ΑΒΗ γωνία . ἐπεὶ οὖν ἴση ἐστὶν ἡ μὲν ὑπὸ ΕΑΓ γωνία τῇ ὑπὸ ΑΒΓ , ἡ δὲ ὑπὸ ΗΑΓ | ||
τὸ ὑπὸ τῶν ΕΑ ΒΓ , οὕτως τὸ ὑπὸ τῶν ΕΑΓ πρὸς τὸ ὑπὸ τῶν ΓΔΕ : ἴσον ἄρα ἐστὶν |
τὸ ἀπὸ ΑΓ πρὸς τὸ ἀπὸ ΓΒ , τὸ ὑπὸ ΚΖΕ πρὸς τὸ ὑπὸ ΘΖΔ . ἤχθωσαν γὰρ διὰ τῶν | ||
τὸ ἀπὸ ΑΓ πρὸς τὸ ἀπὸ ΒΓ , τὸ ὑπὸ ΚΖΕ πρὸς τὸ ὑπὸ ΘΖΔ . Ἐὰν τῶν ἀντικειμένων δύο |
ἄρα πρὸς τὴν ὑπὸ ΒΑΓ μείζονα λόγον ἔχει ἢ τὸ ΔΑΒ τρίγραμμον πρὸς τὸ ΒΑΓ τρίγωνον . καὶ ἀνάπαλιν τὸ | ||
αἱ ἄρα ὑπὸ ΔΑΒ ΒΑΓ ΓΑΕ , τουτέστιν αἱ ὑπὸ ΔΑΒ ΒΑΕ , τουτέστιν αἱ δύο ὀρθαὶ ἴσαι εἰσὶ ταῖς |
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ | ||
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ |
ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ | ||
. καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ |
τὴν ΖΓ , οὕτως ἡ ὑπὸ ΑΔΓ πρὸς τὴν ὑπὸ ΖΔΓ γωνίαν . τετραπλῆ ἄρα ἡ ὑπὸ ΑΔΓ τῆς ὑπὸ | ||
. διπλῆ δὲ . , ] διὰ τὸ εἶναι τὸ ΖΔΓ τρίγωνον ἰσοσκελές : ἐπεὶ δὲ παντὸς τριγώνου ἡ ἐκτὸς |
ἔχον τὴν ὑπὸ τῶν ΒΑΓ , περὶ δὲ τὴν ὑπὸ ΒΑΓ γωνίαν αἱ πλευραί , τουτέστι συναμφότερος ἡ ΒΑΓ ὡς | ||
ὑπὸ ΒΔΕ , ΒΑΓ : αἱ ἄρα ὑπὸ ΒΔΕ , ΒΑΓ ἐλάττονές εἰσι δυοῖν ὀρθῶν . εἰσὶ δὲ αἱ ὑπὸ |
πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν | ||
ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ |
ποιουσῶν πρὸς τῇ ΒΑ γωνίας ἐλαχίστη ἐστὶν ἡ ὑπὸ τῶν ΓΑΒ . διήχθω γὰρ εὐθεῖα ἡ ΔΑΕ , καὶ ἤχθω | ||
τῆς ὑπὸ ΑΔΒ , ὡς ἐδείχθη , ἡ δὲ ὑπὸ ΓΑΒ τῆς ὑπὸ ΔΑΒ , συνεστάτω τῇ μὲν ὑπὸ ΑΓΒ |
ἐστὶν τῇ ὑπὸ τῶν ΔΒΖ , τουτέστιν τῇ ὑπὸ τῶν ΓΔΒ , τουτέστιν τῇ ὑπὸ τῶν ΒΑΔ : ἡ ἄρα | ||
ὀρθαῖς ἴσαι , μείζων ἄρα ἡ ὑπὸ ΑΓΒ τῆς ὑπὸ ΓΔΒ . Ἐὰν ἐν κώνῳ σκαληνῷ τμηθέντι διὰ τῆς κορυφῆς |
ὑπὸ ΕΑΒ . ἐπεὶ οὖν δύο τρίγωνα τὰ ΖΕΒ , ΖΑΒ ἐπὶ μιᾶς βάσεως συνέστηκε , καὶ ἡ ἀπὸ τοῦ | ||
ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα , οὕτως ἡ ὑπὸ ΖΑΒ πρὸς τὴν ὑπὸ ΒΑΓ : καὶ ἡ ὑπὸ ΖΑΒ |
ΘΗ , ΖΗ πρὸς τὴν ΗΑ . ἔστω τῷ ὑπὸ ΘΗΖ ἴσον τὸ ὑπὸ ΗΑ , Κ . καὶ ἐπεί | ||
τῇ ὑπὸ τῶν ΘΖΓ ἐστὶν ἴση : καὶ ἡ ὑπὸ ΘΗΖ ἄρα τῇ ὑπὸ ΘΖΗ ἐστὶν ἴση . καὶ κάθετος |
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
ΒΑ τῆς ΑΓ μείζων : μείζων ἄρα καὶ ἡ ὑπὸ ΒΔΑ γωνία τῆς ὑπὸ ΑΔΓ . ἐκβεβλήσθω ἡ ΑΔ , | ||
, ὡς δὲ ἡ ὑπὸ ΓΔΒ γωνία πρὸς τὴν ὑπὸ ΒΔΑ , οὕτως ἡ ΓΒ περιφέρεια πρὸς τὴν ΒΑ : |
ὀρθὰς τῷ κύκλῳ διὰ τοῦ ἄξονος τριγώνου βάσις ἔστω ἡ ΓΒΔ , καὶ ἤχθωσαν τῇ ΓΔ πρὸς ὀρθὰς ἐν τῷ | ||
τῷ κύκλῳ τριγώνου διὰ τοῦ ἄξονος ἠγμένου βάσις ἔστω ἡ ΓΒΔ , καὶ ἡ ὑπὸ ΑΒΔ γωνία ἐλάττων ἔστω ὀρθῆς |
ΒΓΖ τῇ ὑπὸ ΓΒΗ . ἐπεὶ οὖν ὅλη ἡ ὑπὸ ΑΒΗ γωνία ὅλῃ τῇ ὑπὸ ΑΓΖ γωνίᾳ ἐδείχθη ἴση , | ||
ΑΒΗ τρίγωνον : καὶ τὸ ΑΒΓ ἄρα τρίγωνον πρὸς τὸ ΑΒΗ διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ |
. Μετὰ δέ , ὡς ἐπάϊστος ἐγένετο τοῦτο ἐργασμένος , μισηθείς τε καὶ διωκόμενος οἴχετο φεύγων τῇσι νηυσὶ ἐπὶ Λιβύης | ||
τὸ ἀποκαίνυτο , . . Ἀπέχθηαι : ἐχθρὸς γενήσῃ † μισηθείς : ἀπὸ τοῦ ἀπέχθω , τοῦτο εἰς τὸ ἔχθω |
καὶ τῆς Σικελικῆς , τῆς μὲν ἀπὸ τοῦ Σιλάριδος μέχρι Λάου , τῆς δ ' ἀπὸ τοῦ Μεταποντίου μέχρι Θουρίων | ||
Σαυνιτῶν μέχρι τοῦ ἰσθμοῦ τοῦ ἀπὸ Θουρίων εἰς Κηρίλλους πλησίον Λάου : στάδιοι δ ' εἰσὶ τοῦ ἰσθμοῦ τριακόσιοι . |
ΓΕ ἡ ΗΚΘ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΓΕΖ τῇ ὑπὸ ΘΕΚ , ἡ δὲ ὑπὸ ΖΕΓ τῇ | ||
ΖΕΓΗ παραλληλόγραμμον τῷ ΑΒΓ τριγώνῳ . καὶ ἔχει τὴν ὑπὸ ΓΕΖ γωνίαν ἴσην τῇ δοθείσῃ τῇ Δ . Τῷ ἄρα |
ἐφαπτομένη παράλληλός ἐστι τῇ ΑΓ . ἔστω οὖν ἐφαπτομένη ἡ ΘΒΚ : συμπεσεῖται δὴ ταῖς ΕΔ , ΔΖ . ἐπεὶ | ||
καθέτου διάμετρος ἡ ΔΓΒΕ , διήχθωσαν δὲ αἱ ΖΒΗ , ΘΒΚ ἴσας περιφερείας ἀπολαμβάνουσαι πρὸς τῇ ΕΔ τὰς ΚΔ , |
ἡ ΒΕ βάσει τῇ ΑΓ ἴση ἐστίν , καὶ τὸ ΑΒΕ τρίγωνον τῷ ΑΒΓ τριγώνῳ ἴσον ἐστίν , καὶ αἱ | ||
πρὸς ὅλην καὶ ἀναστρέψαντι καὶ χωρίον χωρίῳ τὸ ἄρα ὑπὸ ΑΒΕ ἴσον ἐστὶν τῷ ὑπὸ ΓΒΔ . Φανερὸν δὲ ὅτι |
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς | ||
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν . |
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε | ||
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ |
διεκβεβλήσθω τὸ διὰ τῶν ΘΚ , ΗΑ ἐπίπεδον ποιοῦν τὸ ΑΘΚ τρίγωνον . λέγω , ὅτι τὸ ΑΘΚ τρίγωνον ἴσον | ||
, τὸ ΑΕΚ τρίγωνον μετὰ τοῦ ΚΗΓ ἴσον ἐστὶ τῷ ΑΘΚ τριγώνῳ μετὰ τοῦ ΚΖΓ : ἔστι δὲ καὶ ὅλον |
καὶ τῷ ὑπὸ ΒΔ ΑΓ , κοινὸν ἀφῃρήσθω τὸ ὑπὸ ΔΑΓ : λοιπὸν ἄρα τὸ ὑπὸ ΑΓ ΔΒ ἴσον ἐστὶν | ||
. ἔσται δὴ πάλιν κατὰ τὰ αὐτὰ ἡ ὑπὸ τῶν ΔΑΓ γωνία ὀρθῆς μεʹ μέρος , ἡ δὲ ὑπὸ τῶν |
' ὡς τὸ ὑπὸ ΝΓ , ΖΔ πρὸς τὸ ὑπὸ ΝΔ , ΓΖ , οὕτως ἐδείχθη τὸ ὑπὸ ΓΕ , | ||
ΑΟ , ἴση ἐστὶν ἡ ΝΒ τῇ ΒΟ καὶ ἡ ΝΔ τῇ ΔΑ . ἔστι δὲ καὶ ἡ ΕΚ τῇ |
τῆς ΑΓ ἤπερ ἡ ΑΖ , μείζων ἔσται ἡ ὑπὸ ΒΑΘ τῆς ὑπὸ ΒΑΖ . ἀχθείσης γὰρ πάλιν καθέτου ἐπὶ | ||
ΘΒ βάσει τῇ ΖΕ ἴση : γωνία ἄρα ἡ ὑπὸ ΒΑΘ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἐστιν ἴση . διὰ τὰ |
ἐπίπεδον . λέγω οὖν , ὅτι ἴση ἐστὶν ἡ ὑπὸ ΚΞΑ γωνία τῇ ὑπὸ ΛΟΕ γωνίᾳ . ἐπεὶ γὰρ αἱ | ||
ἐν τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ , ἡ ἄρα ὑπὸ ΚΞΑ γωνία ἡ κλίσις ἐστίν , ἐν ᾗ κέκλιται τὸ |
ΑΚΓΜ κύκλους τινὰς τῶν ἐν τῇ σφαίρᾳ τοὺς ΑΒΓΔ , ΒΚΔ διὰ τῶν πόλων τέμνει , δίχα τε αὐτοὺς τεμεῖ | ||
, ὀρθὴ δὲ πάντοτε ἡ ὑπὸ ΑΒΕ , δίδοται τὰ ΒΚΔ καὶ ΒΛΕ ὀρθογώνια καὶ λόγος τῆς ΖΒ πρὸς τὰς |
ὡς συναμφότερος ἡ ΕΛΒ πρὸς ΒΛ , οὕτως συναμφότερος ἡ ΕΑΒ πρὸς ΒΑ , καὶ ἐναλλάξ : μείζων δὲ συναμφότερος | ||
ἔχει ἢ πρὸς τὸ ΑΒΓ τρίγωνον : πολλῷ ἄρα ὁ ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα μείζονα λόγον ἔχει ἢ |
, ἑφθούς τε καὶ ὀπτούς , οὓς αὐτοὶ καταναλίσκουσι . κατεποντίσθη δ ' ἡ Ἀταργάτις ὑπὸ Μοψοῦ τοῦ Λυδοῦ ἁλοῦσα | ||
λέγει ὁ Λυδὸς , ὑπὸ Μόξου τοῦ Λυδοῦ ἁλοῦσα , κατεποντίσθη μετὰ Ἰχθύος τοῦ υἱοῦ ἐν τῇ περὶ Ἀσκάλωνα λίμνῃ |
, ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ | ||
, ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ |
τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν | ||
, ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ |
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς | ||
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία , |
τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ | ||
τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ |
τῶν σωμάτων φυλακὴν πολυχρόνιον . Ὁ δ ' Ἀντίγονος , ἐπανελθόντος τοῦ Δημητρίου καὶ τὰ κατὰ μέρος τῶν πεπραγμένων ἀπαγγείλαντος | ||
κρίσεως καὶ τῶν ἐγκλημάτων ἀπολυθῆναι . μετὰ δὲ ταῦτα Θησέως ἐπανελθόντος ἐκ Τροιζῆνος εἰς τὰς Ἀθήνας , ἐγκληθεῖσαν ἐπὶ φαρμακείᾳ |
. , : Ἔνιοι φασὶν , ὅτι ὁ ἀπὸ Ἡρακλέους καταγωνισθεὶς Ἀνταῖος , Ἰρασσεὺς ἦν , ἀπὸ Ἰράσσων τῶν ἐν | ||
. Ἴρασσαν πρὸς πόλιν Ἀνταίου : ὅτι ὁ ὑπὸ Ἡρακλέους καταγωνισθεὶς Ἀνταῖος Ἰρασσεὺς ἦν ἀπὸ Ἰρασσῶν τῶν ἐν τῇ Τριτωνίδι |
ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη τὰς ὑπὸ ΒΗΘ , ΗΘΔ δυσὶν ὀρθαῖς ἴσας : λέγω , ὅτι παράλληλός ἐστιν | ||
τῇ ΓΔ . Πάλιν , ἐπεὶ αἱ ὑπὸ ΒΗΘ , ΗΘΔ δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ |
πρὸς τὸ ἀπὸ ΔΕ διὰ τὴν ὁμοιότητα τῶν ΒΚΔ , ΕΓΔ , ΝΑΔ τριγώνων , ὡς δὲ τὸ ὑπὸ ΜΒ | ||
. ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΕΔΓ τῇ ὑπὸ ΕΓΔ , τουτέστιν τῇ ὑπὸ ΔΖΓ , καὶ κοινὴ ἡ |
παράλληλος αὐτῇ ἡ ΓΟ . ἐπεὶ οὖν ἰσογώνιόν ἐστιν τὸ ΑΛΒ τρίγωνον τῷ ΓΟΒ τριγώνῳ καὶ διπλῆ ἐστιν ἡ μὲν | ||
πρὸς ὅλον τὸ ἀπὸ ΛΗ , οὕτως ἀφαιρεθὲν τὸ ὑπὸ ΑΛΒ πρὸς ἀφαιρεθὲν τὸ ἀπὸ ΛΚ , καὶ λοιπὸν ἄρα |
, μείζων ἐστὶ τῆς ἐντὸς καὶ ἀπεναντίον γωνίας τῆς ὑπὸ ΞΜΛ . ὀρθὴ δὲ ἡ ὑπὸ ΞΛΝ : ὀξεῖα ἄρα | ||
δὲ ἡ ὑπὸ ΞΛΝ : ὀξεῖα ἄρα ἐστὶν ἡ ὑπὸ ΞΜΛ : ἀμβλεῖα ἄρα ἐστὶν ἡ ὑπὸ ΞΜΖ . καὶ |
πλαγία πρὸς τὴν ὀρθίαν , καὶ ὡς ἄρα τὸ ὑπὸ ΒΖΑ πρὸς τὸ ἀπὸ ΖΔ , οὕτως τὸ ὑπὸ ΑΗΒ | ||
. , ] δύο γὰρ τρίγωνά εἰσι τὰ ΒΓΑ , ΒΖΑ ὀρθὴν ἔχοντα γωνίαν τὸ μὲν τὴν πρὸς τῷ Γ |
Εὐρύβατος : πονηρός . ἀπὸ τοῦ πεμφθέντος ὑπὸ Κροίσου ἐπὶ ξενολογίαν μετὰ χρημάτων , ὥς φησιν Ἔφορος , εἶτα μεταβαλλομένου | ||
: ἤτοι πονηρός . ἀπὸ τοῦ πεμφθέντος ὑπὸ Κροίσου ἐπὶ ξενολογίαν μετὰ χρημάτων , ὥς φησιν Ἔφορος , εἶτα μεταβαλλομένου |
δὲ σαφῆ μὴ σῴζει τὴν περίστασιν , ὑποθέσεως λείπεται . Νόμου τοίνυν ἐστὶν εἰσφορὰ διπλῆ γυμνασία , συνηγορία καὶ κατηγορία | ||
ταῦτα ἐπίλογος : ἴδωμεν οὖν ἐπὶ προβλήματος τὴν διαίρεσιν . Νόμου ὄντος τοῦ κατὰ μοιχῶν , καταλαβοῦσα ἡ γυνὴ τὸν |
, ἔστω δὲ μείζων ἡ ὑπὸ ΑΗΓ γωνία τῆς ὑπὸ ΔΘΖ : λέγω ὅτι , ἐὰν μὲν ᾖ μείζων ἡ | ||
ἔγγιον αὐτῆς τῆς ἀπώτερον μείζων ] . συνεστάτω τῇ ὑπὸ ΔΘΖ γωνίᾳ ἴση ἡ ὑπὸ ΓΗΜ : μείζων ἄρα ἐστὶν |
τὴν τῆς ὁμαλῆς κινήσεως ὑποτείνει περιφέρειαν , ἡ δὲ ὑπὸ ΑΖΒ τὴν τῆς φαινομένης ἀνωμάλου , ὑπεροχὴ δὲ αὐτῶν ἐστιν | ||
: τὸ ἄρα ὑπὸ ΑΕΛ ἴσον ἐστὶν τῷ τε ὑπὸ ΑΖΒ καὶ τῷ ἀπὸ ΖΕ τετραγώνῳ . ἀλλὰ τὸ μὲν |
τεμεῖ τὰ ἀπειλημμένα τμήματα : ἴση ἄρα ἐστὶν ἡ μὲν ΑΕΚ περιφέρεια τῇ ΚΗΓ περιφερείᾳ , ἡ δὲ ΑΝ τῇ | ||
τῷ Ε σημείῳ τῇ ὑπὸ ΜΠΞ γωνίᾳ ἴση ἡ ὑπὸ ΑΕΚ , καὶ διὰ τοῦ Κ ἐφαπτομένη τῆς τομῆς ἤχθω |
ΤΠ . ἐπεὶ οὖν τὸ ἀπὸ ΟΕ πρὸς τὸ ἀπὸ ΟΤ μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΕΠ πρὸς τὸ | ||
ἡμέρας χρόνῳ τὸ μὲν Κ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΤ περιφέρειαν διελθὸν ἐπὶ τὸ Τ παραγίγνεται , τὸ δὲ |
κροτάφοις ἀραρυῖαν κρατὸς ἀφαρπάξαι μεγαλήτορος Ἀμφιμάχοιο : Αἴας δ ' ὁρμηθέντος ὀρέξατο δουρὶ φαεινῷ Ἕκτορος : ἀλλ ' οὔ πῃ | ||
νεὼν εἶδον ἑτέροις ἢ προσῆκεν ὀφθαλμοῖς . Σφοδρίου τοίνυν ὕστερον ὁρμηθέντος ἐκ Θηβῶν ἤρκεσαν αἱ δᾷδες φανεῖσαι κατασβέσαι τὴν τόλμαν |
ἡ δ ' ἐπεὶ οὖν ἄμπνυτο καὶ ἐς φρένα θυμὸν ἀγέρθη ἀμβλήδην γοόωσατῆλε δ ' ἀπὸ κρατὸς χέε δέσματα . | ||
ἐκαρτύναντο καὶ αἰχμάς πᾶσά τε [ Νησαίη ] πεδιημάχος ἵππος ἀγέρθη , [ ἵππος ] ὅσης [ ] οὐδ ' |
προμαντευομένους οὕτω γενέσθαι ταῦτα : διαπλέοντες γὰρ ἀπὸ Σικυῶνος εἰς Κίρραν κατὰ μέσον τὸν πόρον πλαγίῳ περιπεσόντες τῷ Ἰάπυγι ἀνετράπησαν | ||
τὴν Θεσσαλίαν τὸν πλοῦν ἐποιεῖτο , ἀλλ ' ἐπί τε Κίρραν καὶ ἐς τὸν ταύτῃ κόλπον : ἀναβὰς δὲ ἐς |
εἰς ἀνάβραστ ' ἠρτυμέναι περὶ τὸ στόμ ' ἐπέτοντ ' ἀντιβολοῦσαι καταπιεῖν , ὑπὸ μυρρίναισι κἀνεμώναις κεχυμέναι . τὰ δὲ | ||
' οὐ πρόρριζον ἐπιχειρήσουσιν ἀνελεῖν : ἔπειτα ὑπὲρ ἡμῶν αὐτῶν ἀντιβολοῦσαι καὶ τῶν δυστήνων παιδίων τούτων , ἵνα μὴ πέσωμεν |
ΖΔΜ ὀρθογώνιον κύκλος τξ : ὥστε καὶ ἡ μὲν ὑπὸ ΒΖΔ γωνία τοιούτων ἐστὶν β μδ , οἵων αἱ β | ||
εἰσὶν αἱ ΒΖ , ΖΔ περιέχουσαι ἀμβλεῖαν , ἡ ὑπὸ ΒΖΔ ἄρα γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς |
καὶ ἡ ΠΧ . καὶ ἐπεὶ ἑξαγώνου μέν ἐστιν ἡ ΠΧ , δεκαγώνου δὲ ἡ ΧΩ , καὶ ὀρθή ἐστιν | ||
κάθετοι αἱ ΚΞ , ΕΤ , ΗΥ , ΜΦ , ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν |
ὅσον ἡ κεφαλὴ ἴσχυσε χωρῆσαι μέγεθος φωνῆς . χαῖται αἱ κεχυμέναι κόμαι . χαλκίς ὁτὲ μὲν ὄνομα πόλεως , “ | ||
τὸ στόμ ' ἐπέτοντο ἀντιβολοῦσαι καταπιεῖν , ὑπὸ μυρρίναισι κἀνεμώναις κεχυμέναι . τὰ δὲ μῆλ ' ἐκρέμαντο τὰ καλὰ τῶν |
. πέντε δὲ τὰ ἀπὸ ΒΔ ιεʹ ἐστιν τὰ ἀπὸ ΝΛ , ὡς ἔστιν ἐν τῷ ιγʹ τῶν στοιχείων : | ||
ὅτι οὐδὲ ἐλάσσων : μείζων ἄρα ἐστὶν ἡ ΡΟ τῆς ΝΛ . ιʹ . Πάλιν ἐπὶ μεγίστου κύκλου περιφερείας ὁ |
καθάπερ ὑμεῖς ἄνω καὶ κάτω τῆς πόλεως ἰοῦσαι . θ πρύμνηθεν ] ἀπὸ τῆς πρύμνης . θ εὗρε ] ἐπέτυχε | ||
τευχήρεις , ποτὶ δὲ ζυγὸν ἷζον ἕκαστος . Τῖφυς δὲ πρύμνηθεν ἐπήπυεν ἠδ ' ἐκέλευε κλίμακα νηὸς ἔσω ἐρύσαι , |
ΑΔ : ἰσογώνια ἄρα ἐστὶ τὰ τρίγωνα τὰ ΒΓΑ , ΔΖΑ . ὥστε ἴση ἐστὶν ἡ ὑπὸ ΓΑΒ γωνία τῇ | ||
ἴσαι αἱ ΗΕ ΗΖ : ἴσον ἄρα καὶ τὸ ὑπὸ ΔΖΑ μετὰ τοῦ ἀπὸ ΑΗ τῷ ὑπὸ ΔΕΓ μετὰ τοῦ |
τε ξυνιέναι ὀξύτερος ᾖ καὶ ἀμείνων μνημονεύς . Ὁ αὐτὸς σκωπτόμενος ὑπό τινος ὅτι διὰ σμικρολογίας τοῦτο ποιεῖ εἶπεν : | ||
νόμοις τῆς πατρίδος . Βίας ἔν τινι πότῳ σιωπῶν καὶ σκωπτόμενος εἰς ἀβελτερίαν ὑπό τινος ἀδολέσχου : Καί τίς ἂν |
εἰργμένον ἀδικίης ὑπὸ νόμου , τὸν δὲ ἐς τὸ δέον ἠγμένον πειθοῖ οὐκ εἰκὸς οὔτε λάθρηι οὔτε φανερῶς ἔρδειν τι | ||
ἃς ἐκ τοῦ παύειν εὐδοκιμεῖς ; ἤδη τις ἵππον φαύλως ἠγμένον ἐπρίατο πιστεύων αὐτὸν ἐπανορθώσειν τῇ παρ ' ἑαυτοῦ τέχνῃ |
ἀπὸ ΔΘ , οὕτως τὸ ὑπὸ ΑΗΒ πρὸς τὸ ὑπὸ ΑΘΒ διὰ τὴν τομήν , τὸ ἄρα ἀπὸ ΗΓ πρὸς | ||
: ὅπερ ἄτοπον : ἔπιπτε γὰρ καὶ εἰς τὴν ὑπὸ ΑΘΒ . οὐκ ἄρα ἡ ΕΖ μιᾷ τῶν Α , |
ὀρεινῆς ἄλλη ῥάχις ἐστί , μεταξὺ αὐλῶνα καταλείπουσα τὸν κατὰ Ἄλγιδον , ὑψηλὴ μέχρι τοῦ Ἀλβανοῦ ὄρους . ἐπὶ ταύτης | ||
ὑπερβᾶσα μεταξὺ Τούσκλου πόλεως καὶ τοῦ Ἀλβανοῦ ὄρους κάτεισιν ἐπὶ Ἄλγιδον πολίχνιον καὶ Πικτὰς πανδοχεῖα . εἶτα συμπίπτει καὶ ἡ |
τῇ ὑπὸ ΑΘΖ : δοθεῖσα οὖν ἔσται καὶ ἡ ὑπὸ ΑΘΖ γωνία . κατὰ τὰ αὐτὰ δὲ καὶ τὴν ΖΔ | ||
ἔστιν ἡ ὑπὸ ΑΒΖ τῆς ὑπὸ ΕΖΒ μείζων τῇ ὑπὸ ΑΘΖ : δοθεῖσα οὖν ἔσται καὶ ἡ ὑπὸ ΑΘΖ γωνία |
ὀρθὴ γὰρ ἑκατέρα αὐτῶν . ὡς ἡ ΒΚ πρὸς τὴν ΚΤ . , ] ἐπειδήπερ ἑκάτεραι αὐτῶν ἐκ τοῦ κέντρου | ||
. πάλιν , ἐπεί ἐστιν ὡς ἡ ΒΚ πρὸς τὴν ΚΤ , οὕτως ἡ ΖΜ πρὸς τὴν ΜΟ , καὶ |
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ : | ||
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου |
ἐστίν . ὥστε αἱ ὑπὸ ΣΨΚ , ΚΨΒ , ΒΨΟ ἀμβλεῖαί εἰσιν . καὶ ἐπεὶ ἐν ἀμβλυγωνίοις τριγώνοις τὸ ἀπὸ | ||
ἐστίν . ὥστε αἱ ὑπὸ ΣΨΚ , ΚΨΒ , ΒΨΟ ἀμβλεῖαί εἰσιν . καὶ ἐπεὶ ἐν ἀμβλυγωνίοις τριγώνοις τὸ ἀπὸ |
ἐπὶ πεδίῳ , ἐπιπολαζόντων δὲ τῶν ὑδάτων ἀνοικισθῆναι πρὸς τὸ Ἀκόντιον ὄρος , παρατεῖνον ἐπὶ ἑξήκοντα σταδίους μέχρι Παραποταμίων τῶν | ||
καὶ Λεῦκτρον : Παρρασίων δὲ Λυκοσουρεῖς Θωκνεῖς Τραπεζούντιοι Προσεῖς Ἀκακήσιον Ἀκόντιον Μακαρία Δασέα : ἐκ δὲ Κυνουραίων τῶν ἐν Ἀρκαδίᾳ |
τῶν ΔΖΕ , περὶ δὲ τὰς ὑπὸ τῶν ΒΑΓ , ΔΖΕ γωνίας τὰς πλευρὰς ἀνάλογον , ὅμοιον ἄρα ἐστὶ τὸ | ||
τῷ ὑπὸ ΝΞΕ τὸ ὑπὸ ΘΜΕ , καὶ τὸ ὑπὸ ΔΖΕ ἄρα μεῖζόν ἐστιν τοῦ ὑπὸ ΘΜΕ , ὥστε καὶ |
γωνία τῇ ὑπὸ ΔΖΜ . ἔστι δὲ καὶ ἡ ὑπὸ ΘΑΓ τῇ ὑπὸ ΜΔΖ ἴση . δύο δὴ τρίγωνά ἐστι | ||
σημείῳ τῷ Α τῇ ὑπὸ ΔΕΖ γωνίᾳ ἴση ἡ ὑπὸ ΘΑΓ , πρὸς δὲ τῇ ΑΗ εὐθείᾳ καὶ τῷ πρὸς |
, ἐν τούτῳ , λοιπὸν καὶ περὶ τῶν ἄλλων δεδοίκαμεν δικαίωσις : κέλευσις , πρόσταξις ʃ αὐθεντία ʃ τὸ δικαιοῦν | ||
συλλογήν . ἐπιτηδείου : ἀντὶ τοῦ εὐπροσώπου ʃ ἐσκεμμένου . δικαίωσις : ἀντὶ τοῦ κόλασις ἢ εἰς δίκην ἀπαγωγή ʃ |
ἐπὶ τοῖσδ ' ἀνάβραστ ' ἠρτυμέναι περὶ τὸ στόμ ' ἐπέτοντ ' ἀντιβολοῦσαι καταπιεῖν . αἱ δὲ περιτταὶ σκευασίαι ὀνθυλεύσεις | ||
ἐπὶ τοῖσδ ' ἀνάβραστ ' ἠρτυμέναι περὶ τὸ στόμ ' ἐπέτοντ ' ἀντιβολοῦσαι καταπιεῖν , ὑπὸ μυρρίναισι κἀνεμώναις κεχυμέναι . |
ΥΑΦ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΧΗ συναμφοτέρου τῆς ΦΘ ΥΚ μείζων ἐστίν . ἴση δὲ ἡ ΦΘ τῇ | ||
να . πάλιν δ ' , ἐπεὶ καὶ ἡ μὲν ΦΘ τῇ ΦΧ ἴση ἐστίν , ἡ δὲ ΝΧ τῆς |
' ἤνπερ πύθῃ ; ὀπταὶ κίχλαι γὰρ εἰς ἀνάβραστ ' ἠρτυμέναι περὶ τὸ στόμ ' ἐπέτοντ ' ἀντιβολοῦσαι καταπιεῖν , | ||
. ὀπταὶ κίχλαι δ ' ἐπὶ τοῖσδ ' ἀνάβραστ ' ἠρτυμέναι περὶ τὸ στόμ ' ἐπέτοντ ' ἀντιβολοῦσαι καταπιεῖν . |
Ξάνθος δὲ ὁ Λυδὸς δέκα καὶ δέκα ἐκ Φιλόττου τοῦ Ἀσσυρίου . . . . : ὠικείωτο γὰρ ἐκ παλαιοῦ | ||
Λυδὸς [ . ] δέκα καὶ δέκα ἐκ Φιλόττου τοῦ Ἀσσυρίου , ὃς ᾤκει ἐν Σιπύλῳ , ὃς ἀνῃρέθη ἐν |
ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς | ||
Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα |
ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος | ||
μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν |
ὁδοὺς τοῦ περιττώματος . σπδʹ . Στραγγουρία ἐστὶν ἡ κατὰ στράγγα τοῦ οὔρου ἔκκρισις . ἢ στραγγουρία τὸ πάθος καλεῖται | ||
καὶ τὰς μεγάλας κατασκευὰς καχλάζον ; οὕτως μικρολογεῖ καὶ κατὰ στράγγα ῥεῖ τὸ δωδεκάκρουνον ἐκεῖνο στόμα τοῦ σοφοῦ ; ἐταμιεύσατο |
ἀλλὰ τότε μὲν ἱλαρᾷ τε καὶ εὐθυμουμένῃ , ὕστερον δὲ ἄχους τε πλέᾳ καὶ διατεθυμμένῃ . καὶ γὰρ αὖ πρὸς | ||
τοῦ κακοποιοῦ , παρὰ τὸ ἄχος , ἀπὸ δὲ τοῦ ἄχους τὴν βλάβην . Φωλεός . κυρίως ὁ σκοτεινὸς τόπος |
ΟΜ ἴση καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΖΕΘ ἴση τῇ ὑπὸ ΝΟΜ . ὅλη ἄρα ἡ ὑπὸ | ||
σημείῳ τῷ Ε τῇ ὑπὸ ΗΕΖ γωνίᾳ ἴση ἡ ὑπὸ ΖΕΘ , καὶ ἐπεζεύχθω ἡ ΖΘ . ἐπεὶ οὖν ἴση |
ΔΕΖ μίαν γωνίαν τὴν ὑπὸ ΒΑΓ μιᾷ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἴσην ἔχοντα , περὶ δὲ τὰς ἴσας γωνίας τὰς | ||
γωνίας , ἴσον δὲ ἔστω τὸ ὑπὸ ΒΑΓ τῷ ὑπὸ ΕΔΖ : ὅτι καὶ τὸ τρίγωνον τῷ τριγώνῳ ἐστὶν ἴσον |
στρατιώτας καὶ τοὺς παρὰ τῶν ἄλλων συμμάχων ἀνέζευξεν ἀπὸ τοῦ Λιλυβαίου τὴν πορείαν ποιούμενος ἐπὶ Σελινοῦντος . ὡς δ ' | ||
δὲ οὖν Ἄννων ἀναζεύξας μετὰ πάσης τῆς δυνάμεως ἐκ τοῦ Λιλυβαίου παρῆλθεν εἰς τὴν Ἡράκλειαν , καθ ' ὃν καιρὸν |
Πολύνεικες . σὺ ] Ἐτεόκλες . πρὸς φίλου γ ' ἔφθισο ] παρὰ ἀδελφοῦ ἐφθάρης . πρὸς φίλου γ ' | ||
γ ' ἔφθισο ] ἤγουν παρὰ τοῦ ἀδελφοῦ σου . ἔφθισο ] ἐφθάρης . θ φίλον ] ἀδελφόν . ἔκτανες |
καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ , τοῦ δὲ ΚΓΒ καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΚΒ , τοῦ | ||
ΓΒ , γωνίαν δὲ τὴν ὑπὸ ΘΓΒ γωνίᾳ τῇ ὑπὸ ΚΓΒ ἴσην . ὥστε καὶ λοιπὴ μὲν ἡ ὑπὸ ΒΘΔ |
πρὶν εὑρεθῆναι τὰς κρυφίας σφραγῖδας οἱ παλαιοὶ ἐσφράγιζον ξύλοις ὑπὸ θριπῶν βεβρωμένοις διὰ τὸ αὐτὰ πολυκέντητα εἶναι . θριπόβρωτος σφραγὶς | ||
ἐγγινομένων θηριδίων τοῖς φυτοῖς , ὡς ἀδηκτοτάτην οὖσαν , οἷον θριπῶν καὶ τερηδόνων , ἃ διεμφύεται τοῖς δένδρεσι , σηπομένης |
ἱμάντα ἐνείρουσι . θαύμαζε οὖν , φησίν , αὐτὸν οὕτω μεγαλοφώνως καὶ θαρρούντως , ὥσπερ οἱ πλέοντες ἐπὶ πνεύματος οὐρίου | ||
ἕνεκεν ἐμοῦ , χάριν ἐμοῦ . μέγα ] πολύ , μεγαλοφώνως . , μεγάλως . . μὲν οὖν ] μᾶλλον |
ἔστι δὲ καὶ ἡ ὑπὸ τῶν ΔΗΒ ἴση τῇ ὑπὸ ΔΗΓ : ἡ μὲν γὰρ ΔΗ διὰ τοῦ κέντρου οὖσα | ||
ὑπὸ ΑΗΔ γωνία , ἐφαπτομένη δὲ διὰ τοῦτο καὶ ἡ ΔΗΓ εὐθεῖα τοῦ ΕΖΗ ἐπικύκλου . ἡ ΑΓ ἄρα περιφέρεια |
ὑπὸ ΒΕΓ μετὰ τοῦ ἀπὸ ΓΖ ἴσον ἐστὶν τῷ ὑπὸ ΑΕΔ μετὰ τοῦ ἀπὸ ΔΖ , τουτέστιν τοῦ ὑπὸ ΒΔΓ | ||
ἀφῃρήσθω τὸ ἀπὸ ΕΖ τετράγωνον : λοιπὸν ἄρα τὸ ὑπὸ ΑΕΔ ἴσον ἐστὶν τῷ τε ὑπὸ ΑΓΔ καὶ τῷ ὑπὸ |
, καὶ ἐπιβουλῆς μετέχειν καὶ φθόνου . [ καὶ γὰρ ἐπιβουλεύεται καὶ φθονεῖται ὁ πλούσιος . ] τὸ δὲ παρὰ | ||
ἔχαιρον καὶ νῦν ἐπιδώσουσι μᾶλλον . Γ τοῖς θεοῖς ἅπασιν ἐπιβουλεύεται Γ : ἀντὶ τοῦ “ ἐπὶ τοῖς θεοῖς βουλεύεται |
οὖν τὰ ἐκτός ; ὗλαι τῇ προαιρέσει , περὶ ἃς ἀναστρεφομένη τεύξεται τοῦ ἰδίου ἀγαθοῦ ἢ κακοῦ . πῶς τοῦ | ||
μέσῃ τῇ πολιτείᾳ διὰ τῶν πολιτικῶν ἔργων τε καὶ λόγων ἀναστρεφομένη ἀρετὴ γυμνάζει τε τὴν ψυχὴν πρὸς τὸ ἐρρωμενέστερον καὶ |
ἡ λέξις παρὰ τὴν μάσησιν ἢ παρὰ τὸ εἰς μικρὰ τίλλεσθαι τοὺς ἄρτους καὶ οὕτως ἐσθίειν . ἐξωμμάτωται : ὅρα | ||
τὰ τοῦ βίου πταίσματα . Βαΐν : διὰ τὸ βίᾳ τίλλεσθαι . Βουνός : διὰ τὸ βαίνειν τὴν ἄνω . |
ὑπὸ τῆϲ πελιάδοϲ δηχθεῖϲιν ϲυμβαίνει πόνοϲ περὶ τὸν τόπον καὶ ϲηπεδὼν ἀκίνδυνοϲ , καὶ τῶν ὀφθαλμῶν περιωδυνία καὶ ἀμαύρωϲιϲ ἐκ | ||
, παχύτερα τῶν πρόϲθεν , κακώδεα ὅκωϲ [ ἡ ] ϲηπεδὼν διαχωρέει : τροφὴ νῦν ἀπεπτοτέρη , ὡϲ ὑπὸ ὀδόντων |
καὶ ὡς ἄρα τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ὑπὸ ΒΗΑ , οὕτως τὸ ἀπὸ ΔΕ πρὸς τὸ ὑπὸ ΒΕΑ | ||
τῆς ΒΗ ἐστὶν μείζων . ὥστε καὶ γωνία ἡ ὑπὸ ΒΗΑ γωνίας τῆς ὑπὸ ΒΑΗ μείζων ἐστίν . ἀλλὰ ἡ |
τῶν ἄνω καὶ ἠρεμεῖν οὐκ ἀνέχεται καὶ ὀδυνᾶται ὡς ἔτι κατεχομένη ἐνταῦθα , ἐφιεμένη δὲ ἐκείνων . Ὅρα δὲ πόσαις | ||
ψυχὴ ἐνταῦθα ἐπιθυμεῖ μὲν τῶν ἐκεῖ καὶ ἔχει ἔρωτα , κατεχομένη δὲ ὑπὸ τῆς γενέσεως ἔτι εἰκότως ὀδυνᾶται : ὅθεν |
ἡ ΓΔ πρὸς τὴν ΗΛ , ὁ δὲ τοῦ ὑπὸ ΒΘ ΓΔ πρὸς τὸ ὑπὸ ΒΔ ΓΘ συνῆπται λόγος ἔκ | ||
ἄρα , ὡς ἡ ΓΔ πρὸς ΕΖ , οὕτως ἡ ΒΘ πρὸς ΚΗ . ἐδείχθη δέ , ὡς ἡ ΓΔ |
ἐπληρώθη τοῦ κατὰ τῶν πολιτῶν φόνου , τοὺς ζωγρηθέντας ἀθροίσας Δεινοκράτην μὲν ἀφῆκε διὰ τὴν προγεγενημένην φιλίαν , τῶν ἄλλων | ||
ἅπαντας ὑπόπτως ἔχων καὶ μηδέποτε μηδενὶ βεβαίως πιστεύσας πρὸς μόνον Δεινοκράτην διετήρησε τὴν φιλίαν μέχρι τελευτῆς . ὁ δὲ Δεινοκράτης |
τῇ ΑΗ , καὶ ἡ ὑπὸ ΑΒΔ γωνία τῇ ὑπὸ ΑΗΔ . ἡ δὲ ὑπὸ ΑΗΔ διπλασία τῆς ὑπὸ ΑΕΔ | ||
ἀλλὰ τὸ ΔΘΛ τῷ ΒΔΖ ἐστιν ἴσον : καὶ τὸ ΑΗΔ ἄρα τῷ ΒΔΖ ἐστιν ἴσον . ὥστε καὶ τὸ |
κῆτος ἄγουσι : πλῆσεν δ ' ᾐόνα πᾶσαν ὑπ ' ἀπλάτοις μελέεσσι κεκλιμένοις , τέταται δὲ νέκυς ῥίγιστος ἰδέσθαι . | ||
διαπλέξαις ' , Ἀθάνα . Τὸν παρθενίοις ὑπό τ ' ἀπλάτοις ὀφίων κεφαλαῖς Ἄϊε λειβόμενον Σχάσον ] Στῆσον . Προχεόντων |
τοῦ ἀπὸ τῶν [ πρεσβυτάτων ] , ὡς δαΐδων ὕπο λαμπομενάων [ ] οἱ πολέμιοι ἐσβάλοιεν : ἀντὶ τοῦ ἐσέβαλλον | ||
ταμεσίχροας : ὄσσε δ ' ἄμερδεν αὐγὴ χαλκείη κορύθων ἄπο λαμπομενάων θωρήκων τε νεοσμήκτων σακέων τε φαεινῶν ἐρχομένων ἄμυδις : |
δ ' ἀφαιρουμένου τοῦ ΑΒΕ λοιπὸν τὸ ΔΑΕ λοιπῷ τῷ ΑΓΕ ἐστιν ἴσον καί ἐστιν ἐπὶ τῆς αὐτῆς βάσεως . | ||
ἡ ΓΒ πρὸς τὴν ΓΕ : τὸ ἄρα ὑπὸ τῶν ΑΓΕ ἴσον ἐστὶν τῷ ὑπὸ τῆς τῶν ΑΓ ΔΕ ὑπεροχῆς |
μεσοφρύου καὶ ἰσχιασθέντα κατὰ μετώπου κυκλοτερῶς ἐπὶ ἰνίον ἀπαγέσθω κἀκεῖ ἁμματιζέσθω . δυνατὸν δὲ καὶ τὸν κατοχὸν καὶ τὸν κάθολκον | ||
γενείου κατὰ παρειῶν ταῖς πρώταις παράλληλοι ἐπὶ βρέγμα , κἀκεῖ ἁμματιζέσθω . εἰ δὲ τοὺς ὀφθαλμοὺς ἐθέλομεν ἐπιδῆσαι μὴ περὶ |
πή , ὡς ἡ ἐπὶ ζημίᾳ τινὶ λύπη , ἥτις φευκτή ἐστι κατά τι , ὅτι ἐμποδίζει τῇ θεωρίᾳ , | ||
, καὶ τῆς φευκτῆς ἡ μὲν καθ ' αὑτό ἐστι φευκτή , ὡς ἡ ἐπὶ ἀρετῇ λύπη , ἡ δὲ |