ἔχον τὴν ὑπὸ τῶν ΒΑΓ , περὶ δὲ τὴν ὑπὸ ΒΑΓ γωνίαν αἱ πλευραί , τουτέστι συναμφότερος ἡ ΒΑΓ ὡς
ὑπὸ ΒΔΕ , ΒΑΓ : αἱ ἄρα ὑπὸ ΒΔΕ , ΒΑΓ ἐλάττονές εἰσι δυοῖν ὀρθῶν . εἰσὶ δὲ αἱ ὑπὸ
7775097 ΑΓΔ
ἐκ τῶν ΑΓ Ε Ζ τρίγωνον συστήσασθαι . συνεστάτω τὸ ΑΓΔ * * * [ καὶ φανερὸν ὅτι εἰ μὲν
τομεὺς τοῦ ΑΓΕ τομέως : μείζονα ἄρα λόγον ἔχει ὁ ΑΓΔ τομεὺς πρὸς τὸ ΑΒΓ τρίγωνον ἤπερ ὁ ΑΓΕ τομεὺς
7771322 ΑΓΒ
δυσὶν ὀρθαῖς ἴσαι εἰσίν : καὶ αἱ ὑπὸ ΑΓΕ , ΑΓΒ ἄρα δυσὶν ὀρθαῖς ἴσαι εἰσίν . πρὸς δή τινι
: ἡ ἄρα ὑπὸ ΒΓΔ μετὰ τῶν ὑπὸ ΓΒΔ , ΑΓΒ οὐ μείζονές εἰσι δυεῖν ὀρθῶν , ὅ ἐστιν αἱ
7736229 ΕΔΖ
ΔΕΖ μίαν γωνίαν τὴν ὑπὸ ΒΑΓ μιᾷ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἴσην ἔχοντα , περὶ δὲ τὰς ἴσας γωνίας τὰς
γωνίας , ἴσον δὲ ἔστω τὸ ὑπὸ ΒΑΓ τῷ ὑπὸ ΕΔΖ : ὅτι καὶ τὸ τρίγωνον τῷ τριγώνῳ ἐστὶν ἴσον
7677300 ΑΒΔ
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ :
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου
7632165 ΔΑΒ
ἄρα πρὸς τὴν ὑπὸ ΒΑΓ μείζονα λόγον ἔχει ἢ τὸ ΔΑΒ τρίγραμμον πρὸς τὸ ΒΑΓ τρίγωνον . καὶ ἀνάπαλιν τὸ
αἱ ἄρα ὑπὸ ΔΑΒ ΒΑΓ ΓΑΕ , τουτέστιν αἱ ὑπὸ ΔΑΒ ΒΑΕ , τουτέστιν αἱ δύο ὀρθαὶ ἴσαι εἰσὶ ταῖς
7614596 ΒΑΔ
εἰσίν . ὁμοίως δὴ δείξομεν , ὅτι καὶ αἱ ὑπὸ ΒΑΔ , ΔΓΒ γωνίαι δυσὶν ὀρθαῖς ἴσαι εἰσίν . Τῶν
δοθεῖσα γωνία ὀρθή , καὶ ἔστω αὐτῇ ἴση ἡ ὑπὸ ΒΑΔ , καὶ τετμήσθω ἡ ΑΒ δίχα κατὰ τὸ Ε
7532995 γωνια
δὲ τοῦ ὀϲτέου καὶ τοῦ ὄνυχοϲ ἀπαθῶν μεινάντων ἡ ἐκτὸϲ γωνία τοῦ ὄνυχοϲ ὑποδυομένη καὶ νύττουϲα τὴν ἐπιπεφυκυῖαν αὐτῇ ϲάρκα
βάσει τοῦ κυλίνδρου , καὶ ὑποκείσθω ἡ πρὸς τῷ Α γωνία ὀξεῖα , καὶ διὰ τοῦ Γ ἤχθω κάθετος ἐπὶ
7464112 ΒΓΔ
τὸ ΒΓ διὰ παντὸς φαίνεται τοῦ ὄμματος μεθισταμένου ἐπὶ τῆς ΒΓΔ περιφερείας . μγʹ . Ἔστι τις τόπος , οὗ
τῇ ὑπὸ ΒΓΖ . δύο δὴ τρίπλευρά ἐστιν τό τε ΒΓΔ καὶ τὸ ΒΓΖ τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς
7414601 ΓΒΔ
ὀρθὰς τῷ κύκλῳ διὰ τοῦ ἄξονος τριγώνου βάσις ἔστω ἡ ΓΒΔ , καὶ ἤχθωσαν τῇ ΓΔ πρὸς ὀρθὰς ἐν τῷ
τῷ κύκλῳ τριγώνου διὰ τοῦ ἄξονος ἠγμένου βάσις ἔστω ἡ ΓΒΔ , καὶ ἡ ὑπὸ ΑΒΔ γωνία ἐλάττων ἔστω ὀρθῆς
7411312 ΑΒΕ
ἡ ΒΕ βάσει τῇ ΑΓ ἴση ἐστίν , καὶ τὸ ΑΒΕ τρίγωνον τῷ ΑΒΓ τριγώνῳ ἴσον ἐστίν , καὶ αἱ
πρὸς ὅλην καὶ ἀναστρέψαντι καὶ χωρίον χωρίῳ τὸ ἄρα ὑπὸ ΑΒΕ ἴσον ἐστὶν τῷ ὑπὸ ΓΒΔ . Φανερὸν δὲ ὅτι
7359160 ΓΔΒ
ἐστὶν τῇ ὑπὸ τῶν ΔΒΖ , τουτέστιν τῇ ὑπὸ τῶν ΓΔΒ , τουτέστιν τῇ ὑπὸ τῶν ΒΑΔ : ἡ ἄρα
ὀρθαῖς ἴσαι , μείζων ἄρα ἡ ὑπὸ ΑΓΒ τῆς ὑπὸ ΓΔΒ . Ἐὰν ἐν κώνῳ σκαληνῷ τμηθέντι διὰ τῆς κορυφῆς
7355207 γωνιᾳ
ΑΗΒ γωνία καθ ' ὑπόθεσιν ἴση ἐστὶν τῇ ὑπὸ ΔΘΕ γωνίᾳ : ὅμοιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ
περιέχωσι , τὸ δὲ Δ σημεῖον ᾖ ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης , ἡ ἀπὸ τῆς
7278512 ΖΑΒ
ὑπὸ ΕΑΒ . ἐπεὶ οὖν δύο τρίγωνα τὰ ΖΕΒ , ΖΑΒ ἐπὶ μιᾶς βάσεως συνέστηκε , καὶ ἡ ἀπὸ τοῦ
ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα , οὕτως ἡ ὑπὸ ΖΑΒ πρὸς τὴν ὑπὸ ΒΑΓ : καὶ ἡ ὑπὸ ΖΑΒ
7256635 ΔΑΓ
καὶ τῷ ὑπὸ ΒΔ ΑΓ , κοινὸν ἀφῃρήσθω τὸ ὑπὸ ΔΑΓ : λοιπὸν ἄρα τὸ ὑπὸ ΑΓ ΔΒ ἴσον ἐστὶν
. ἔσται δὴ πάλιν κατὰ τὰ αὐτὰ ἡ ὑπὸ τῶν ΔΑΓ γωνία ὀρθῆς μεʹ μέρος , ἡ δὲ ὑπὸ τῶν
7217858 ΑΕΒ
ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος
μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν
7172820 ΒΑ
ΒΑ πρὸς τὴν ΑΔ . μείζων δὲ ἡ ΔΒ τῆς ΒΑ : μείζων ἄρα καὶ ἡ ΒΑ τῆς ΑΔ .
ὀξεῖα ἄρα ἡ ὑπὸ ΞΑΗ γωνία . καὶ ἐπεὶ ἡ ΒΑ τῆς ΑΓ οὔκ ἐστιν ἐλάττων , καὶ ἡ ὑπὸ
7050716 ΓΑΒ
ποιουσῶν πρὸς τῇ ΒΑ γωνίας ἐλαχίστη ἐστὶν ἡ ὑπὸ τῶν ΓΑΒ . διήχθω γὰρ εὐθεῖα ἡ ΔΑΕ , καὶ ἤχθω
τῆς ὑπὸ ΑΔΒ , ὡς ἐδείχθη , ἡ δὲ ὑπὸ ΓΑΒ τῆς ὑπὸ ΔΑΒ , συνεστάτω τῇ μὲν ὑπὸ ΑΓΒ
7021506 ΜΛΝ
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί
7010880 ΓΖΔ
ΒΕ , ΓΖ : ὅμοια ἄρα ἐστὶ τὰ ΕΒΔ , ΓΖΔ ὀρθογώνια διὰ τὸ παραλλήλους εἶναι τὰς ΒΕ , ΖΓ
καὶ θερινὸς μὲν τροπικὸς ὁ ΒΕΑ , χειμερινὸς δὲ ὁ ΓΖΔ , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς
6965780 ΔΒΓ
ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ
ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν
6959422 ΓΑ
ΖΕ καὶ τοῦ τῆς ΓΑ πρὸς ΗΕ ὁ τοῦ ἀπὸ ΓΑ ἐστὶν πρὸς τὸ ὑπὸ ΖΕ ΗΕ , τουτέστιν πρὸς
ΓΑ , ΑΒ τετραγώνων μεῖζόν ἐστι τῷ δὶς ὑπὸ τῶν ΓΑ , ΑΔ περιεχομένῳ ὀρθογωνίῳ . Ἐν ἄρα τοῖς ἀμβλυγωνίοις
6929917 ΚΞΑ
ἐπίπεδον . λέγω οὖν , ὅτι ἴση ἐστὶν ἡ ὑπὸ ΚΞΑ γωνία τῇ ὑπὸ ΛΟΕ γωνίᾳ . ἐπεὶ γὰρ αἱ
ἐν τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ , ἡ ἄρα ὑπὸ ΚΞΑ γωνία ἡ κλίσις ἐστίν , ἐν ᾗ κέκλιται τὸ
6916602 ΒΣΓ
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ
6897927 ΔΖΕ
τῶν ΔΖΕ , περὶ δὲ τὰς ὑπὸ τῶν ΒΑΓ , ΔΖΕ γωνίας τὰς πλευρὰς ἀνάλογον , ὅμοιον ἄρα ἐστὶ τὸ
τῷ ὑπὸ ΝΞΕ τὸ ὑπὸ ΘΜΕ , καὶ τὸ ὑπὸ ΔΖΕ ἄρα μεῖζόν ἐστιν τοῦ ὑπὸ ΘΜΕ , ὥστε καὶ
6884495 ΟΛ
ἄρα ἐστὶν ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν
ἡ μὲν ΠΟ τῆς ΟΚ , ἡ δὲ ΞΟ τῆς ΟΛ , ἴση ἐστὶ τῇ ΚΟ ἡ ΟΛ . διὰ
6883439 ΑΗΒ
πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν
ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ
6843995 ΒΔ
ΑΔΓ μετὰ τοῦ δὶς ὑπὸ ΑΕΓ καὶ δὶς τῶν ἀπὸ ΒΔ ΒΕ τετραγώνων . Τοῦτο δὲ φανερόν : τὸ μὲν
, ἀφ ' ἧς ἐπὶ τὴν ΑΓ βάσιν ἤχθω ἡ ΒΔ . λέγω , ὅτι ἡ ΒΔ πρὸς ΔΓ μείζονα
6831525 ἀμβλεια
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ
6821712 ΒΓ
Δ , Ε , ὥστε ἴσας εἶναι τὰς ΑΒ , ΒΓ , ΓΔ , ΔΕ , ΕΑ περιφερείας : καὶ
τῆς ΒΠ πολλῷ μείζους εἰσίν . ἀλλὰ ἡ ΒΠ τῆς ΒΓ μείζων : αἱ ἄρα ΒΞ , ΞΟ , ΟΠ
6819605 ΑΒΗ
ΒΓΖ τῇ ὑπὸ ΓΒΗ . ἐπεὶ οὖν ὅλη ἡ ὑπὸ ΑΒΗ γωνία ὅλῃ τῇ ὑπὸ ΑΓΖ γωνίᾳ ἐδείχθη ἴση ,
ΑΒΗ τρίγωνον : καὶ τὸ ΑΒΓ ἄρα τρίγωνον πρὸς τὸ ΑΒΗ διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ
6817946 ΑΕΔ
ὑπὸ ΒΕΓ μετὰ τοῦ ἀπὸ ΓΖ ἴσον ἐστὶν τῷ ὑπὸ ΑΕΔ μετὰ τοῦ ἀπὸ ΔΖ , τουτέστιν τοῦ ὑπὸ ΒΔΓ
ἀφῃρήσθω τὸ ἀπὸ ΕΖ τετράγωνον : λοιπὸν ἄρα τὸ ὑπὸ ΑΕΔ ἴσον ἐστὶν τῷ τε ὑπὸ ΑΓΔ καὶ τῷ ὑπὸ
6807091 ΔΗΘ
ΔΘ μείζων ἐστὶν τῆς ΑΛ . καὶ ἔστιν ὅμοια τὰ ΔΗΘ ΑΚΛ τρίγωνα : ὡς ἄρα ἡ ΔΘ πρὸς ΘΗ
αὑτή ἐστιν τῇ ὑπὸ ΔΗΘ . δοθεῖσα οὖν ἡ ὑπὸ ΔΗΘ . ἀλλὰ καὶ ὀρθὴ ἡ πρὸς τῷ Θ .
6806093 ΓΔΑ
τῇ ΓΔ ἐστιν ἴση : ὥστε καὶ γωνία ἡ ὑπὸ ΓΔΑ γωνίᾳ τῇ ὑπὸ ΔΑΓ ἐστιν ἴση : αἱ ἄρα
δυσὶ ταῖς ὑπὸ ΓΔΑ , ΔΑΓ . ἀλλὰ ταῖς ὑπὸ ΓΔΑ , ΔΑΓ ἴση ἐστὶν ἡ ἐκτὸς ἡ ὑπὸ ΒΓΔ
6775740 ΜΚΛ
ὅπερ ἔδει δεῖξαι . Μείζων ἄρα καὶ γωνία ἡ ὑπὸ ΜΚΛ κτλ . . , ] ὅτι δὲ ἡ ὑπὸ
ΚΛ τῆς ΛΠ μείζων . καὶ διὰ τοῦτο ἡ ὑπὸ ΜΚΛ . , ] ὅτι ἡ ὑπὸ ΛΚΜ γωνία ἀμβλεῖά
6775681 ΑΖΒ
τὴν τῆς ὁμαλῆς κινήσεως ὑποτείνει περιφέρειαν , ἡ δὲ ὑπὸ ΑΖΒ τὴν τῆς φαινομένης ἀνωμάλου , ὑπεροχὴ δὲ αὐτῶν ἐστιν
: τὸ ἄρα ὑπὸ ΑΕΛ ἴσον ἐστὶν τῷ τε ὑπὸ ΑΖΒ καὶ τῷ ἀπὸ ΖΕ τετραγώνῳ . ἀλλὰ τὸ μὲν
6767189 ΒΗΕ
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ
6758490 ΕΑΓ
ΑΒΗ γωνία . ἐπεὶ οὖν ἴση ἐστὶν ἡ μὲν ὑπὸ ΕΑΓ γωνία τῇ ὑπὸ ΑΒΓ , ἡ δὲ ὑπὸ ΗΑΓ
τὸ ὑπὸ τῶν ΕΑ ΒΓ , οὕτως τὸ ὑπὸ τῶν ΕΑΓ πρὸς τὸ ὑπὸ τῶν ΓΔΕ : ἴσον ἄρα ἐστὶν
6745568 ΒΑΛ
μετὰ τοῦ ὑπὸ ΗΘΚ : ἴσον ἄρα καὶ τὸ ὑπὸ ΒΑΛ μετὰ τοῦ ὑπὸ ΒΑ ΛΡ καὶ τοῦ ὑπὸ ΗΘΚ
ὑπὸ ΒΑΛ μετὰ τοῦ ὑπὸ ΗΘΚ . ἀλλὰ τῷ ὑπὸ ΒΑΛ μετὰ τοῦ ὑπὸ ΒΑ ΛΡ , τουτέστιν τῷ ὑπὸ
6738456 κυνοϲ
κύνα καύμαϲιν , μετὰ δὲ τὰϲ μ ἡμέραϲ τῆϲ τοῦ κυνὸϲ ἐπιτολῆϲ λύϲαϲ εὑρήϲειϲ ἐξερρυηκὸϲ τὸ ϲῶμα τῆϲ ϲκίλληϲ :
θαρρῶν . ἐκ τοῦ οδ Θεοδώρου : τοῖϲ δεδηγμένοιϲ ὑπὸ κυνὸϲ λελυϲϲηκότοϲ περίαπτε χαμελαίαϲ ῥίζαν : ὡϲ θαυμαϲτῷ χρῶ .
6715755 ΓΧ
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς
6713453 ΒΖ
τῇ ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΒΓ , ΒΔ , ΒΖ , ΒΚ , ἔστω δὲ πρότερον ἡ ΒΑ τῆς
' ἡ ΖΒ τετραπλασία τῆς ΒΘ : καὶ ἔστιν τῆς ΒΖ διπλασίων ἡ ΖΓ : λόγος ἄρα τῆς ΖΓ πρὸς
6712250 ΑΒΘ
ἡ ΑΒ τῇ ΓΔ , ἀλλὰ καὶ γωνία ἡ ὑπὸ ΑΒΘ τῇ ὑπὸ ΔΓΚ ἐστιν ἴση . καὶ περιφέρεια ἄρα
καὶ ἔστω ὡς ὁ ΒΑΘ : μέγιστος ἄρα ἐστὶν ὁ ΑΒΘ κύκλος : ἡ γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση
6691642 ΒΖΔ
ΖΔΜ ὀρθογώνιον κύκλος τξ : ὥστε καὶ ἡ μὲν ὑπὸ ΒΖΔ γωνία τοιούτων ἐστὶν β μδ , οἵων αἱ β
εἰσὶν αἱ ΒΖ , ΖΔ περιέχουσαι ἀμβλεῖαν , ἡ ὑπὸ ΒΖΔ ἄρα γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς
6679740 ΖΒ
τμημάτων ριζ λα , καὶ πάλιν ἡ μὲν διπλῆ τῆς ΖΒ μοιρῶν ξ καὶ ἡ ὑπὸ αὐτὴν εὐθεῖα τμημάτων ξ
τῇ Ν . καὶ ἐπεὶ σύμμετρός ἐστιν ἡ ΚΖ τῇ ΖΒ , καὶ συνθέντι σύμμετρός ἐστιν ἡ ΚΒ τῇ ΖΒ
6674152 ΑΔΓ
οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ
κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ
6661428 ΔΑΕ
ΑΔΕ γωνία λϚ νβ : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΔΑΕ τῶν αὐτῶν ἐστιν ρμε νϚ . ὥστε καὶ ἡ
τοῦ Α ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ εὐθεῖαν . ποιείτω τὴν ΔΑΕ : αἱ ἄρα ΑΒ , ΑΓ , ΔΑΕ εὐθεῖαι
6661265 ΡΚ
, τὴν δὲ ΡΛ μοιρῶν νζ λ , τὴν δὲ ΡΚ μοιρῶν νε μ , τὴν δὲ ΡΘ , μοιρῶν
τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ , ΝΣ , ΣΚ . οὐκοῦν αἱ ἀπὸ τοῦ
6660247 ΓΑΔ
ΓΒΑ , ΑΓΒ , ΒΑΓ , ΑΓΔ , ΓΔΑ , ΓΑΔ , ΑΔΒ , ΔΒΑ , ΒΑΔ ἓξ ὀρθαῖς ἴσαι
καὶ ἀπὸ τοῦ Α τῇ ΑΒ πρὸς ὀρθὰς ἤχθω ἡ ΓΑΔ : τεταρτημορίου ἄρα ἐστὶν ἡ ΒΔ περιφέρεια . λέγω
6653827 ΔΑ
αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς ΕΔ : καὶ τοῦ ΔΑ ἄρα πρὸς ΕΔ λόγος ἐστὶ δοθείς : καὶ ἀναστρέψαντι
, κοινὴ δὲ ἡ ΒΑ , καὶ ἔστιν βάσις ἡ ΔΑ βάσει τῇ ΑΖ ἴση , γωνία ἄρα ἡ ὑπὸ
6653248 ΒΘ
ἡ ΓΔ πρὸς τὴν ΗΛ , ὁ δὲ τοῦ ὑπὸ ΒΘ ΓΔ πρὸς τὸ ὑπὸ ΒΔ ΓΘ συνῆπται λόγος ἔκ
ἄρα , ὡς ἡ ΓΔ πρὸς ΕΖ , οὕτως ἡ ΒΘ πρὸς ΚΗ . ἐδείχθη δέ , ὡς ἡ ΓΔ
6646065 ΒΔΖ
δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων , τοῦ δὲ ΒΔΖ ὀρθογωνίου τὸ ἀπὸ τῆς ΒΖ τετράγωνον ἴσον ἐστὶν τῷ
τῷ ἀπὸ ΒΝ τετραγώνῳ . ἐπεὶ δὲ ἐν τριγώνῳ τῷ ΒΔΖ κάθετος ἦκται ἡ ΔΝΞ , καὶ κεκλασμέναι πρὸς αὐτῇ
6645152 ΒΑΕ
ΑΕ : ἀκολούθως δὲ αὐταῖς καὶ αἱ ὑπὸ ΒΑΔ καὶ ΒΑΕ γωνίαι . τῆς δὲ τοῦ ζῳδιακοῦ θέσεως ἐγκεκλιμένης ,
ἡ ΔΕ , ἴση ἐστὶν ἡ ὑπὸ ΔΑΒ τῇ ὑπὸ ΒΑΕ . ἀλλ ' ἡ ὑπὸ ΔΑΒ τῇ ἐν τῷ
6632386 ΒΗΓ
ὑπὸ ΒΗΓ γωνία τῇ ὑπὸ ΓΘΖ , ἀλλὰ ἡ ὑπὸ ΒΗΓ ἴση ἐστὶν τῇ ὑπὸ ΒΑΓ ἐν κύκλῳ , ἡ
τῶν ΒΓ , ΕΖ , δύο δὲ γωνιῶν τῶν ὑπὸ ΒΗΓ , ΕΘΖ , εἴληπται τῆς μὲν ΒΓ περιφερείας καὶ
6628143 ΑΖ
ὀρθὰς ἤχθωσαν αἱ ΓΕ , ΔΖ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΖΒ , ΕΒ . καὶ ἐπεὶ διπλῆ ἐστιν
ὡς δὲ ἡ ΑΓ πρὸς τὴν ΓΒ , οὕτως ἡ ΑΖ πρὸς τὴν ΖΕ , δι ' ἴσου ἄρα ἐστὶν
6621984 ΒΖΗ
ἔσται τῷ εὐθυγράμμῳ τῷ συγκειμένῳ ἐκ τῶν τριῶν τριγώνων τῶν ΒΖΗ ΒΖΚ ΕΚΖ . τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ
δὲ ὑπὸ ΒΑΕ ἴση ἐστὶν τῇ ἐκτὸς τετραπλεύρου τῇ ὑπὸ ΒΖΗ : καὶ ἡ ὑπὸ ΘΖΒ ἄρα γωνία ἴση ἐστὶν
6615890 ΕΓΗ
τῇ ὑπὸ ΕΓΖ , τὴν δὲ ὑπὸ ΒΑΚ τῇ ὑπὸ ΕΓΗ , τὴν δὲ ὑπὸ ΚΑΘ τῇ ὑπὸ ΗΓΖ :
περὶ τὸ ΓΕΗ ὀρθογώνιον κύκλος τξ , ἡ δὲ ὑπὸ ΕΓΗ γωνία , οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ
6593047 ΑΔ
σημεῖα τὰ Γ Δ : ὅτι , ἐὰν τὸ ἀπὸ ΑΔ καὶ τὸ λόγον ἔχον πρὸς τὸ ἀπὸ ΔΒ τὸν
γωνίαν τὴν ὑπὸ τῶν ΕΑΔ , θέσει ἄρα ἐστὶν ἡ ΑΔ . . . Ἄλλως . Εἰλήφθω ἐπὶ τῆς ΒΓ
6570930 ΑΒΓ
ὁρίζοντές εἰσιν οἱ ΕΜΖ ΑΒΓ τούτῳ μόνον διαφέροντες τῷ τὸν ΑΒΓ πρὸς ἀνατολὰς μᾶλλον τετάχθαι ἤπερ τὸν ΕΜΖ , τὰ
: καὶ ἡ ἀπὸ τοῦ Η ἄρα κάθετος ἐπὶ τὸ ΑΒΓ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΟΜΝ ἐπιπέδου . διὰ
6567413 ΗΖ
πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι
τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ
6565500 ΕΑΒ
ὡς συναμφότερος ἡ ΕΛΒ πρὸς ΒΛ , οὕτως συναμφότερος ἡ ΕΑΒ πρὸς ΒΑ , καὶ ἐναλλάξ : μείζων δὲ συναμφότερος
ἔχει ἢ πρὸς τὸ ΑΒΓ τρίγωνον : πολλῷ ἄρα ὁ ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα μείζονα λόγον ἔχει ἢ
6553551 ΑΕ
πρὸς ΕΒ , ἡ ΓΖ πρὸς ΖΔ , αἱ δὲ ΑΕ , ΕΒ δυνάμει μόνον σύμμετροί εἰσιν , καὶ αἱ
οὕτω μία τῶν πλευρῶν ἡ ΑΒ πρὸς μέρος αὐτῆς τὴν ΑΕ . ἐπεὶ οὖν ἡ ΑΒ πρὸς τὴν ΑΕ λόγον
6533880 ΑΣ
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν .
6532262 ΕΓ
Δ , καὶ ἀπ ' αὐτοῦ πρὸς ὀρθὰς ἀγαγὼν τῇ ΕΓ τὴν ΔΒ , καὶ ἐπιζεύξας τὴν ΕΒ , καὶ
ἡ ΑΕ τῇ ΕΒ : ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ : τὰ Γ , Δ ἄρα σημεῖα οὐκ ἴσον
6522366 σητος
δὲ ὀξύνωνται , διὰ τοῦ τος κλίνονται , οἷον σής σητός , θής θητός , Γνής Γνητός . Ταῦτα μὲν
παρά τινων ἐλάμβανε τὰς ῥάβδους ξηρὰς καὶ βεβρωμένας ὡς ὑπὸ σητός : ἐκέλευσεν ὁ ἄγγελος τοὺς τὰς τοιαύτας ῥάβδους ἐπιδεδωκότας
6517277 ΑΓ
τοῦ ὑπὸ τῶν ΒΑΓ πρὸς τὸ ὑπὸ τῶν ΒΔ , ΑΓ λόγος ἐστὶ δοθείς . τοῦ δὲ ὑπὸ τῶν ΑΓ
δευτέρα ἐστὶν ἡ ΑΒ διῃρημένη κατὰ τὸ Γ , αἱ ΑΓ , ΓΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι μέσον
6511693 ΑΒΖ
τὸν ΓΔ κῶνον ἢ κύλινδρον . καὶ ὡς ἄρα ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον
δὲ καὶ ἡ ὑπὸ ΑΒΖ ὀρθή : ἡ ἄρα ὑπὸ ΑΒΖ ἴση ἐστὶ ταῖς ὑπὸ ΒΑΔ , ΑΒΔ . κοινὴ
6510877 ΕΗ
εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ
τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε
6507718 ΣΒ
τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν
, ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ
6503907 ΒΔΑ
ΒΑ τῆς ΑΓ μείζων : μείζων ἄρα καὶ ἡ ὑπὸ ΒΔΑ γωνία τῆς ὑπὸ ΑΔΓ . ἐκβεβλήσθω ἡ ΑΔ ,
, ὡς δὲ ἡ ὑπὸ ΓΔΒ γωνία πρὸς τὴν ὑπὸ ΒΔΑ , οὕτως ἡ ΓΒ περιφέρεια πρὸς τὴν ΒΑ :
6502054 ΛΠ
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία ,
6494416 ΑΔΒ
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ
6494252 ΖΑ
τὸ ΑΔΖ τρίγωνον τῷ εἴδει : λόγος ἄρα ἐστὶ τῆς ΖΑ πρὸς τὴν ΑΔ δοθείς : ἡ δὲ ΑΖ συναμφότερός
διὰ τὸ ἴσα εἶναι τά τε ἀπὸ τῶν ΒΖ , ΖΑ καὶ τὰ ἀπὸ τῶν ΒΚ , ΚΑ τῷ ἀπὸ
6493643 ΑΛΒ
παράλληλος αὐτῇ ἡ ΓΟ . ἐπεὶ οὖν ἰσογώνιόν ἐστιν τὸ ΑΛΒ τρίγωνον τῷ ΓΟΒ τριγώνῳ καὶ διπλῆ ἐστιν ἡ μὲν
πρὸς ὅλον τὸ ἀπὸ ΛΗ , οὕτως ἀφαιρεθὲν τὸ ὑπὸ ΑΛΒ πρὸς ἀφαιρεθὲν τὸ ἀπὸ ΛΚ , καὶ λοιπὸν ἄρα
6493243 ΕΠ
ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ
. καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ
6489029 ΚΜ
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς
6485883 ΗΘΚ
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ
6484828 ΓΕΖ
ΓΕ ἡ ΗΚΘ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΓΕΖ τῇ ὑπὸ ΘΕΚ , ἡ δὲ ὑπὸ ΖΕΓ τῇ
ΖΕΓΗ παραλληλόγραμμον τῷ ΑΒΓ τριγώνῳ . καὶ ἔχει τὴν ὑπὸ ΓΕΖ γωνίαν ἴσην τῇ δοθείσῃ τῇ Δ . Τῷ ἄρα
6480680 ΒΚΓ
ΓΖ : ἴσον ἄρα καὶ τὸ ὑπὸ ΒΜΑ τῷ ὑπὸ ΒΚΓ : ὡς ἄρα ἡ ΜΒ πρὸς ΒΚ , ἡ
ΚΔ . οὐκοῦν μείζων ἡ ὑπὸ ΔΚΓ γωνία τῆς ὑπὸ ΒΚΓ γωνίας . τὰ δὲ ὑπὸ μείζονος γωνίας ὁρώμενα ἔγγιον
6476355 ΔΜ
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ
6474940 ΕΖΗ
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ
6464990 ΕΓΔ
πρὸς τὸ ἀπὸ ΔΕ διὰ τὴν ὁμοιότητα τῶν ΒΚΔ , ΕΓΔ , ΝΑΔ τριγώνων , ὡς δὲ τὸ ὑπὸ ΜΒ
. ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΕΔΓ τῇ ὑπὸ ΕΓΔ , τουτέστιν τῇ ὑπὸ ΔΖΓ , καὶ κοινὴ ἡ
6462431 ΜΡ
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ
6457856 ΔΒ
ἀπὸ ΖΝ ΝΒ ὑπεροχῇ . ἀλλὰ ἡ τῶν ἀπὸ ΖΔ ΔΒ ὑπεροχή ἐστιν τὸ ὑπὸ ΑΒΔ : καὶ ἡ τῶν
ΑΓ , ΓΒ ἔλαττον τοῦ δὶς ὑπὸ τῶν ΑΔ , ΔΒ , λείπεται τὰ ἀπὸ τῶν ΑΓ , ΓΒ τετράγωνα
6456812 ΓΒΑ
δυσὶν ὀρθαῖς ἴσαι εἰσίν : καὶ αἱ ὑπὸ ΑΓΒ , ΓΒΑ , ΓΑΒ ἄρα δυσίν ὀρθαῖς ἴσαι εἰσίν . Παντὸς
τῶν ΔΗΕ , περὶ δὲ ἄλλας γωνίας τὰς ὑπὸ τῶν ΓΒΑ , ΕΔΗ τὰς πλευρὰς ἀνάλογον , τῶν δὲ λοιπῶν
6450055 ἀγαγωμεν
δύναμιν θέσθαι τὴν ἡμετέραν σπουδάσωμεν καὶ ὥσπερ ὑπ ' ὄψιν ἀγάγωμεν . Δείκνυσι γάρ σου περιφανῶς τὴν ψυχήν , περὶ
, καὶ γίνονται πεντάκις ε κε . ἐὰν τοίνυν διάμετρον ἀγάγωμεν ἐν τῷ τετραγώνῳ , ὅ ἐστι διαγώνιον , τὸ
6447151 ΒΔΓ
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω ,
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς
6444554 ΩΨ
διπλῆ ἡ ΦΧ : πενταπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΩΨ τοῦ ἀπὸ τῆς ΧΦ . καὶ ἐπεὶ τετραπλῆ ἐστιν
δὲ ΣΟ τῇ ΨΥ ἴση , καὶ τὰ ἀπὸ τῶν ΩΨ , ΨΥ τριπλάσιά εἰσι τοῦ ἀπὸ τῆς ΟΝ .
6442594 ΒΑΘ
τῆς ΑΓ ἤπερ ἡ ΑΖ , μείζων ἔσται ἡ ὑπὸ ΒΑΘ τῆς ὑπὸ ΒΑΖ . ἀχθείσης γὰρ πάλιν καθέτου ἐπὶ
ΘΒ βάσει τῇ ΖΕ ἴση : γωνία ἄρα ἡ ὑπὸ ΒΑΘ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἐστιν ἴση . διὰ τὰ
6441318 ΑΖΓ
τῇ ὑπὸ ΔΖΕ γωνίᾳ . ἔστιν δὲ καὶ ἡ ὑπὸ ΑΖΓ γωνία τῇ ὑπὸ ΒΖΕ γωνίᾳ : ὅλη ἄρα ἡ
καὶ ἐπεζεύχθωσαν αἱ ΔΚ ΚΒ ΚΕ ἐπεὶ οὖν τὸ ὑπὸ ΑΖΓ μετὰ τοῦ ἀπὸ ΖΚ ἴσον ἐστὶν τῷ ἀπὸ ΑΚ
6423755 ΖΜ
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν
6422113 ΕΘ
καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ
ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν
6411661 ΚΕΖ
ΚΘΕΖ διπλασίονα λόγον ἔχει ἤπερ τὸ ΑΓΔ τρίγωνον πρὸς τὸ ΚΕΖ , ὡς ἐδείχθη . ὡς δὲ ὁ ΑΗΓΔ κῶνος
τὸ ΒΕΖ τριπλασίονα λόγον ἔχει ἤπερ τὸ ΑΓΔ πρὸς τὸ ΚΕΖ : τὸ ἄρα ΚΕΖ πρὸς τὸ ΒΕΖ διπλασίονα λόγον
6407983 ΑΗ
τὸ Ζ : δι ' ἴσου ἄρα ἐστὶν ὡς τὸ ΑΗ πρὸς τὸ Γ , οὕτως τὸ ΔΘ πρὸς τὸ
ἐστὶ τῷ ΓΕ , λοιπὸν ἄρα τὸ δὶς ὑπὸ τῶν ΑΗ , ΗΒ ἴσον ἐστὶ τῷ ΖΛ . ῥητὸν δὲ
6395747 ΕΚΗ
κοινὴ τομὴ ἡ ΖΘ , τοῦ δὲ ΕΖΗΘ καὶ τοῦ ΕΚΗ κοινὴ τομὴ ἡ ΕΗ . καὶ ἐπεὶ ἐν σφαίρᾳ
' οὗ ΕΚΒΗ περιλήψεται κύκλος . : τὸ μὲν γὰρ ΕΚΗ τρίγωνον περιλήψεται κύκλος : ἔχομεν γὰρ ἐν τῷ πέμπτῳ
6393065 ΝΛ
. πέντε δὲ τὰ ἀπὸ ΒΔ ιεʹ ἐστιν τὰ ἀπὸ ΝΛ , ὡς ἔστιν ἐν τῷ ιγʹ τῶν στοιχείων :
ὅτι οὐδὲ ἐλάσσων : μείζων ἄρα ἐστὶν ἡ ΡΟ τῆς ΝΛ . ιʹ . Πάλιν ἐπὶ μεγίστου κύκλου περιφερείας ὁ
6391939 ΔΦ
ΦΘ ὁμοίως ε ιϚ . καὶ ἐπεὶ τὸ ἀπὸ τῆς ΔΦ λειφθὲν ὑπὸ τοῦ ἀπὸ τῆς ΔΑ ποιεῖ τὸ ἀπὸ
τοῦ κέντρου τοῦ ἐκκέντρου ξ , τοιούτων καὶ ἡ μὲν ΔΦ ἔσται δ ια ∠ ʹ , ἡ δὲ ΦΘ
6391458 ΘΖΛ
ὅτι τὸ ἀπὸ τῆς ΚΛ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΘΖΛ . ἤχθω γὰρ διὰ τοῦ Λ τῇ ΒΓ παράλληλος
ΛΖΑ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ
6384398 ΖΘ
οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ , ἔσται ὡς τὸ ἀπὸ τῆς ΒΔ πρὸς τὸ
στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ . ὡς δὲ τὸ Ξ στερεὸν
6381547 Ἀρχιγενουϲ
διειμένην , μὴ παρούϲηϲ δὲ λαγῴαϲ ἐριφείᾳ χρηϲτέον . Ἄλλο Ἀρχιγένουϲ ἐπιληπτικοῖϲ καὶ τοῖϲ περιοδικῶϲ ϲπωμένοιϲ ἢ εἰλεωδῶϲ ὀχλουμένοιϲ ἢ
Περὶ ἀποπληξίαϲ ἐκ τῶν Ἀρχιγένουϲ κη Περὶ παραλύϲεωϲ ἐκ τῶν Ἀρχιγένουϲ κθ Περὶ ὀφρύοϲ ἢ βλεφάρων παραλυθέντων λ Περὶ κυνικοῦ
6371682 ΛΔ
δέ εἰσιν ἄνισοι , ὥς φησιν , αἱ ΑΔ , ΛΔ . τὸ γὰρ ἀπὸ ΑΛ , τῶν # λ
ἄρα οὐκ ἐφάπτεται τοῦ ΕΖΗΘ κύκλου : πολλῷ ἄρα αἱ ΛΔ , ΔΝ οὐκ ἐφάπτονται τοῦ ΕΖΗΘ κύκλου . ἐὰν

Back