| οὐ μόνον , ἐξ ὧν ἐνεργείᾳ ἰσότητος πρώτη ἔμφασιν παρέσχεν ἐπιπέδως τε καὶ στερεῶς ἔν τε τῷ δύο μήκους τε | ||
| ἐδείχθη . Πάλιν οὖν ἄνωθεν ἑτερομήκης ἀριθμὸς λέγεται , οὗ ἐπιπέδως σχηματογραφηθέντος τετράπλευρος μὲν καὶ τετραγώνιος γίνεται ἡ καταγραφή , |
| . ἐὰν τὰ στελέχη τῶν ἀμπέλων κισσῷ δασεῖ περιδήσωμεν , εὑρεθήσονται μετ ' ὀλίγον οὐ μόνον οἱ μύρμηκες , ἀλλὰ | ||
| γὰρ οὐδέν ἐστι παρὰ τὰ γένη καὶ τὰ εἴδη , εὑρεθήσονται ἐκ τοῦ μηδαμῇ μηδαμῶς ὄντος προελθοῦσαι αἱ διαφοραὶ ἐν |
| που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
| καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
| τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
| τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
| , οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
| ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
| . τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
| ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
| δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε | ||
| πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ |
| συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
| αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
| ἐπιμορίου καὶ τῶν λοιπῶν εἰδῶν ἐν αὐτῶι , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί . τὸ μὲν | ||
| ἐξ ἀρχῆς βάθος τι προσκτωμένου : οἷον καθ ' ὑποδιαίρεσιν γραμμικοὶ μέν εἰσιν ἀριθμοὶ ἁπλῶς ἅπαντες οἱ ἀπὸ δυάδος ἀρχόμενοι |
| Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
| . . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
| αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν | ||
| ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς |
| τῆς ἐνστάσεως ἢ τῆς ἀντιπαραστάσεως πρώτης τιθεμένης , ἀλλ ' ἐναλλὰξ τοῦτο πασχούσης ἑκάστης , ὃν τρόπον φαμὲν δεῖν ἀνασκοπεῖν | ||
| τὴν ΑΓ , οὕτως ἡ ΒΔ πρὸς τὴν ΔΓ , ἐναλλὰξ ὡς ἡ ΑΒ πρὸς τὴν ΒΔ , οὕτως ἡ |
| ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
| ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
| δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ | ||
| μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ |
| . ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
| κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
| προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
| β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
| τρίγωνον τῷ ΑΛΣ τριγώνῳ ἴσον ἔσται , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' ἃς | ||
| ἐπειδὴ δεδομέναι μέν εἰσιν αἱ ὑπὸ ΑΕΚ καὶ ὑπὸ ΒΕΞ γωνίαι , δέδοται δὲ καὶ ὁ τῆς ὑπὸ ΓΕΚ πρὸς |
| ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
| αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
| τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε | ||
| ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται . |
| : ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , | ||
| τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ |
| ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
| ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
| , ἕως τοῦ νοτίου πόλου , δύο δὲ ζῶναι ἕτεραι κατεψυγμέναι ὑπὸ τοῖς δυσὶ πόλοις , αἳ καὶ ἀοίκητοι , | ||
| πόλους , πορρώτατα δὲ κείμεναι τῆς τοῦ ἡλίου παρόδου , κατεψυγμέναι λέγονται καὶ ἀοίκητοι διὰ τὸ ψῦχός εἰσιν , ἀφορίζονται |
| ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
| τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
| , καὶ τούτων λάμβανε τὸ λϚʹʹ , καὶ ἕξεις πήχεις ἐπιπέδους . Ἐὰν δὲ ᾖ τὸ μῆκος διὰ πήχεων , | ||
| μήκη καὶ πρὸς ἑτέρων σύστασιν λαμβανόμενοι , ὁτὲ δὲ εἰς ἐπιπέδους , ὅταν ἐκ πολλαπλασιασμοῦ δύο ἀριθμῶν γεννηθῶσιν , ὁτὲ |
| καὶ ὥρας κ , μοίρας δὲ ὁμοίως λδ λδ : συνάγονται δὲ καὶ τῆς μέσης κατὰ μῆκος παρόδου κατὰ τὸ | ||
| οὗτοι ἐξ ὑποθέσεώς τέ εἰσι καὶ διά τινος τῶν σχημάτων συνάγονται . ἐξ ὑποθέσεως μὲν οὖν εἰσιν , ὅτι , |
| : πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
| τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
| ἀρχῆς τοῦ Καρκίνου , ὁμοταγῆ δὲ καὶ ἐν τῶι αὐτῶι ἐπιπέδωι γινόμενον πάντοτε τῶι ὁρίζοντι κατὰ τὴν τοῦ εἰρημένου δωδεκατημορίου | ||
| δὲ γραμμαὶ λέγονται παρ ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας |
| ὅλου σὺν τῷ προσκειμένῳ καὶ ὁ ἀπὸ τοῦ προσκειμένου οἱ συναμφότεροι τετράγωνοι διπλάσιοί εἰσι τοῦ ἀπὸ τοῦ ἡμίσεος τετραγώνου καὶ | ||
| ἱππεὶς μὲν ἀμφὶ τοὺς πεντακισχιλίους , ὁπλῖται δὲ καὶ πεζοὶ συναμφότεροι δισμύριοι . ὁ δὲ Λογχάτης ἀγνοούμενος παρελθὼν ἐς τὸν |
| καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
| δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
| ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων | ||
| ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ |
| καὶ ἀμφοτέρων διαφέρει : τῷ μὲν γὰρ ἀρτιά - κις ἀρτίῳ κοινωνεῖ , καθὸ καὶ οὗτος πλείους διαιρέσεις ἐπιδέχεται , | ||
| : τοῦτον γὰρ κωλύειν τὴν εἰς ἴσα διαίρεσιν προστιθέμενον τῷ ἀρτίῳ . φέρουσι δὲ καὶ ἄλλο σημεῖον τοῦ πέρατος μὲν |
| ἐφεξῆς ἀριθμοί , ἀπογεννῶντες τριγώνους ἢ τετραγώνους ἢ πολυγώνους , γνώμονες καλοῦνται . τοσούτων δὲ μονάδων ἕκαστον τρίγωνον ἔχει πλευρὰς | ||
| Ἐν Ἀλεξανδρείᾳ δὲ τῇ αὐτῇ ὥρᾳ ἀποβάλλουσιν οἱ τῶν ὡρολογίων γνώμονες σκιάν , ἅτε πρὸς ἄρκτῳ μᾶλλον τῆς Συήνης ταύτης |
| . ἐπεὶ ἴση ἡ ΑΜ τῇ ΔΖ , καὶ αἱ ἡμίσειαι ἄρα ἴσαι εἰσίν . ὥστε καὶ τὸ ἀπὸ τῆς | ||
| δὲ αὐτῶν ἴσαι περιφέρειαι ἀποληφθῶσι πρὸς τοῖς πέρασιν ἐλάττους ἢ ἡμίσειαι οὖσαι τῶν ὅλων τμημάτων , ἀπὸ δὲ τῶν κύκλων |
| ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
| θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
| τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
| ٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
| καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί | ||
| δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν , |
| καὶ τυμπανοειδεῖ χρησόμεθα τῷ δεξομένῳ τὴν καταγραφὴν ἐπιπέδῳ πρὸς τὸ ἐπιστρεφομένου τοῦ τυμπάνου τὰς τῶν μηνιαίων διαμέτρους μετὰ τῶν ἡμικυκλίων | ||
| μακάριον Φιλέαν πειθόντες ὅπως εἴξῃ τοῖς κελευθεῖσι . καὶ μὴ ἐπιστρεφομένου αὐτοῦ , ἔβαλλον αὐτὸν ἀνατρέποντες ὡς ἂν σκέψηται ? |
| πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
| η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |
| πορθήσαντες δὲ πᾶσαν τὴν Μακεδονίαν καὶ πολλῆς ὠφελείας κύριοι γενόμενοι μετέβησαν ἐπὶ τὰς Ἑλληνίδας πόλεις τὰς τῶν Χαλκιδέων . Τοῦ | ||
| τὴν διακτηρίαν εἶναι χρήσιμον . ἐπεὶ δὲ εἰς τὴν πλάσιν μετέβησαν , καὶ ἡ τομὴ μετεκινήθη : τέμνουσι γὰρ δὴ |
| ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι | ||
| τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν |
| τὸ δὲ μέλαν , τοσαῦται ἔσονται διαφοραὶ ὅσαι καὶ αἱ τομαὶ τοῦ πράγματος ὑπάρχουσιν . ὥστε φανερὸν ὅτι ὁρισμὸς οὐδέν | ||
| τῆς ἐκ τοῦ κέντρου τετραγώνῳ . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι τομαὶ αἱ Α , Β , Γ , Δ , |
| πάθη ἢ διαφοραὶ σωμάτων εἰσὶ πάντα τὰ αἰσθητάποιότητες γὰρ καὶ ποσότητες : οἷς δέ ἐστι γνωστὸν ἅπαν ἐν τούτοις καὶ | ||
| δὲ περὶ αὐτὴν εἴδη ἀλλοιοῦνται , λέγω δὴ ποιότητες καὶ ποσότητες καὶ διαθέσεις καὶ ἐνέργειαι καὶ ἰσότητες καὶ πάντα τὰ |
| τε καὶ οἰκοδομικοὶ καὶ χαλκευτικοὶ καὶ οἱ τῶν ἄλλων τεχνῶν πλάσσονται ἀπὸ ὀξυτέρου ἄκρου διαδύνειν ἀρχόμενοι καὶ αἰεὶ μᾶλλον πλατυνόμενοι | ||
| πρόεισιν ἐπ ' ἄπειρον . καὶ ἀπὸ τούτων δὲ ἄλλοι πλάσσονται κατὰ τὸν αὐτὸν λόγον , περὶ ὧν οὐκ ἀναγκαῖον |
| ] ? [ ἴσον ] ἰσάκις γίγνεσθαι [ ] τῶι τετραγώνωι [ ] ? τὸ σχῆμα ? ? ἀπεικάσαντες ? | ||
| [ τῶι ] ποδιείωι [ ] ? ? [ ] τετραγώνωι [ ] ? [ , τὰ ] δὲ κατὰ |
| , οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
| ' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
| οὗτος γάρ ἐστι πεντάκις πέντε : ἰδοὺ οὖν ὅτι αἱ πλευραὶ αὐτοῦ ἐκ πέντε εἰσίν : ἀπὸ ε οὖν ἀρχόμεθα | ||
| ιη καὶ η ὅμοιοί εἰσι , δῆλον : εἰσὶ γὰρ πλευραὶ τοῦ μὲν ιη ὁ Ϛ καὶ ὁ γ , |
| . Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
| ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
| καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ . | ||
| κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν |
| λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν | ||
| , ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω - |
| ὃς σύγκειται ἐκ δύο τετραγώνων , μεταδιελεῖν εἰς δύο ἑτέρους τετραγώνους . Ἔστω τὸν ιγ , συγκείμενον ἔκ τε τοῦ | ||
| τρεῖς ἀριθμοὺς ὅπως ὁ ὑπὸ δύο ὁποιωνοῦν ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , |
| γίνονται κε Ϟοὶ τέλειοι . Καὶ πάλιν προστίθεμεν τὴν αὐτὴν λεῖψιν ταῖς ρ μο , καὶ γίνονται μο Ϡ ἴσαι | ||
| δυναμοστόν , ἐπὶ δὲ δυναμόκυβον , ἀριθμοστόν . Λεῖψις ἐπὶ λεῖψιν πολλαπλασιασθεῖσα ποιεῖ ὕπαρξιν , λεῖψις δὲ ἐπὶ ὕπαρξιν ποιεῖ |
| α αἱ πηγαὶ τοῦ ποταμοῦ . . . . . ρκϚ βορ . α Ὄδωκα πόλις . . . . | ||
| . . . . . . . . . . ρκϚ ∠ ʹ ιγ . Ἡ ἐκτὸς Γάγγου Ἰνδικὴ περιορίζεται |
| γὰρ πλέον ἔσθ ' ὑπὸ γαῖαν : τοὺς δὲ μέσους τέμνουσι δύω κύκλοι ἄξονος αὐτοῦ ἄκρης ἀρχόμενοι κορυφῆς : αὐτοί | ||
| τῆς γραμμῆς τεταγμένως ἀχθεῖσαι ἐπὶ τὰς συζυγεῖς διαμέτρους ὁμοίως αὐτὰς τέμνουσι . τοιούτων δὲ γραμμῶν ὑφισταμένων καὶ ἐν ταῖς πλαγίαις |
| συμπέρασμα αἱ τοῦ ἐνδεχομένου προτάσεις ἐν δευτέρῳ σχήματι , ἐνδεχόμενον συνάγουσιν , ἐπεὶ ἀμφότεραί εἰσιν ἐνδεχόμεναι : καὶ τοῦτο πάντως | ||
| ἀπεδείξαμεν γάρ , ὅτι αἱ δύο αὗται συζυγίαι τὸ ἀναγκαῖον συνάγουσιν οἵας δή ποτε ἀναγκαίας λαμβανομένης προτάσεως , κἂν τῆς |
| ἀνεγερθείη τρόπον κίονος ἑνός , μυρίοις τῆς αἰθερίου σφαίρας ἀπολειφθήσεται διαστήμασι , καὶ μάλιστα κατὰ τοὺς ζητητικοὺς τῶν φιλοσόφων , | ||
| τοῦ μονοχόρδου κανόνος . Ὅτι οὐ δεόντως οἱ Ἀριστοξένειοι τοῖς διαστήμασι καὶ οὐ τοῖς φθόγγοις παραμετροῦσι τὰς συμφωνίας . Ὅτι |
| ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
| ' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
| τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις | ||
| τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον |
| ! ! κροτάλων ? ἱέτω ? [ ] ! ˈ τύμπανον ἰάχει ? ? ? [ ˈ [ ⚕ ἐμβαίνει | ||
| ἐμπλώῃ καὶ ὑπὸ τῆϲ πρήϲιοϲ ἐν τοῖϲι πατάγοιϲι δονέῃ ὅκωϲ τύμπανον , τυμπανίηϲ κικλήϲκεται . ἢν δὲ ὕδωρ ἅλιϲ ἐϲ |
| ἱππῆς οὐκ ἐξ ἴσου αὐτῷ στοιχοῦσιν , ἀλλὰ ἐς τοσόνδε ὑποβεβηκότες ὡς τὰς κεφαλὰς τῶν ἵππων κατὰ τοὺς ὤμους μάλιστα | ||
| ζυγῷ τεταγμένων ὁπλιτῶν . οἱ δὲ ἐν τῷ δευτέρῳ ζυγῷ ὑποβεβηκότες τοῦ πρωτοστάτου πήχεσι δύο δηλονότι τὴν σάρισαν ἔχουσι προπίπτουσαν |
| . βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου | ||
| βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς |
| ἀπὸ τῶν αγ , γδ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , ἔτι δὲ διαιρεθῇ καὶ εἰς ἀνίσους ἀριθμούς | ||
| γβ τετραγώνῳ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , διαιρεθῇ δὲ καὶ εἰς ἀνίσους ἀριθμούς , ὁ ἐκ τῶν |
| ἔσται μὲν μέση δίχα διαιρεθείσης τῆς ὅλης χορδῆς , καὶ ἀφέξει Ϛʹ ἑκατέρωθεν [ διαιρουμένη ] : ἡ δὲ ὑπάτη | ||
| αὐτῶν δʹ . ἡ δὲ ὑπερυπάτη ἀπὸ τῆς ἀρχῆς τρία ἀφέξει μεγέθη , ἀπὸ δὲ τῆς ὑπάτης ἕν : ἡ |
| Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
| γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
| ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα | ||
| ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν |
| εἷς μο δ ἐφ ' ἑαυτοὺς πολλαπλασιασθέντες ποιοῦσι δύναμιν μίαν Ϟοὺς η μο ιϚ . Ἀφαιρουμένων οὖν τῶν δυνάμεων , | ||
| ἑτέρων ι μο . Καὶ τῆς δείξεως προβάσεως δεήσει τοὺς Ϟοὺς ιβ μο λϚ τριπλασίονας εἶναι μο Ϛ καὶ ἔτι |
| , πάντα δὲ ἄρτιον ἀριθμὸν ἐνδέχεται ἢ ὑπὸ μόνου ἀρτίου μετρεῖσθαι ἢ ὑπὸ ἀρτίου καὶ περιττοῦ , τὸν δὲ περιττὸν | ||
| ποτὲ μὲν τοῖς παίωσι καθαροῖς , ποτὲ δὲ τοῖς κρητικοῖς μετρεῖσθαι : αὔξεται δὲ μέχρι τετραμέτρου : τινὲς δὲ καὶ |
| κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
| μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
| τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
| πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
| , φησὶν ὁ Ἀριστοτέλης , οὕτω κεῖσθαι τὰς τοῦ ἀναγκαίου ἀντιφάσεις , ἴσον λέγων τῷ ἀδύνατον οὕτω κειμένας ὑγιῆ ἔχειν | ||
| γὰρ αὐτούς , πότερον ἕκαστον τῶν ὄντων πάσας δέχεται τὰς ἀντιφάσεις ἢ οὔ , ἀλλὰ τάσδε μὲν τάδε ἄλλας δὲ |
| ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ , | ||
| κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης , |
| ἡ δὲ ΑΓ τὴν τρίγωνον , ἡ δὲ ΓΒ τὴν ἑξάγωνον . καὶ περιέξουσιν οἱ λόγοι τῶν ἀπὸ τοῦ αὐτοῦ | ||
| Σελήνης καλοσχηματίστου οὔσης πρὸς τοὺς ἀστέρας κατά τε τρίγωνον καὶ ἑξάγωνον , προσθετικῆς οὔσης τοῖς ἀριθμοῖς . Ἔαρ . Ἀπὸ |
| μὲν χειμεριναὶ καὶ ἑωθιναὶ μᾶλλον ὕδωρ σημαίνουσιν : αἱ δὲ θεριναὶ μεσημβρίας καὶ ἑσπεριναὶ βρονταὶ ὑδατικὸν σημεῖον . Ἀστραπαὶ δὲ | ||
| Ἰουνίῳ κε Ὠρίων ἑῷοϲ ἄρχεται ἐπιτέλλειν : εἰϲὶ δὲ τροπαὶ θεριναὶ καὶ ἀλλοιοῦται ϲφόδρα ὁ ἀὴρ πρὸ τριῶν ἡμερῶν . |
| ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
| τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
| αὐτῷ , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί : τὸ μὲν γὰρ ἓν στιγμή , τὰ δὲ | ||
| . ἀντὶ τοῦ : μὴ παρείσαγε ἡμῖν θηλυδριώδη λόγον : στερεοί : νικητήριον : ἢ μὴ γενοίμαν : εἰς τῶν |
| ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
| δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
| ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
| τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
| ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ | ||
| ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν |
| ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι | ||
| τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι |
| τμημάτων ὁ μηνίσκος . ἔσται οὖν ἐλάττων ὁ μηνίσκος τοῦ τριγώνου τοῖς ὑπὸ τοῦ ἑξαγώνου ἀφαιρουμένοις τμήμασιν . ὁ ἄρα | ||
| καταγίνεται , ὡς γεωμετρία ἀποδεικνύουσα ἀεὶ τὰς τρεῖς γωνίας τοῦ τριγώνου δυσὶν ὀρθαῖς ἴσας εἶναι , ἢ ὡς ἐπὶ τὸ |
| αὐτοὺς γίνεσθαι ἐν τῇ Κυζικηνῶν χώρᾳ περιφερεῖς τε εἶναι καὶ κυκλοειδεῖς . ΘΡΙΣΣΩΝ δὲ μέμνηται Ἀριστοτέλης ἐν τῷ περὶ ζῴων | ||
| ΑΒ . λζʹ . Τῶν ἁρμάτων οἱ τροχοὶ ὁτὲ μὲν κυκλοειδεῖς , ὁτὲ δὲ παρεσπασμένοι φανοῦνται . ἔστω γὰρ τροχός |
| ΛΗ μοιρῶν κγ να ἔγγιστα . ἔστιν δὲ καὶ ἡ ΞΔ μοιρῶν κγ μθ . ἀλλὰ καὶ ἡ ΜΞ τῇ | ||
| . ἔσται τοίνυν διὰ τοῦ τῆς λοξώσεως κανονίου δοθεῖσα ἡ ΞΔ περιφέρεια μοιρῶν οὖσα κγ μθ : τοσαῦται γὰρ ἐπιβάλλουσιν |
| , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ | ||
| δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ |
| τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
| πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
| Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος τῶν ἡμερῶν εὑρίσκομεν , ἐπειδήπερ , ὡς ἔφαμεν | ||
| ἣν ὑποτείνει ἡ τῆς σελήνης διάμετρος καὶ ὑπεροχὴ τῶν δύο διαστάσεων , ἑξηκοστῶν ἔσται ζ ν . καὶ ἡ τετραπλασία |
| ὑπὸ ΖΗΘ , ἐκτὸς τοῦ Η , ὡς ἔχουσιν αἱ καταγραφαί . ἐπεὶ οὖν τὸ δὶς ὑπὸ ΡΗΘ ἢ ΡΗΖ | ||
| ͵Ϛχκʹ καὶ ὁ τῶν Μιγ ͵εσμʹ : ὡς ἔχουσιν αἱ καταγραφαί . Ἐπὶ δὲ τῶν ἀπύκνων γενῶν ἀκολούθου τοῖς προδιωρισμένοις |
| ΑΒ : δύο ἄρα δοθεισῶν τῶν ΑΔΓ δύο μέσαι ἀνάλογον ηὕρηνται αἱ ΑΚ ΑΙ . . . ̈ : τῆς | ||
| δούλων . πρὸς γὰρ τοῖς ἄλλοις κακοῖς καὶ τοῦθ ' ηὕρηνται σόφισμα : Καλλάρῳ τὴν αὐτὴν δίκην δικάζονται . καίτοι |
| ἀρχὰς μὲν ἐπ ' ὀμφαλὸν , ἃς δὲ κατὰ νώτου χιάσαντες πρὸς αὐτὰς ἀγκτηρίζομεν , εἶτ ' ἐπιπλέκομεν τὴν καλουμένην | ||
| διὰ πάχους , ἐκ τῶν ἔξωθεν μερῶν καὶ τὰ μῆλα χιάσαντες οὕτως ἐκκόψομεν τὸ ὀστέον : εἰ δὲ μὴ πᾶν |
| ἔσται ἅπαντα κατὰ τὰ αὐτά . Κείσθωσαν τῇ ΕΗ περιφερείᾳ ἴσαι περιφέρειαι αἱ ΗΘ , ΘΚ , ΚΛ , ἡ | ||
| , ΗΘ , ΘΚ ἐπὶ τῆς τοῦ λοξοῦ κύκλου περιφερείας ἴσαι ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων |
| δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις | ||
| ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα . |
| παντὶ κόσμον , οὗ τὴν μὲν κρηπῖδα χρυσαῖ πεντηρικαὶ πρῷραι συνεπλήρουν , οὖσαι τὸν ἀριθμὸν διακόσιαι τεσσαράκοντα , ἐπὶ δὲ | ||
| ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους . Νυνὶ δὲ |
| τοῦ ἐλαχίστου ὑπερέχει Μο ιγ : αἱ δὲ Μο ιγ συντεθεῖσαί εἰσι ⃞ων τοῦ δ καὶ τοῦ θ : γέγονεν | ||
| ἁπλαῖ οὖσαι σύνταξιν τὴν ἐφ ' ἕτερον πρόσωπον ἔχουσιν , συντεθεῖσαί γε μὴν ἠλλοτρίωνται τῆς μεταβάσεως τοῦ προσώπου . ὅπερ |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| κατὰ τὴν μονάδα ἔμπαλιν τὰ ρκηʹ . ἐὰν δὲ ἐν περισσοῖς ὅροις ἡ ἔκθεσις γένηται , οἷον ἐν ἑπτά , | ||
| γὰρ βʹ βʹ : διὸ καὶ περισσοειδὴς εἴρηται ταὐτὸ τοῖς περισσοῖς πεπονθυῖα . πρὸς ἀλλήλους δὲ λέγονται πρῶτοι ἀριθμοὶ καὶ |
| ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
| ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
| ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
| . . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
| γὰρ μεγίστων ἀποστάσεων τηρήσεις , ἐφ ' ὧν αἱ ἑῷοι πάροδοι ταῖς ἑσπερίοις ἴσον ἀπὸ τῆς ἡλιακῆς μέσης παρόδου , | ||
| . θʹ . πῶς ἀπὸ τῶν περιοδικῶν κινήσεων αἱ ἀκριβεῖς πάροδοι γραμμικῶς λαμβάνονται . ιʹ . πραγματεία τῆς τῶν ἀνωμαλιῶν |
| μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ | ||
| ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ |
| , οἷον ἢ ἰσάκις ἴσοι ἰσάκις , ἢ δοκίδες ἢ σφηνίσκοι ἢ σκαληνοί . καὶ τοῦτο λέγω ὅτι πάντες οἱ | ||
| , ῥόδινον , ἐμπάσματα , ἀποβρέγματα ἐλλεβόρου , σικύαι , σφηνίσκοι , πτερά , δακτυλῆθραι , κλυστῆρες , πυρίαι , |
| καὶ ταῦτα εἰς τριάκοντα μοίρας διαιρεθῇ παραπλησίως τοῖς τοῦ ζῳδιακοῦ δωδεκατημορίοις , ἑκάστη γενήσεται μοῖρα μυριάδων ρηʹ τρίτου . Τὰ | ||
| ἢ ἀκρονύκτους φάσεις ποιῶνται , συσχηματιζόμενοι τοῖς τὴν αἰτίαν ἔχουσι δωδεκατημορίοις , ἐπειδήπερ ἀνατέλλοντες μὲν ἢ στηρίζοντες ἐπιτάσεις ποιοῦνται τῶν |
| ἀφαιροῦμεν ἐκ τῶν ἀριθμῶν τῶν τριῶν καὶ μονάδων ξ , μονάδας ξ καὶ ἐκ τοῦ ἀριθμοῦ τοῦ ἑνὸς καὶ μονάδων | ||
| καὶ ἀπὸ τῶν β ἀριθμῶν καὶ τῶν μ μονάδων ὁμοίως μονάδας μ : ] λοιποὶ ʂ β ἴσοι Μο ξ |
| τὸ ἐρυσίσκηπτρον ὑπὲρ οὗ καὶ ἀρτίως ἐλέχθη . Βρέχουσι δὲ συντιθέντες τῷ οἴνῳ τῷ εὐώδει : ἔοικε δ ' οὖν | ||
| καὶ τοιαύταις τισὶ μηχαναῖς προσχρώμενοι , τὸ δὲ ἐφεξῆς τούτῳ συντιθέντες οὐδὲ εἶναι πολλὰ ἔφασαν , ἀλλὰ ἕν : εἰ |