλαμβανόμενος στοίχῳ κιόνων , ἐκ δὲ τῶν πλαγίων ἁπλῷ : ἐν | ||
| καθ ' ἣν μέμαρπται καὶ συνείληπται πάντα ἐν τάξει καὶ στοίχῳ μὴ ἔχοντι πέρας τὰ γινόμενα [ σύλληψιν ἡ ει |
| δέδοται καὶ οὐχὶ ἡ ΕΖ καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς | ||
| τὰ τρίγωνα , καὶ ἡγούμενα μὲν εἶναι τὰ ΑΒΕ , ΕΒΓ , ΕΓΔ , ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ , |
| : ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ | ||
| χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου |
| λεγον : αἱ γὰρ γυναῖκες τὴν ἀκρόπολιν τῆς θεοῦ ἤδη κατειλήφασιν . Ἀλλ ' , ὦ Λαμπιτοῖ , σὺ μὲν | ||
| ἢ δευτέρας διχοτόμου φάσεως . ἀσυμφώνους δὲ τὰς λοιπὰς ὑποθέσεις κατειλήφασιν οἱ προειρημένοι μαθηματικοὶ διὰ τὸ μήτε τὴν γῆν σημείου |
| τελειοτάτη ἡ δὶς διὰ πασῶν . ἐκδηλότερόν γε μὴν ἡ σφαιρικὴ δι ' ἀριθμητικῆς τυγχάνει πάντων τῶν προσηκόντων αὐτῇ σκεμμάτων | ||
| ἀστρονομία περὶ μόνα τὰ οὐράνια σώματα καταγίνεται , ἡ δὲ σφαιρικὴ περὶ πᾶσαν σφαῖραν καταγίνεται : λέγει γὰρ τὰ συμβαίνοντα |
| , ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
| δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |
| τὴν ΜΖ : καὶ περὶ ὀρθὰς γωνίας τὰς ὑπὸ τῶν ΔΚ , ΚΒ , ΜΝ , ΜΖ αἱ πλευραὶ ἀνάλογόν | ||
| ΚΜΔ γωνίᾳ τῇ ὑπὸ ΒΜΔ ἴση : βάσις ἄρα ἡ ΔΚ βάσει τῇ ΔΒ ἴση ἐστίν . λέγω [ δή |
| ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ | ||
| ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ |
| , ἦν ἂν ῥητή , ὡς οὖσα τῷ τριάκοντα ἀριθμῷ γνωρίμη , ἐπεὶ δὲ καὶ λεπτῶν ἐστι πρώτων καὶ δευτέρων | ||
| ἔφη πρὸς τὸν Σέλευκον ὅτι οὐκ ἀπολέλειπται ἄλλη θεραπαινὶς ἥτις γνωρίμη ἐστὶ τῷ νεανίσκῳ ; καί φησιν ὁ βασιλεὺς ὅτι |
| ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ | ||
| ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ |
| εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
| γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
| διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
| τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
| τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ | ||
| ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν |