τὴν ΖΓ , οὕτως ἡ ὑπὸ ΑΔΓ πρὸς τὴν ὑπὸ ΖΔΓ γωνίαν . τετραπλῆ ἄρα ἡ ὑπὸ ΑΔΓ τῆς ὑπὸ
. διπλῆ δὲ . , ] διὰ τὸ εἶναι τὸ ΖΔΓ τρίγωνον ἰσοσκελές : ἐπεὶ δὲ παντὸς τριγώνου ἡ ἐκτὸς
6790085 ΕΑΓ
ΑΒΗ γωνία . ἐπεὶ οὖν ἴση ἐστὶν ἡ μὲν ὑπὸ ΕΑΓ γωνία τῇ ὑπὸ ΑΒΓ , ἡ δὲ ὑπὸ ΗΑΓ
τὸ ὑπὸ τῶν ΕΑ ΒΓ , οὕτως τὸ ὑπὸ τῶν ΕΑΓ πρὸς τὸ ὑπὸ τῶν ΓΔΕ : ἴσον ἄρα ἐστὶν
6438956 προβεβλημενου
. τρίβωι ] ἐν . τρίβωι ] ἤγουν ἐν ὁδῶι προβεβλημένου καὶ ἐρριμμένου . μελαμπαγὴς ] ἤγουν μελαίνεται καὶ ἐξιοῦται
κεκωλύκεσαν τῆς εἰσόδου . Οἳ καὶ διὰ τοῦ κατὰ θάλατταν προβεβλημένου διατειχίσματος εἰς τὰς τριήρεις εἰσίασι , πρὸ μικροῦ πρὸς
6375589 ΕΔΖ
ΔΕΖ μίαν γωνίαν τὴν ὑπὸ ΒΑΓ μιᾷ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἴσην ἔχοντα , περὶ δὲ τὰς ἴσας γωνίας τὰς
γωνίας , ἴσον δὲ ἔστω τὸ ὑπὸ ΒΑΓ τῷ ὑπὸ ΕΔΖ : ὅτι καὶ τὸ τρίγωνον τῷ τριγώνῳ ἐστὶν ἴσον
6298084 ΗΘΔ
ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη τὰς ὑπὸ ΒΗΘ , ΗΘΔ δυσὶν ὀρθαῖς ἴσας : λέγω , ὅτι παράλληλός ἐστιν
τῇ ΓΔ . Πάλιν , ἐπεὶ αἱ ὑπὸ ΒΗΘ , ΗΘΔ δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ
6194774 ΑΒΔ
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ :
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου
6185270 ΒΑΓ
ἔχον τὴν ὑπὸ τῶν ΒΑΓ , περὶ δὲ τὴν ὑπὸ ΒΑΓ γωνίαν αἱ πλευραί , τουτέστι συναμφότερος ἡ ΒΑΓ ὡς
ὑπὸ ΒΔΕ , ΒΑΓ : αἱ ἄρα ὑπὸ ΒΔΕ , ΒΑΓ ἐλάττονές εἰσι δυοῖν ὀρθῶν . εἰσὶ δὲ αἱ ὑπὸ
6161916 ΖΑΒ
ὑπὸ ΕΑΒ . ἐπεὶ οὖν δύο τρίγωνα τὰ ΖΕΒ , ΖΑΒ ἐπὶ μιᾶς βάσεως συνέστηκε , καὶ ἡ ἀπὸ τοῦ
ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα , οὕτως ἡ ὑπὸ ΖΑΒ πρὸς τὴν ὑπὸ ΒΑΓ : καὶ ἡ ὑπὸ ΖΑΒ
6064095 γωνια
δὲ τοῦ ὀϲτέου καὶ τοῦ ὄνυχοϲ ἀπαθῶν μεινάντων ἡ ἐκτὸϲ γωνία τοῦ ὄνυχοϲ ὑποδυομένη καὶ νύττουϲα τὴν ἐπιπεφυκυῖαν αὐτῇ ϲάρκα
βάσει τοῦ κυλίνδρου , καὶ ὑποκείσθω ἡ πρὸς τῷ Α γωνία ὀξεῖα , καὶ διὰ τοῦ Γ ἤχθω κάθετος ἐπὶ
5963471 ΑΘΚ
διεκβεβλήσθω τὸ διὰ τῶν ΘΚ , ΗΑ ἐπίπεδον ποιοῦν τὸ ΑΘΚ τρίγωνον . λέγω , ὅτι τὸ ΑΘΚ τρίγωνον ἴσον
, τὸ ΑΕΚ τρίγωνον μετὰ τοῦ ΚΗΓ ἴσον ἐστὶ τῷ ΑΘΚ τριγώνῳ μετὰ τοῦ ΚΖΓ : ἔστι δὲ καὶ ὅλον
5957529 ΑΒΛ
. , ] ἐπεὶ ἰσογώνιόν ἐστι τὸ ΠΑΜ τρίγωνον τῷ ΑΒΛ τριγώνῳ : αἱ μὲν ὀρθαὶ αὐτῶν ἴσαι , ἡ
εὐθείας τὰς ΔΗΞ , ΖΚΝ : ἄξων δὲ ἔστω ὁ ΑΒΛ . φανερὸν δὴ ὅτι ὁ ΑΒΛ ἄξων ἐφάπτεται τοῦ
5933183 ΔΑΒ
ἄρα πρὸς τὴν ὑπὸ ΒΑΓ μείζονα λόγον ἔχει ἢ τὸ ΔΑΒ τρίγραμμον πρὸς τὸ ΒΑΓ τρίγωνον . καὶ ἀνάπαλιν τὸ
αἱ ἄρα ὑπὸ ΔΑΒ ΒΑΓ ΓΑΕ , τουτέστιν αἱ ὑπὸ ΔΑΒ ΒΑΕ , τουτέστιν αἱ δύο ὀρθαὶ ἴσαι εἰσὶ ταῖς
5800405 ΒΗΕ
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ
5790468 ΖΕΘ
ΟΜ ἴση καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΖΕΘ ἴση τῇ ὑπὸ ΝΟΜ . ὅλη ἄρα ἡ ὑπὸ
σημείῳ τῷ Ε τῇ ὑπὸ ΗΕΖ γωνίᾳ ἴση ἡ ὑπὸ ΖΕΘ , καὶ ἐπεζεύχθω ἡ ΖΘ . ἐπεὶ οὖν ἴση
5772923 ΑΗΔ
τῇ ΑΗ , καὶ ἡ ὑπὸ ΑΒΔ γωνία τῇ ὑπὸ ΑΗΔ . ἡ δὲ ὑπὸ ΑΗΔ διπλασία τῆς ὑπὸ ΑΕΔ
ἀλλὰ τὸ ΔΘΛ τῷ ΒΔΖ ἐστιν ἴσον : καὶ τὸ ΑΗΔ ἄρα τῷ ΒΔΖ ἐστιν ἴσον . ὥστε καὶ τὸ
5753090 ΓΒΔ
ὀρθὰς τῷ κύκλῳ διὰ τοῦ ἄξονος τριγώνου βάσις ἔστω ἡ ΓΒΔ , καὶ ἤχθωσαν τῇ ΓΔ πρὸς ὀρθὰς ἐν τῷ
τῷ κύκλῳ τριγώνου διὰ τοῦ ἄξονος ἠγμένου βάσις ἔστω ἡ ΓΒΔ , καὶ ἡ ὑπὸ ΑΒΔ γωνία ἐλάττων ἔστω ὀρθῆς
5749555 ΑΕΔ
ὑπὸ ΒΕΓ μετὰ τοῦ ἀπὸ ΓΖ ἴσον ἐστὶν τῷ ὑπὸ ΑΕΔ μετὰ τοῦ ἀπὸ ΔΖ , τουτέστιν τοῦ ὑπὸ ΒΔΓ
ἀφῃρήσθω τὸ ἀπὸ ΕΖ τετράγωνον : λοιπὸν ἄρα τὸ ὑπὸ ΑΕΔ ἴσον ἐστὶν τῷ τε ὑπὸ ΑΓΔ καὶ τῷ ὑπὸ
5738755 ΓΕΖ
ΓΕ ἡ ΗΚΘ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΓΕΖ τῇ ὑπὸ ΘΕΚ , ἡ δὲ ὑπὸ ΖΕΓ τῇ
ΖΕΓΗ παραλληλόγραμμον τῷ ΑΒΓ τριγώνῳ . καὶ ἔχει τὴν ὑπὸ ΓΕΖ γωνίαν ἴσην τῇ δοθείσῃ τῇ Δ . Τῷ ἄρα
5738065 γωνιᾳ
ΑΗΒ γωνία καθ ' ὑπόθεσιν ἴση ἐστὶν τῇ ὑπὸ ΔΘΕ γωνίᾳ : ὅμοιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ
περιέχωσι , τὸ δὲ Δ σημεῖον ᾖ ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης , ἡ ἀπὸ τῆς
5734945 ΑΒΕ
ἡ ΒΕ βάσει τῇ ΑΓ ἴση ἐστίν , καὶ τὸ ΑΒΕ τρίγωνον τῷ ΑΒΓ τριγώνῳ ἴσον ἐστίν , καὶ αἱ
πρὸς ὅλην καὶ ἀναστρέψαντι καὶ χωρίον χωρίῳ τὸ ἄρα ὑπὸ ΑΒΕ ἴσον ἐστὶν τῷ ὑπὸ ΓΒΔ . Φανερὸν δὲ ὅτι
5724549 ΓΒΕ
, οὕτως ἡ ΒΕ πρὸς ΓΕ : ἰσογώνιον ἄρα τὸ ΓΒΕ τρίγωνον τῷ ΑΒΕ τριγώνῳ . ἔστιν ἄρα ὡς ἡ
ἴση ἄρα ἐστὶν ἡ ὑπὸ τῶν ΔΒΑ γωνία τῇ ὑπὸ ΓΒΕ . καὶ ἔστιν εὐθεῖα ἡ ΔΒΕ : εὐθεῖα ἄρα
5724142 ἀνακλασθησεται
προσπέσῃ ὄψις ἴσας ποιοῦσα γωνίας , αὐτὴ δι ' ἑαυτῆς ἀνακλασθήσεται . ἔστω ἔνοπτρον ἐπίπεδον τὸ ΑΓ , ὄμμα δὲ
παράλληλος ἤχθω ἡ ΖΗ . λέγω , ὅτι ἡ ΖΗ ἀνακλασθήσεται πρὸς ἴσην γωνίαν μεταξὺ τῶν Ε , Θ .
5718644 ΛΠ
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία ,
5707853 ΚΞΑ
ἐπίπεδον . λέγω οὖν , ὅτι ἴση ἐστὶν ἡ ὑπὸ ΚΞΑ γωνία τῇ ὑπὸ ΛΟΕ γωνίᾳ . ἐπεὶ γὰρ αἱ
ἐν τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ , ἡ ἄρα ὑπὸ ΚΞΑ γωνία ἡ κλίσις ἐστίν , ἐν ᾗ κέκλιται τὸ
5707327 ΑΕΒ
ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος
μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν
5705815 ΑΖΒ
τὴν τῆς ὁμαλῆς κινήσεως ὑποτείνει περιφέρειαν , ἡ δὲ ὑπὸ ΑΖΒ τὴν τῆς φαινομένης ἀνωμάλου , ὑπεροχὴ δὲ αὐτῶν ἐστιν
: τὸ ἄρα ὑπὸ ΑΕΛ ἴσον ἐστὶν τῷ τε ὑπὸ ΑΖΒ καὶ τῷ ἀπὸ ΖΕ τετραγώνῳ . ἀλλὰ τὸ μὲν
5703142 ΕΔΓ
τουτέστιν τῇ ΔΓ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΕΔΓ τῇ ὑπὸ ΕΓΔ , τουτέστιν τῇ ὑπὸ ΔΖΓ ,
ἄρα ἐστὶν τὸ ὑπὸ τῶν ΑΕ ΓΒ τῷ ὑπὸ τῶν ΕΔΓ . ἀνάλογον καὶ συνθέντι ἐστὶν ὡς ἡ ΑΔ πρὸς
5684680 ΔΖΕ
τῶν ΔΖΕ , περὶ δὲ τὰς ὑπὸ τῶν ΒΑΓ , ΔΖΕ γωνίας τὰς πλευρὰς ἀνάλογον , ὅμοιον ἄρα ἐστὶ τὸ
τῷ ὑπὸ ΝΞΕ τὸ ὑπὸ ΘΜΕ , καὶ τὸ ὑπὸ ΔΖΕ ἄρα μεῖζόν ἐστιν τοῦ ὑπὸ ΘΜΕ , ὥστε καὶ
5683625 ΚΖΕ
τὸ ἀπὸ ΑΓ πρὸς τὸ ἀπὸ ΓΒ , τὸ ὑπὸ ΚΖΕ πρὸς τὸ ὑπὸ ΘΖΔ . ἤχθωσαν γὰρ διὰ τῶν
τὸ ἀπὸ ΑΓ πρὸς τὸ ἀπὸ ΒΓ , τὸ ὑπὸ ΚΖΕ πρὸς τὸ ὑπὸ ΘΖΔ . Ἐὰν τῶν ἀντικειμένων δύο
5659549 ΒΖΗ
ἔσται τῷ εὐθυγράμμῳ τῷ συγκειμένῳ ἐκ τῶν τριῶν τριγώνων τῶν ΒΖΗ ΒΖΚ ΕΚΖ . τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ
δὲ ὑπὸ ΒΑΕ ἴση ἐστὶν τῇ ἐκτὸς τετραπλεύρου τῇ ὑπὸ ΒΖΗ : καὶ ἡ ὑπὸ ΘΖΒ ἄρα γωνία ἴση ἐστὶν
5638434 Ἀλγιδον
ὀρεινῆς ἄλλη ῥάχις ἐστί , μεταξὺ αὐλῶνα καταλείπουσα τὸν κατὰ Ἄλγιδον , ὑψηλὴ μέχρι τοῦ Ἀλβανοῦ ὄρους . ἐπὶ ταύτης
ὑπερβᾶσα μεταξὺ Τούσκλου πόλεως καὶ τοῦ Ἀλβανοῦ ὄρους κάτεισιν ἐπὶ Ἄλγιδον πολίχνιον καὶ Πικτὰς πανδοχεῖα . εἶτα συμπίπτει καὶ ἡ
5629689 ΑΖΘ
ἐπίπεδον , ἔσται τρίγωνον ἐν τῷ κώνῳ : γεγονέτω τὸ ΑΖΘ . ἐπεὶ οὖν τρίγωνόν ἐστιν ἐν κώνῳ τὸ ΑΖΘ
Ἐπεζεύχθωσαν γὰρ αἱ ΑΖ ΖΓ : ἴση ἄρα ἡ ὑπὸ ΑΖΘ γωνία τῇ ὑπὸ ΘΖΓ . ἔστιν δὲ καὶ ἡ
5616797 ΒΓΔ
τὸ ΒΓ διὰ παντὸς φαίνεται τοῦ ὄμματος μεθισταμένου ἐπὶ τῆς ΒΓΔ περιφερείας . μγʹ . Ἔστι τις τόπος , οὗ
τῇ ὑπὸ ΒΓΖ . δύο δὴ τρίπλευρά ἐστιν τό τε ΒΓΔ καὶ τὸ ΒΓΖ τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς
5613581 ΜΛΝ
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί
5609903 ἐπιζευγνυουσας
, δῆλον , ὅτι τὰς ἀπεναντίον ἀπέφηνε παραλλήλους καὶ τὰς ἐπιζευγνυούσας καὶ τὰς ἐπιζευγνυμένας . τὸ δὲ ὑπὸ παραλλήλων περιεχόμενον
τῶν ἀνταιρόντων μερῶν τῆς οἰκουμένης ποιήσουσί τι παραλληλόγραμμον πρὸς τὰς ἐπιζευγνυούσας διὰ τῶν ἄκρων αὐτάς . ὅτι μὲν οὖν ἐν
5583246 ΔΕΖ
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ ,
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ
5551278 Γεγραφθω
ἥλιος τὴν ΔΘ περιφέρειαν διέρχεται ἤπερ ἡ ΔΘ δύνει . Γεγράφθω γὰρ διὰ τοῦ Θ μέγιστος κύκλος ἐφαπτόμενος τοῦ ἀρκτικοῦ
τῆς ΨΦ : ἴση ἄρα ἡ ΨΦ τῇ ΦϘ . Γεγράφθω διὰ τῶν Ϙ , Ϛ μέγιστος κύκλος ὁ ϘϚ
5544150 ΒΣΓ
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ
5528496 ΕΗΓ
κατὰ τὰ Ε , Γ σημεῖα , καί ἐστιν ἡ ΕΗΓ γραμμὴ ἐπὶ τῆς τοῦ κυλίνδρου ἐπιφανείας , ἡ ΕΘΓ
, ΖΔ γραμμάς . λέγω , ὅτι καὶ ἑκατέρα τῶν ΕΗΓ , ΔΖ γραμμῶν εὐθεῖά ἐστιν . εἰ γὰρ δυνατόν
5519223 ἀμφισκιοι
παρὰ τούτοις οἵ τε ἀμφίσκιοι ἐπινοοῦνται καὶ οἱ ἑτερόσκιοι . ἀμφίσκιοι μὲν ὅσοι κατὰ μέσον ἡμέρας τοτὲ μὲν ἐπὶ τάδε
οἳ δὲ ἑτερόσκιοι , οἳ δὲ ἀντίσκιοι , οἳ δὲ ἀμφίσκιοι . ἄσκιοι μὲν οἱ κατὰ κορυφὴν ὥραι ἕκτηι τὸν
5518060 ΑΘΒ
ἀπὸ ΔΘ , οὕτως τὸ ὑπὸ ΑΗΒ πρὸς τὸ ὑπὸ ΑΘΒ διὰ τὴν τομήν , τὸ ἄρα ἀπὸ ΗΓ πρὸς
: ὅπερ ἄτοπον : ἔπιπτε γὰρ καὶ εἰς τὴν ὑπὸ ΑΘΒ . οὐκ ἄρα ἡ ΕΖ μιᾷ τῶν Α ,
5507096 ΒΗΘ
ΒΗΘ : αἱ ἄρα ὑπὸ ΑΗΘ , ΒΗΘ τῶν ὑπὸ ΒΗΘ , ΗΘΔ μείζονές εἰσιν . ἀλλὰ αἱ ὑπὸ ΑΗΘ
τῇ ὑπὸ ΗΘΔ ἐστιν ἴση . κοινὴ προσκείσθω ἡ ὑπὸ ΒΗΘ : αἱ ἄρα ὑπὸ ΕΗΒ , ΒΗΘ ταῖς ὑπὸ
5490419 ΓΔΒ
ἐστὶν τῇ ὑπὸ τῶν ΔΒΖ , τουτέστιν τῇ ὑπὸ τῶν ΓΔΒ , τουτέστιν τῇ ὑπὸ τῶν ΒΑΔ : ἡ ἄρα
ὀρθαῖς ἴσαι , μείζων ἄρα ἡ ὑπὸ ΑΓΒ τῆς ὑπὸ ΓΔΒ . Ἐὰν ἐν κώνῳ σκαληνῷ τμηθέντι διὰ τῆς κορυφῆς
5484263 ΑΗΘ
δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ
κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν
5478697 ΖΗΔ
γωνία , ἴση ἔσται ἡ ὑπὸ ΒΗΖ γωνία τῇ ὑπὸ ΖΗΔ : ἴση ἄρα φαίνεται ἡ ΒΖ τῇ ΖΔ .
τοῦ κύκλου ἐπίπεδον κάθετος ἡ ΕΖ , καὶ ἐπιζευχθεῖσα ἡ ΖΗΔ διήχθω ἐπὶ τὸ Γ , καὶ ἤχθω ἀπὸ τοῦ
5478328 συλλυσεως
ὁ ἀνθύπατος , παραγενομένων πρὸς αὐτὸν πρεσβευτῶν παρὰ Γαλατῶν περὶ συλλύσεως τοῦ πολέμου , τούτοις ἔδωκεν ἀπόκρισιν ὅτι τότε ποιήσεται
, καὶ ὑπὸ τῶν συμμάχων καταλειπόμενος , ἠναγκάσθη πρεσβεῦσαι περὶ συλλύσεως . ὁ δὲ Τιρίβαζος τῶν ὅλων ἔχων τὴν ἡγεμονίαν
5474902 Σχολιον
ΑΓ πρὸς ΕΒ , οὕτως ἡ ΑΔ πρὸς ΔΕ . Σχόλιον . ὡς συναμφότερον τὸ ΑΕ , ΒΓ πρὸς ΑΓ
ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν συντιθέντων καταλειφθήσεται . Σχόλιον εἰς τὸ λόγος ἐκ λόγων . οἷον ἐξ ἐπιτρίτου
5473519 ΕΑΖ
τουτέστιν ἡ φαινομένη τοῦ ζῳδιακοῦ περιφέρεια , καὶ ἡ ὑπὸ ΕΑΖ , τουτέστιν ἡ ΕΖ τοῦ ἐπικύκλου περιφέρεια . πάλιν
ΕΔ ΔΓ ΓΒ ΒΖ , καὶ τὸ δὶς ὑπὸ τῶν ΕΑΖ ἄρα ἴσον ἐστὶν τῷ δὶς ὑπὸ τῶν ΕΔΓ μετὰ
5464001 παρεστωσας
πολλαχῆ γῆς φέρουσαι . . ὅπη πημονὰς ἀλύξω ] τὰς παρεστώσας ἐμοὶ κακοδαιμονίας ἐκφεύξομαι . . κλύεις πρόσφθεγμα ] ἀκούεις
τῷ βωμῷ καὶ αἵματι ῥεομένους , πατέρας δὲ καὶ μητέρας παρεστώσας οὐχ ὅπως ἀνιωμένας ἐπὶ τοῖς γιγνομένοις ἀλλὰ καὶ ἀπειλούσας
5455113 ΖΘΚ
τῆς ὑπὸ τῶν ΚΓΘ ἀπὸ δοθέντος τοῦ Ζ διήχθω ἡ ΖΘΚ ποιοῦσα ἴσην τὴν ΘΚ τῇ ΑΛ ἢ τῇ ΓΖ
ἐστιν ἡ ὑπὸ ΔΖΚ , ὀξεῖα ἄρα ἐστὶν ἡ ὑπὸ ΖΘΚ : ὥστε καὶ ἡ ΘΚ τῆς ΚΖ ἐστι μείζων
5444942 ἀμβλεια
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ
5441661 ὀρθη
[ ] ὀρθὴ ἔσται . Κείσθω πρὸς τῷ Δ γωνία ὀρθὴ [ ἡ ΑΔΕ ] : διάμετρος ἄρα ἡ ΑΕ
καὶ θεωρίαν δοίημεν τῷ προβλήματι τούτῳ , ἔοικεν ἡ μὲν ὀρθὴ γωνία σύμβολον εἶναι ζωῆς κατ ' ἀρετὴν ἀνιούσης καὶ
5435152 ΔΕΓ
ἐλάττονές εἰσιν , ἴση δὲ ἡ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΕΓ , αἱ ἄρα ὑπὸ ΑΒΓ , ΔΕΓ δύο ὀρθῶν
ὑπὸ ΑΕΒ πρὸς τὸ ἀπὸ ΕΒ , οὕτως τὸ ὑπὸ ΔΕΓ πρὸς τὸ ἀπὸ ΕΓ . ἀλλὰ καὶ ὡς τὸ
5432262 Μεγακλειδην
. καὶ οὗτος ἐπὶ Νικομάχου εἴρηται . Ὑπὲρ ἀντιδόσεως πρὸς Μεγακλείδην : εἰ μὲν ἔδει , ὦ ἄνδρες , πρὸς
. ὡς δὲ ἀληθῆ λέγω , τούτων ὑμῖν αὐτὸν τὸν Μεγακλείδην μάρτυρα παρέξομαι . Οὑτωσὶ μὲν οἰκείως φαίνεται χρώμενος ,
5430005 ΑΗΚ
ἐπίπεδα παράλληλα τὰ ΝΗΞ , ΒΕΓ ὑπό τινος ἐπιπέδου τοῦ ΑΗΚ τέμνεται , αἱ κοιναὶ ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν
δὲ φανερὸν ἐκ τοῦ προγεγραμμένου . ὅμοιον γὰρ γίνεται τὸ ΑΗΚ τρίγωνον τῷ ΔΘΛ , καὶ τὸ ΑΓΚ τρίγραμμον τῷ
5409595 ΓΔΕ
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ :
5404081 ἀνακλασθαι
πλήττεσθαι τὸν ἐν τῇ κεφαλῇ ἀέρα , τοῦτον δ ' ἀνακλᾶσθαι εἰς τὰ ἡγεμονικὰ καὶ γίγνεσθαι τῆς ἀκοῆς τὴν αἴσθησιν
τοῦ ἡλίου ἀκτῖσι διὰ τὸ πρὸς ἴσας τε καὶ αὐτὰς ἀνακλᾶσθαι γωνίας . καὶ ἡ ἀνάκλασις δὲ , ὡς ὕστερον
5402518 ΓΕΑ
καὶ τῆς ὑπὸ ΓΕΔ . καί ἐστι τῆς μὲν ὑπὸ ΓΕΑ ἡμίσεια ἡ ὑπὸ ΒΕΑ : παραλληλόγραμμον γὰρ ἰσόπλευρον τὸ
ΓΕΑ , ΑΕΔ δυσὶν ὀρθαῖς ἴσαι : αἱ ἄρα ὑπὸ ΓΕΑ , ΑΕΔ ταῖς ὑπὸ ΑΕΔ , ΔΕΒ ἴσαι εἰσίν
5397946 πλατας
τᾶς κλεινᾶς Ἀρεθούσας , Ἀχαιῶν στρατιὰν ὡς ἐσιδοίμαν Ἀχαιῶν τε πλάτας ναυσιπόρους ἡμιθέων , οὓς ἐπὶ Τροίαν ἐλάταις χιλιόναυσιν τὸν
μελπομένα , τοτὲ μὲν ταχύπλουν τοτὲ δ ' εἰλατίνας ἀνάπαυμα πλάτας . [ . . . ; ] Ἀργώ με
5391983 ΕΑΔ
ἑκατέρᾳ . καὶ γωνία ἡ ὑπὸ ΒΑΔ γωνίᾳ τῇ ὑπὸ ΕΑΔ ἴση ἐστίν : καὶ βάσις ἄρα ἡ ΒΔ βάσει
ὡς δὲ ἡ ΕΑ πρὸς τὴν ΑΒ , οὕτως τὸ ΕΑΔ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον , ὡς ἄρα τὸ
5391617 ΚΤ
ὀρθὴ γὰρ ἑκατέρα αὐτῶν . ὡς ἡ ΒΚ πρὸς τὴν ΚΤ . , ] ἐπειδήπερ ἑκάτεραι αὐτῶν ἐκ τοῦ κέντρου
. πάλιν , ἐπεί ἐστιν ὡς ἡ ΒΚ πρὸς τὴν ΚΤ , οὕτως ἡ ΖΜ πρὸς τὴν ΜΟ , καὶ
5390237 ἁμματιζεσθω
μεσοφρύου καὶ ἰσχιασθέντα κατὰ μετώπου κυκλοτερῶς ἐπὶ ἰνίον ἀπαγέσθω κἀκεῖ ἁμματιζέσθω . δυνατὸν δὲ καὶ τὸν κατοχὸν καὶ τὸν κάθολκον
γενείου κατὰ παρειῶν ταῖς πρώταις παράλληλοι ἐπὶ βρέγμα , κἀκεῖ ἁμματιζέσθω . εἰ δὲ τοὺς ὀφθαλμοὺς ἐθέλομεν ἐπιδῆσαι μὴ περὶ
5389939 ΗΘΓ
ἐπαφὰς τῶν κυρτῶν ἐπιφανειῶν , διὰ τὸ τὰς ΕΖΒ καὶ ΗΘΓ καθέτους γίνεσθαι καὶ πρὸς αὐτήν . ἐφαρμόσαντες δὴ τῇ
πλευραὶ ἀνάλογόν εἰσιν : ἰσογώνιον ἄρα τὸ ΕΒΓ τρίγωνον τῷ ΗΘΓ τριγώνῳ : ἴσαι ἄρα εἰσὶν αἱ ὑπὸ ΑΓΕ ΗΓΘ
5389818 γεγονυιαις
ὠοῦ διαχρίσει καὶ λεκίθοις ὠῶν ἑφθαῖς καὶ κηρωταῖς διὰ μυρσίνου γεγονυίαις : καὶ μελίλωτον καταπλαστέον ἐναφηψημένον μελικράτῳ . ἐπὶ πάντων
: τὰς δ ' ἀπὸ τῶν παρεληλυθότων προσηγορίας ἐπὶ ταῖς γεγονυίαις πράξεσι τίθενται . ἃ τοίνυν ἐγὼ πεπολί - τευμαι
5387639 πεντεκαιδεκαγωνον
περιγράψομεν : ὅπερ ἔδει ποιῆσαι . Εἰς τὸν δοθέντα κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς
κύκλος ὁ ΑΒΓΔ : δεῖ δὴ εἰς τὸν ΑΒΓΔ κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἐγγεγράφθω εἰς τὸν
5386944 Σειρηνος
καὶ παλίσσυτος ποσὶν ἔβαινεν εἱρκτῆς ἐντός , ἐν δὲ καρδίᾳ Σειρῆνος ἐστέναξε λοίσθιον μέλος , Κλάρου Μιμαλλὼν ἢ Μελαγκραίρας κόπις
ἡδὺ καὶ ἁπαλόν : εἶπεν ἄν τις λαλούσης αὐτῆς ἀκούειν Σειρῆνος . πολυπραγμοσύνης δὲ ἁπάσης γυναικείας καὶ περιεργίας ἀπήλλακτο .
5380894 ΑΔΕΜ
τὴν ΑΔΕ βάσιν , οὕτως ἡ ΑΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα . δι ' ἴσου ἄρα ὡς ἡ ΑΒΓΔ
τὴν ΑΔΕ βάσιν , οὕτως ἡ ΑΒΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα . καὶ συνθέντι πάλιν , ὡς ἡ ΑΒΓΔΕ
5371451 ΕΗΒ
ΓΔ εὐθεῖα ἐμπίπτουσα ἡ ΕΖ τὴν ἐκτὸς γωνίαν τὴν ὑπὸ ΕΗΒ τῇ ἐντὸς καὶ ἀπεναντίον γωνίᾳ τῇ ὑπὸ ΗΘΔ ἴσην
. ὁ δὲ χρόνος , ἐν ᾧ τὸ Ε τὴν ΕΗΒ περιφέρειαν διελθὸν ἐπὶ τὸ Β παραγίνεται , ὁ χρόνος
5368038 γωνιαι
τρίγωνον τῷ ΑΛΣ τριγώνῳ ἴσον ἔσται , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' ἃς
ἐπειδὴ δεδομέναι μέν εἰσιν αἱ ὑπὸ ΑΕΚ καὶ ὑπὸ ΒΕΞ γωνίαι , δέδοται δὲ καὶ ὁ τῆς ὑπὸ ΓΕΚ πρὸς
5363811 ΕΖΔ
ΖΒ ἐστι πρὸς ὀρθάς . ἀνάπαλιν ἄρα ἡ ΒΖ τῇ ΕΖΔ διαμέτρῳ ἐστὶ πρὸς ὀρθάς . Ἔστω δύο τρίγωνα τὰ
: ὅτι μείζων ἐστὶν ἡ ὑπὸ ΒΓΑ γωνία τῆς ὑπὸ ΕΖΔ . Ἐπεὶ γὰρ ἡ ΒΓ πρὸς τὴν ΓΑ μείζονα
5360775 κατακεκλεισθαι
ἄρα κατὰ μὲν τὴν δεκάδα ὁ πᾶς κόσμος ἠνύσθαι καὶ κατακεκλεῖσθαι ἐφάνη , πολλάκις ἡμῖν λόγος . κατὰ δὲ τὴν
κοχλίου περιέσκαπται , ὥστε τὰς ἐξεχούσας ἕλικας τοῦ φακωτοῦ κοχλίου κατακεκλεῖσθαι εἰς τὰς τοῦ περικοχλίου κοιλίας καὶ παραδεδέχθαι εἰς τὰς
5351297 ΓΖΗ
ὅλη ἄρα ἡ ὑπὸ τῶν ΕΖΓ ὅλῃ τῇ ὑπὸ τῶν ΓΖΗ γωνίᾳ ἴση ἐστίν : ἔστιν ἄρα ὡς ἡ ΒΓ
ΗΖΓ , [ καὶ ] ἐκβεβλήσθω ἐπ ' εὐθείας ἡ ΓΖΗ ἐπὶ τὸ Θ σημεῖον , καὶ ἐπεζεύχθωσαν αἱ ΑΗ
5348992 ἐκρυσιν
νῆσος , καὶ ὑπεδέξαντο θεοὺς ἀμφότεραι : καὶ ἡ μὲν ἔκρυσιν διὰ πελάγους , ἡ δὲ ἐκ τοῦ Νείλου διὰ
πληρωθείσης ὑπὸ τῶν ποταμῶν τῆς θαλάττης , κατὰ δὲ τὴν ἔκρυσιν ἀνακαλυφθῆναι τὰ τεναγώδη πρότερον . φέρει δ ' αἰτίαν
5346174 ΑΓΔ
ἐκ τῶν ΑΓ Ε Ζ τρίγωνον συστήσασθαι . συνεστάτω τὸ ΑΓΔ * * * [ καὶ φανερὸν ὅτι εἰ μὲν
τομεὺς τοῦ ΑΓΕ τομέως : μείζονα ἄρα λόγον ἔχει ὁ ΑΓΔ τομεὺς πρὸς τὸ ΑΒΓ τρίγωνον ἤπερ ὁ ΑΓΕ τομεὺς
5342515 ΓΖΕ
ἐπὶ τὸ Γ καὶ διὰ τοῦ κέντρου αἱ ΒΖΚ , ΓΖΕ , καὶ ἀπὸ τῶν Ε , Κ ἡ ΚΕ
φησι τὰς ὑπὸ ΑΕΖ καὶ ΔΖΕ καὶ πάλιν τὰς ὑπὸ ΓΖΕ καὶ ΒΕΖ . οὕτως δὲ καλεῖ αὐτὰς ὡς ἐνηλλαγμένως
5341668 Μινῳας
αὐτῷ θέρει : μετάβασις αὐτό - θεν : ἀπὸ τῆς Μινῴας . ἀπὸ τοῦ Βουδόρου : τὸ Βούδορον ἀκρωτήριον τῆς
τεῖχος κατὰ τὰς πύλας ἐσῆγον , ὅπως τοῖς ἐκ τῆς Μινῴας Ἀθηναίοις ἀφανὴς δὴ εἴη ἡ φυλακή , μὴ ὄντος
5337890 ἁμαρταδας
: ἁμαρτάδας : ἁμαρτίας . . . Α . : ἁμαρτάδας : ἀπὸ τῆς ἁμαρτάς εὐθείας . Συναγ . λέξ
ἁμαρτάδας Αἰσχύλος . . . . . Α . : ἁμαρτάδας : ἁμαρτίας . . . Α . : ἁμαρτάδας
5333885 Ναρβωνα
καὶ τῆς Κελτικῆς . ἔστι δ ' ἔνθεν μὲν εἰς Νάρβωνα μίλια ἑξήκοντα τρία , ἐκεῖθεν δὲ εἰς Νέμαυσον ὀγδοήκοντα
ἐκ δὲ θατέρου τῇ τε Ἰβηρικῇ καὶ τῇ Κελτικῇ κατὰ Νάρβωνα καὶ Μασσαλίαν , καὶ μετὰ ταῦτα τῇ Λιγυστικῇ ,
5331870 Ποτιδαιατας
τῆς Ἀττικῆς , Αἴγιναν αὐτόνομον σκυτάλην φέρων κελεύουσαν , καὶ Ποτιδαιάτας ὑπεξαιρούμενος , καὶ τοῖς καταράτοις Μεγαρεῦσι τὰς Ἀθήνας ταυτασὶ
Ἀττικὴν τὰς κτήσεις κατέφθειραν . Στρατεία Ἀθηναίων δευτέρα ἐπὶ τοὺς Ποτιδαιάτας . Στρατεία Λακεδαιμονίων εἰς Ἀκαρνανίαν καὶ ναυμαχία πρὸς Ἀθηναίους
5328408 ΕΠ
ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ
. καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ
5328028 ΒΚΔ
ΑΚΓΜ κύκλους τινὰς τῶν ἐν τῇ σφαίρᾳ τοὺς ΑΒΓΔ , ΒΚΔ διὰ τῶν πόλων τέμνει , δίχα τε αὐτοὺς τεμεῖ
, ὀρθὴ δὲ πάντοτε ἡ ὑπὸ ΑΒΕ , δίδοται τὰ ΒΚΔ καὶ ΒΛΕ ὀρθογώνια καὶ λόγος τῆς ΖΒ πρὸς τὰς
5323998 ΔΑΓ
καὶ τῷ ὑπὸ ΒΔ ΑΓ , κοινὸν ἀφῃρήσθω τὸ ὑπὸ ΔΑΓ : λοιπὸν ἄρα τὸ ὑπὸ ΑΓ ΔΒ ἴσον ἐστὶν
. ἔσται δὴ πάλιν κατὰ τὰ αὐτὰ ἡ ὑπὸ τῶν ΔΑΓ γωνία ὀρθῆς μεʹ μέρος , ἡ δὲ ὑπὸ τῶν
5311373 Κυλινδρου
δοθείσῃ ἐλλείψει τοῦ δοθέντος κώνου : ὅπερ ἔδει ποιῆσαι . Κυλίνδρου δοθέντος καὶ ἐλλείψεως ἐν αὐτῷ εὑρεῖν κῶνον τεμνόμενον τῇ
, καί εἰσιν ὅμοιαι ἀλλήλαις : ὅπερ ἔδει δεῖξαι . Κυλίνδρου δοθέντος εὑρεῖν κῶνον καὶ τεμεῖν ἀμφοτέρους ἑνὶ ἐπιπέδῳ ποιοῦντι
5307628 ΝΔ
' ὡς τὸ ὑπὸ ΝΓ , ΖΔ πρὸς τὸ ὑπὸ ΝΔ , ΓΖ , οὕτως ἐδείχθη τὸ ὑπὸ ΓΕ ,
ΑΟ , ἴση ἐστὶν ἡ ΝΒ τῇ ΒΟ καὶ ἡ ΝΔ τῇ ΔΑ . ἔστι δὲ καὶ ἡ ΕΚ τῇ
5304065 ἐπανελθοντος
τῶν σωμάτων φυλακὴν πολυχρόνιον . Ὁ δ ' Ἀντίγονος , ἐπανελθόντος τοῦ Δημητρίου καὶ τὰ κατὰ μέρος τῶν πεπραγμένων ἀπαγγείλαντος
κρίσεως καὶ τῶν ἐγκλημάτων ἀπολυθῆναι . μετὰ δὲ ταῦτα Θησέως ἐπανελθόντος ἐκ Τροιζῆνος εἰς τὰς Ἀθήνας , ἐγκληθεῖσαν ἐπὶ φαρμακείᾳ
5295669 περιφερεσθαι
ἄνδρα τιμήσαντες . Φαβωρῖνος δέ φησι γηράσαντα αὐτὸν ἐν φορείῳ περιφέρεσθαι : καὶ τοῦτο λέγειν Ἕρμιππον , παρατιθέμενον ἱστορεῖν Ἀρκεσίλαον
ἐπιβουλότατον δὲ καὶ ταραχωδέστατον : ἅπαντα γὰρ εὐθὺς ἐδόκει μοι περιφέρεσθαι πιόντι καὶ τὸ σπήλαιον αὐτὸ ἀνεστρέφετο καὶ οὐκέτι ὅλως
5288933 σιγωντ
ἐκκλήισομέν σφας ἄλλον ἄλλοσε στέγης . καὶ τόν γε μὴ σιγῶντ ' ἀποκτείνειν χρεών . εἶτ ' αὐτὸ δηλοῖ τοὔργον
Ἀπόλλων δ ' ἐν βροτοῖς ὀρθῶς καλῆι , ὅστις τὰ σιγῶντ ' ὀνόματ ' οἶδε δαιμόνων . Ὑμὴν Ὑμήν .
5282488 ΒΗΑ
καὶ ὡς ἄρα τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ὑπὸ ΒΗΑ , οὕτως τὸ ἀπὸ ΔΕ πρὸς τὸ ὑπὸ ΒΕΑ
τῆς ΒΗ ἐστὶν μείζων . ὥστε καὶ γωνία ἡ ὑπὸ ΒΗΑ γωνίας τῆς ὑπὸ ΒΑΗ μείζων ἐστίν . ἀλλὰ ἡ
5272958 ΒΖΔ
ΖΔΜ ὀρθογώνιον κύκλος τξ : ὥστε καὶ ἡ μὲν ὑπὸ ΒΖΔ γωνία τοιούτων ἐστὶν β μδ , οἵων αἱ β
εἰσὶν αἱ ΒΖ , ΖΔ περιέχουσαι ἀμβλεῖαν , ἡ ὑπὸ ΒΖΔ ἄρα γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς
5271416 ἠγμενον
εἰργμένον ἀδικίης ὑπὸ νόμου , τὸν δὲ ἐς τὸ δέον ἠγμένον πειθοῖ οὐκ εἰκὸς οὔτε λάθρηι οὔτε φανερῶς ἔρδειν τι
ἃς ἐκ τοῦ παύειν εὐδοκιμεῖς ; ἤδη τις ἵππον φαύλως ἠγμένον ἐπρίατο πιστεύων αὐτὸν ἐπανορθώσειν τῇ παρ ' ἑαυτοῦ τέχνῃ
5270882 ΔΗΘ
ΔΘ μείζων ἐστὶν τῆς ΑΛ . καὶ ἔστιν ὅμοια τὰ ΔΗΘ ΑΚΛ τρίγωνα : ὡς ἄρα ἡ ΔΘ πρὸς ΘΗ
αὑτή ἐστιν τῇ ὑπὸ ΔΗΘ . δοθεῖσα οὖν ἡ ὑπὸ ΔΗΘ . ἀλλὰ καὶ ὀρθὴ ἡ πρὸς τῷ Θ .
5269541 βιαιαϲ
βραδέωϲ κινεῖται ὁ ὀφθαλμὸϲ ἢ οὐδόλωϲ . ὅταν δὲ ἐκ βιαίαϲ πληγῆϲ κατὰ κεφαλῆϲ γιγνομένηϲ ἢ καταπτώϲεωϲ ἀπορραγῇ τῆϲ ϲυμφυΐαϲ
ψῦξιν : ὅταν δὲ ὑπὸ πληρώϲεωϲ ὑγρῶν γένηται λυγμόϲ , βιαίαϲ δεῖται κενώϲεωϲ . τοῦτο δὴ ὁ πταρμὸϲ ἐργάζεται :
5269145 ΒΓΑ
τῇ ὑπὸ ΕΖΔ . ἀλλὰ ἡ ὑπὸ ΕΖΔ τῇ ὑπὸ ΒΓΑ ἐστιν ἴση : τριγώνου δὴ τοῦ ΑΘΓ ἡ ἐκτὸς
τῇ ὑπὸ ΑΒΓ , ἡ δὲ ὑπὸ ΕΑΓ τῇ ὑπὸ ΒΓΑ : καὶ ἡ ΓΔ ἄρα πρὸς τὴν ΔΒ μείζονα
5267199 ΗΓΔ
ἡ ΗΒ ἐλάττων τῆς ἐκ τοῦ κέντρου , τὸ ἄρα ΗΓΔ οὐκ ἔσται μέγιστον τῶν παραλλήλους αὐτῷ βάσεις ἐχόντων :
καὶ τὸ ΑΓΔ τοῦ ΑΕΖ , εἰ δὲ μεῖζον τὸ ΗΓΔ τοῦ ΗΕΖ , μεῖζον καὶ τὸ ΑΓΔ τοῦ ΑΕΖ
5266291 Λαου
καὶ τῆς Σικελικῆς , τῆς μὲν ἀπὸ τοῦ Σιλάριδος μέχρι Λάου , τῆς δ ' ἀπὸ τοῦ Μεταποντίου μέχρι Θουρίων
Σαυνιτῶν μέχρι τοῦ ἰσθμοῦ τοῦ ἀπὸ Θουρίων εἰς Κηρίλλους πλησίον Λάου : στάδιοι δ ' εἰσὶ τοῦ ἰσθμοῦ τριακόσιοι .
5265908 ΑΗΒ
πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν
ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ
5264669 ΑΒΓΔΕΜ
καὶ ἄλλα αὐτοῖς ἴσα τῷ πλήθει στερεὰ πρίσματα τρία τὰ ΑΒΓΔΕΜ , ΑΔΕΜ , ΖΗΘΝ σύνδυο λαμβανόμενα καὶ ἐν τῷ
ἡ ΑΒΓΔΕ βάσις πρὸς τὴν ΖΗΘ βάσιν , οὕτως ἡ ΑΒΓΔΕΜ πυραμὶς πρὸς τὴν ΖΗΘΝ πυραμίδα . ἀλλὰ μὴν καὶ
5263610 ΣΓ
ΣΡ τῆς ΡΓ πολλῷ ἐλάσσων ἐστὶν ἢ β . ἡ ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ
γωνίαι , δύο δὴ αἱ ΒΓ , ΓΦ δυσὶ ταῖς ΣΓ , ΓΦ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ γωνία
5261723 κατεποντισθη
, ἑφθούς τε καὶ ὀπτούς , οὓς αὐτοὶ καταναλίσκουσι . κατεποντίσθη δ ' ἡ Ἀταργάτις ὑπὸ Μοψοῦ τοῦ Λυδοῦ ἁλοῦσα
λέγει ὁ Λυδὸς , ὑπὸ Μόξου τοῦ Λυδοῦ ἁλοῦσα , κατεποντίσθη μετὰ Ἰχθύος τοῦ υἱοῦ ἐν τῇ περὶ Ἀσκάλωνα λίμνῃ
5259952 Εὐαγορα
πρὸς Εὐαγόραν λόγος ὑπὲρ τοῦ πρὸς βασιλέα ἀναβῆναι : καὶ Εὐαγόρα ἐπιστολὴ περὶ ὧν ἠξιώθη ὑπ ' αὐτοῦ . καὶ
. καὶ Κόνωνος πρὸς Κτησίαν ἐπιστολή : καὶ βασιλεῖ παρὰ Εὐαγόρα φόρος : καὶ τῶν ἐπιστολῶν Κτησίαι ἀπόδοσις . Κτησίου
5258021 ΞΜΕ
κοινοῦ ὕψους λαμβανομένης οὕτως τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ
ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΞΜΕ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ

Back