δεῖξαι . παρακολουθεῖ δ ' αὐτόθεν , ὅτι , κἂν δοθῶσιν ἥ τε ΑΓ ὅλη περιφέρεια καὶ ὁ λόγος ὁ | ||
Ϛʹ . ἐὰν δ ' ἐν τριπλασίῳ λόγῳ πρὸς ἀλλήλους δοθῶσιν οἱ ἄκροι , οἷον ὁ ιηʹ καὶ ὁ Ϛʹ |
, ἐπειδήπερ οἱ διὰ τῶν πόλων τοῦ ἑτέρου τῶν εἰρημένων γραφόμενοι μέγιστοι κύκλοι ἀνίσους ἀπολαμβάνουσιν ἐφ ' ἑκατέρου περιφερείας , | ||
τῇ ΘΚ , καὶ οἱ διὰ τῶν Κ καὶ Η γραφόμενοι παράλληλοι ἴσον ἀπέχουσιν ἐφ ' ἑκάτερα τοῦ ἰσημερινοῦ , |
τὰ ἀποκεκλικότα ζῴδια ἀπὸ τοῦ ὡροσκόπου αὐτῆς , οἱ δὲ ὡροσκόποι τῶν οἰκείων εἰσὶ τὰ κέντρα , καὶ οἱ ὡροσκόποι | ||
τετράγωνον σχῆμα καὶ ὁμοίως ποίων πόλεων αἱ φωσφορίαι καὶ οἱ ὡροσκόποι τῷ τόπῳ τῆς ἐκλείψεως συμφωνοῦσιν : ἐφ ' ὧν |
. ἐὰν τὰ στελέχη τῶν ἀμπέλων κισσῷ δασεῖ περιδήσωμεν , εὑρεθήσονται μετ ' ὀλίγον οὐ μόνον οἱ μύρμηκες , ἀλλὰ | ||
γὰρ οὐδέν ἐστι παρὰ τὰ γένη καὶ τὰ εἴδη , εὑρεθήσονται ἐκ τοῦ μηδαμῇ μηδαμῶς ὄντος προελθοῦσαι αἱ διαφοραὶ ἐν |
βάσις πρὸς τὴν ΓΔ . ἐπεὶ γὰρ ἴσοι εἰσὶν οἱ κῶνοι , ὡς ἄρα ὁ περὶ τὸ Η κέντρον κύκλος | ||
γὰρ καὶ κατὰ τρίγωνα ὁρώσης τῆς ὄψεως , ὅταν οἱ κῶνοι ἐξ ἀμφοτέρων τῶν ὀμμάτων ἐξίωσι καὶ προσβάλωσιν αἱ ὄψεις |
ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
ἐσπουδακόσιν ἀφθόνως ἅτε δὴ γνησίοις παισίν . οἱ κατατεταγμένοι ἔσονται κανόνες τῶν βʹ πλινθίων : πάλιν ἐν ἴσῳ διαστήματι τοῦ | ||
: γραφῆς ὁ πρῶτος ἦν μαλακόφθαλμος κύκλῳ . ἔπειτα δισσοὶ κανόνες ἰσόμετροι πάνυ : τούτους δὲ πλάγιος διαμέτρου συνδεῖ κανών |
, καὶ μάλιστα ὅταν οἱ ἐπίκαιροι τόποι τῶν γενέσεων σύμφωνοι ὑπάρχωσιν . ἐπὰν δὲ καὶ πολύσπερμον ᾖ τὸ κατὰ κορυφὴν | ||
εἶναι καὶ τόδε εἶναι ἐπὶ τῶν ἁπλῶς εἰδῶν , κἂν ὑπάρχωσιν ἰδέαι κἂν μὴ ὑπάρχωσι διὰ τὰ προειρημένα . Ἐντεῦθεν |
τὸ Θ σημεῖον , οἱ δὲ ΜΝΞ , ΟΠΡ ἴσον ἀπεχέτωσαν ὁποτερασοῦν τῶν διχοτομιῶν , ὁ δὲ ΤΣ πορρώτερον ἐχέτω | ||
καθ ' ἕκαστον τοῦ σπέρματος κόκκους βʹ ἢ γʹ . ἀπεχέτωσαν δὲ οἱ βόθροι ἀπ ' ἀλλήλων διάστημα σπιθαμιαῖον . |
: ὅπερ ἀδύνατον . ὁμοίως δὲ καί , ἐὰν παράλληλοι ὦσιν αἱ ἐφαπτόμεναι , κατὰ τὰ αὐτὰ τοῖς ἐπάνω τὸ | ||
καὶ ποία ἐλάττων καὶ μερικωτέρα : κἂν γὰρ ἀμφότεραι καθόλου ὦσιν , ἀλλ ' ἔστιν αὐτῶν καθ ' ἕκαστον σχῆμα |
. Ἡ δὲ διαίρεσις ἰσθμοῖς ἢ πορθμοῖς . Καί εἰσιν ὅροι τῶν ἠπείρων , τῆς μὲν Εὐρώπης πρὸς τὴν Λιβύην | ||
Καὶ γὰρ τὸ ζῷον τινὶ λευκῷ , τουτέστιν οἱ αὐτοὶ ὅροι καὶ ἐξ ἀνάγκης τινὶ ποιοῦσι καὶ ἐξ ἀνάγκης οὐ |
φύσις τοῖσδε τοῖς ἀδελφοῖς : ἀλλήλοις αἴτιοι τῆς αὔξης ἄμφω γενήσονται . ὁρῶντες μὲν γὰρ ἀλλήλους ἴσα βλαστήσουσι , θατέρου | ||
ἄλλοθι τοιοῦτοι γεγόνασι μαρτυρεῖν , καὶ προσμαντεύεσθαί γε ὅτι καὶ γενήσονται . Ἴσως δ ' ἄν τις κἀκεῖνο θαυμάσειεν , |
τῆς ψυχῆς ὄντες , ὅταν ἀπαγγέλλωσι πράγματα οἷς ἂν παραγενόμενοι τύχωσιν , οὐχ ὁμοίᾳ χρῶνται συνθέσει περὶ πάντων : ἀλλὰ | ||
αἵ γε μὴν γυναῖκες , ἄλλως τε ἢν καὶ νύμφαι τύχωσιν οὖσαι , ὥσπερ ἡ Νικηράτου τοῦδε καὶ Κριτοβούλου , |
καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἅπαντες , τουτέστι κύβοι τριχῆ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ | ||
λϚ , μθ , ξδ καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον |
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί | ||
δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν , |
, ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ | ||
πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , |
ὕψεσιν , ἴσοι εἰσὶν ἐκεῖνοι . Ἔστωσαν ἴσοι κῶνοι καὶ κύλινδροι , ὧν βάσεις μὲν οἱ ΑΒΓΔ , ΕΖΗΘ κύκλοι | ||
ΟΠΡΣ , ΤΥΦΧ ἴσοι ὄντες τοῖς ΑΒΓΔ , καὶ νενοήσθωσαν κύλινδροι οἱ ΠΡ , ΡΒ , ΔΤ , ΤΧ . |
περισσόν . Ἔστω πρότερον ἄρτιον , καὶ ὅσοι εἰσὶν οἱ ἐκτεθέντες , τοσαῦται μονάδες ἔστωσαν ἐν τῷ ΗΘ ἀριθμῷ : | ||
ἔσται ἡ ὑπεροχή , καὶ εἰ μὲν τρεῖς ὦσιν οἱ ἐκτεθέντες , συνημμένη λέγεται ἡ ἔκθεσις , ὅτι εἷς ἐστιν |
ἐφεξῆς ἀριθμοί , ἀπογεννῶντες τριγώνους ἢ τετραγώνους ἢ πολυγώνους , γνώμονες καλοῦνται . τοσούτων δὲ μονάδων ἕκαστον τρίγωνον ἔχει πλευρὰς | ||
Ἐν Ἀλεξανδρείᾳ δὲ τῇ αὐτῇ ὥρᾳ ἀποβάλλουσιν οἱ τῶν ὡρολογίων γνώμονες σκιάν , ἅτε πρὸς ἄρκτῳ μᾶλλον τῆς Συήνης ταύτης |
ἐν τῇ κεφαλῇ τοίνυν τοῦ Κριοῦ τριῶν οἱ δύο οἱ βορειότεροι καὶ ὁ ἐν τῷ νοτίῳ γόνατι τοῦ Περσέως λαμπρὸς | ||
σιμοὶ οὐχ ὡσαύτως οὐδὲ οὐλόκρανοι ὡς Αἰθίοπες . οἱ δὲ βορειότεροι τούτων κατ ' Αἰγυπτίους μάλιστα ἂν εἶεν τὰ σώματα |
ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
ἐν τῷ χειμῶνι , αἱ δὲ γυναῖκες τῷ θέρει . χρόνοι δὲ ἱστάμενοι ταῖς κυούσαις καθάπερ τοῖς ἄλλοις ζῴοις οὐκ | ||
παρ ' οὗ [ καὶ ] οἱ καιροὶ καὶ οἱ χρόνοι . Πλὴν αἴτιον οὐ πάντων ἀλλὰ μόνων ἀγαθῶν καὶ |
, Ῥόδιοι Ῥοδίων καὶ Ῥόδιαι Ῥοδίων , ἅγιοι ἁγίων καὶ ἅγιαι ἁγίων , δίκαιοι δικαίων καὶ δίκαιαι δικαίων : μία | ||
ἅμα τῇ ἕῳ ποιεῖσθαι : ἵνα πάσης ἀνθρωπίνης πράξεως αἱ ἅγιαι καὶ σπουδαῖαι προηγῶνται , χορηγὸν ἔχουσαι τὴν περὶ θεοῦ |
αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν | ||
ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς |
ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , ὅ τε δ καὶ ὁ θ καὶ | ||
τετράγωνον , ὃν δὲ πλευρὰν τοῦ τετραγώνου . Ἔστωσαν οἱ δοθέντες δύο ἀριθμοὶ ὅ τε σ καὶ ὁ ε : |
ἐνεργείας , ἵν ' αὐταὶ ἑαυτῶν ἐκ τῆς ἐπιτάσεως τελεώτεραι γίνωνται . πρὸς ὅ φαμεν , ὅτι διττῶς ἐνεργεῖν αἱ | ||
τῶν ἀκροδρύων εἴρηται , ὅταν ἐξ ὠμότητος πέπειροι οἱ καρποὶ γίνωνται , καταχρηστικῶς δὲ καὶ ἐπὶ τῶν ἡμετέρων σωμάτων , |
] ὑπεστησάμην ὁρίζοντα τοιοῦτον μὴ μειζόνων ἐφαπτόμενον ἤπερ εἰσὶν οἱ τροπικοὶ κύκλοι , φανερὸν οὖν ὅτι διὰ τὸ προαποδεδειγμένον παρθένος | ||
θερινός , τοῖς δὲ ὑπὸ τῷ ἰσημερινῷ οἰκοῦσιν οἱ δύο τροπικοὶ χειμερινοὶ τυγχάνουσιν , ἐπειδὴ μακρότατα ἀφίσταται αὐτῶν ὁ ἥλιος |
ἂν ἐκεῖνοι φωναῖς τοιαύταις ἀπηχῶσιν ἢ ὑπόληψιν τοιαύτην περὶ σοῦ ἔχωσιν ; Ἆρόν με καὶ βάλε , ὅπου θέλεις . | ||
πυρετήναντες ἀπέθανον : ὅσοι γὰρ ἂν ἢ τὸ σῶμα πυρετῶδες ἔχωσιν ἢ τὰς γνώμας θορυβώδεας , τὰ τοιαῦτα πάσχουσιν . |
ἐχθρῶν . Καὶ ὅταν ἢ ἀπὸ ἑνὸς ἢ ἡμίσεως σημείου γένωνται οἱ ἐχθροί , τότε ἐν τῷ ὕψει φέρειν τὸν | ||
φυλάττοντα κἀνταῦθα , ὅπως μὴ προαχθῶσιν εἰς καταφρόνησιν καὶ ῥᾳθυμότεροι γένωνται . τοῦτο δὲ πρῶτος μὲν Ὅμηρος πεποίηκεν : Ἀχιλλεὺς |
λόγον ἔχει ἤπερ ἡ βάσις πρὸς τὴν βάσιν ἀντιπεπονθότως . καταγεγράφθωσαν οἱ κῶνοι , καὶ ἔστω , ὡς ὁ ΑΗΓΔ | ||
σε τούτων διαλανθάνῃ καὶ ἵνα σαφέστερον ἡμῖν ὁ λόγος γένηται καταγεγράφθωσαν πρῶτον πάντα τὰ δεκαεπτὰ σύμφωνα : Β . Γ |
τῆς γενέσεως πῆξιν ὁπόταν ἔχωσι τὰ χρονικὰ ἢ καὶ αἱ ἀναφοραὶ τῶν ζῳδίων κατὰ τὸν αὐτὸν χρόνον συμπληρούμενοι τύχοιεν . | ||
εἰσὶν αἱ τῶν ηζ ζε εδ δγ γβ βα περιφερειῶν ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλοις κείμενοι , ἀρχόμενοι |
διοικῶν . ἄξονες καὶ κύρβεις διαφέρουσιν . οἱ μὲν γὰρ ἄξονες ἦσαν τετράγωνοι , οἱ δὲ κύρβεις τρίγωνοι . καὶ | ||
, ὧν κορυφαὶ μὲν τὰ Α , Β σημεῖα , ἄξονες δὲ αἱ ΑΗ , ΒΘ εὐθεῖαι , τὰ δὲ |
καὶ ὁ τοῦ Κρόνου καὶ ὁ τῆς Ἀφροδίτης καὶ αὐτοὶ τυγχάνωσιν ἀνατολικοί τε καὶ ἰδιοπροσωποῦντες ἢ καὶ ἐπίκεντροι , εὐδαιμονίαν | ||
εὐθύγραμμον σχῆμα πάντως εἰς τρίγωνα τοσαῦτα , ὅσαιπερ ἂν αὐτοῦ τυγχάνωσιν αἱ πλευραί , αὐτὸ δὲ τὸ τρίγωνον τὸ αὐτὸ |
με κληρῶσαι . Ἑρμῆς γὰρ ὢν κλήρῳ : οἱ γὰρ κλῆροι τοῦ Ἑρμοῦ ἱεροὶ δοκοῦσιν εἶναι : ὅθεν καὶ τὸν | ||
φέρουσι τῇδε , καὶ κρίσεις δὲ καταπέμπουσιν ἄλλας ἐνταῦθα καὶ κλῆροι καὶ τύχαι καὶ ἀνάγκαι . Καὶ ἐν τούτοις ἅπασι |
τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
εἰσι ταῦτα τὰ στοιχεῖα , μεταξὺ δὲ δύο στερεῶν δύο μέσοι ἀνάλογοι γίνονται . ἐν δὲ ταῖς Πολιτείαις ζητεῖ εἰ | ||
παρ ' Αἰολεῦσι τὸ μέσοι , γαίας καὶ νιφόεντος ὠράνω μέσοι : τῇδε ἔχει καὶ ἀπὸ τοῦ τηλόθι τὸ τήλοι |
τί μὴ καὶ ταύτας ; λέγομεν οὖν ὅτι εἰ καὶ εὑρεθῶσιν ἐπὶ τούτων τῶν προτάσεων ἀληθεῖς τινες προτάσεις , ὡς | ||
καὶ μεθέξει δὴ παντός : ἐὰν δὲ ἐν ἑνὶ ζῳδίῳ εὑρεθῶσιν γʹ ἢ δʹ ἀστέρες , ἐν ἑτέρῳ δὲ εἷς |
οὐσίαι , καὶ αἱ εἰδικαὶ οὐσίαι ὁμοίως οὐσίαι ὡς ἴσον ἀφεστηκυῖαι τῶν ἀτόμων οὐσιῶν . καὶ οὕτω μὲν ἡμεῖς . | ||
εὖ εἰδέναι ἔφη ὅτι οὐδὲν μᾶλλον σφίσιν οὔθ ' αἱ ἀφεστηκυῖαι προσχωρήσονται οὔθ ' αἱ ὑπάρχουσαι βεβαιότεραι ἔσονται : οὐ |
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
, ὃς ἀπὸ πλευρᾶς λζ ιʹ . . Ἀπὸ τῶν χκε λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων | ||
τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς ἀλλήλους μὲν |
τε πόλος ἐξαίρεται ὁ παρ ' ἡμῖν , καὶ οἱ ὁρίζοντες μεταπίπτουσι , καὶ ὁ ἄξων οὐδενὸς ἔτι διάμετρος γίνεται | ||
προτιθέντες , ἐς δὲ τὸ ἑκατέροις που αἰεὶ ἡδονὴν ἔχον ὁρίζοντες , καὶ ἢ μετὰ ψήφου ἀδίκου καταγνώσεως ἢ χειρὶ |
. . : ἀπόστασίς ἐστιν , ὅταν τινὲς κακῶς πάσχοντες ἀποστῶσιν : ἐπανάστασις δέ , ὅταν τινὲς τιμώμενοι καὶ μηδὲν | ||
δέχεσθαι οὓς κατὰ ἔτος ἕκαστον Κορίνθιοι ἔπεμπον , δείσαντες μὴ ἀποστῶσιν ὑπό τε Περδίκκου πειθόμενοι καὶ Κορινθίων , τούς τε |
πρὸς ΜΛ . Δέδοται ἄρα . , ] ἐπεὶ οὖν δεδομέναι εἰσὶν αἱ ΚΕ , ΕΖ , ὁ πρὸς ἀλλήλας | ||
: ὅμοιον γάρ ἐστι τῷ ΑΒ : τοῦ ΑΗ ἄρα δεδομέναι εἰσὶν αἱ πλευραί : δοθεῖσα ἄρα ἐστὶν ἑκατέρα τῶν |
: καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : | ||
: καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : |
. ιζ . Εὑρεῖν τέσσαρας ἀριθμοὺς ὅπως σὺν τρεῖς συντιθέμενοι ποιῶσι τοὺς ἐπιταχθέντας ἀριθμούς . Δεῖ δὴ τῶν τεσσάρων τὸ | ||
αὐτῶν ἀφιεῖσι πληγάς : ἀλλ ' ὡς ἂν αὐτοὺς ἐνδιατρίβειν ποιῶσι τοῖς ἀλγεινοῖς , τὰ πρὸς τὸν νῶτον μέρη καὶ |
ἐάν τε πρὸς τοῖς κέντροις ἐάν τε πρὸς ταῖς περιφερείαις ὦσι βεβηκυῖαι . Ἔστωσαν ἴσοι κύκλοι οἱ ΑΒΓ , ΔΕΖ | ||
οὖν ἀκαλύπτοις ὁρῶσαι τοῖς ὀφθαλμοῖς . καὶ ἐὰν μὲν παρθένοι ὦσι , προσίεται τὰς τροφὰς ἅτε ἁγνὰς ὁ δράκων καὶ |
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ | ||
μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ |
ἀλγυνῶ . τί ταῦτ ' ἄλλως ἐλέγχεις ; διόπερ οἱ λοιποὶ τὰς ἀντιστρόφους ἀπὸ τούτου παρεδέχοντο πάντες , ὡς ἔοικεν | ||
ἀφαιροῦμεν μονάδας ξ , τουτέστιν ἀπὸ ὁμοίων ὅμοια . Καὶ λοιποὶ Ϟοὶ τρεῖς ἴσοι Ϟῷ ἑνὶ καὶ μονάσι μ . |
συμπέρασμα αἱ τοῦ ἐνδεχομένου προτάσεις ἐν δευτέρῳ σχήματι , ἐνδεχόμενον συνάγουσιν , ἐπεὶ ἀμφότεραί εἰσιν ἐνδεχόμεναι : καὶ τοῦτο πάντως | ||
ἀπεδείξαμεν γάρ , ὅτι αἱ δύο αὗται συζυγίαι τὸ ἀναγκαῖον συνάγουσιν οἵας δή ποτε ἀναγκαίας λαμβανομένης προτάσεως , κἂν τῆς |
εἰ οὐδενί , καὶ οὐ παντί . Περὶ ὧν οἱ συλλογισμοί , τουτέστιν τῶν προβλημάτων : ἐπάγει γὰρ καὶ ποῖον | ||
δοξαστικόν , ἀλλὰ τὸ διανοητικόν , καὶ περὶ τίνων οἱ συλλογισμοί , ὅτι οὐ περὶ τῶν νοητῶν , οὐ περὶ |
ὅλου σὺν τῷ προσκειμένῳ καὶ ὁ ἀπὸ τοῦ προσκειμένου οἱ συναμφότεροι τετράγωνοι διπλάσιοί εἰσι τοῦ ἀπὸ τοῦ ἡμίσεος τετραγώνου καὶ | ||
ἱππεὶς μὲν ἀμφὶ τοὺς πεντακισχιλίους , ὁπλῖται δὲ καὶ πεζοὶ συναμφότεροι δισμύριοι . ὁ δὲ Λογχάτης ἀγνοούμενος παρελθὼν ἐς τὸν |
ἢ συνὼν ἰδίοις ζῳδίοις , ζωῆς καὶ θανάτου κυριεύσουσιν οἱ γεννώμενοι . ὅθεν οἱ προκείμενοι τόποι καὶ ἀστέρες ἐν χρηματιστικοῖς | ||
χορεύσαντες ἔμελλον ἀπέρχεσθαι . κακοδαίμονες δὲ ἄρα ὄντες ἐλάνθανον οἱ γεννώμενοι πρὸς τέλματά τε ἥξοντες καὶ νοσήσουσαν τὴν γῆν . |
καινότερον : χωρὶς δὲ τῆς πλοκῆς οὐδὲ οἱ τῶν ὀνομάτων σχηματισμοὶ ταῖς ἀκοαῖς εἰσιν ἡδεῖς . τούτοις ἐπιφέρει κεφάλαιον ἄλλο | ||
οὐκ ἂν γένοιτο Ἐμμενίδας : ἡ δὲ ποιητικὴ παρέκτασις καὶ σχηματισμοὶ ἐπὶ τῶν κυρίων πατρωνυμικῶν ἐπὶ τὰ αὐτῶν τρεπόμενα ὀνόματα |
ἐκτὸς αὐτῆς ἐστιν . Ἐπὶ τίνος οὖν ὀχούμενος τὴν γῆν ἐπικυκλοῖ ; πάντες γὰρ ὅσοι τοῦτο εἶπον ἀτόπως ὑπέθεντο . | ||
ἐκτὸς αὐτῆς ἐστιν . Ἐπὶ τίνος οὖν ὀχούμενος τὴν γῆν ἐπικυκλοῖ ; πάντες γὰρ ὅσοι τοῦτο εἶπον ἀτόπως ὑπέθεντο . |
στοιχείων ὁ οὐρανός : εἰ γὰρ μὴ ὁμολογοῖεν , † ἔσονται λέγειν παρὰ τὴν δόξαν τῶν πολλῶν . στοιχεῖον δὲ | ||
ἐπιφέρει : ” αἱ δ ' ἡμέραι αἱ πρότεραι ἄλογοι ἔσονται , ὅτι ἐμιάνθη κεφαλὴ εὐχῆς αὐτοῦ ” : δι |
ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
ἄγραφον , οἷον : καὶ ἐπὶ τὸ βυβλίον σου πάντες γραφήσονται : δῆλον , ὅτι ἄγραφον . βιβλίον δὲ τὸ | ||
τὸ ἄγραφον , οἷον καὶ ἐπὶ τὸ βυβλίον σου πάντες γραφήσονται : βιβλίον τὸ γεγραμμένον . βοτάνη ἡ βοσκομένη , |
ἀπὸ τῶν Τ , Φ ἐπὶ τὴν κορυφὴν τὴν Δ ἐπιζευχθῶσιν εὐθεῖαι ὡς αἱ ΤΔ , ΦΔ , τὸ διὰ | ||
ἐμπίπτωσιν εὐθεῖαί τινες αἱ ΑΔ ΑΖ ΒΓ ΒΖ , καὶ ἐπιζευχθῶσιν αἱ ΕΔ ΕΓ , [ ὅτι ] γίνεται εὐθεῖα |
πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα | ||
Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ |
τοῦ μέσου ἐκκέντρου ὑποτείνουσι μὴ δεδομένας , ἐὰν δ ' ἐπιζεύξωμεν τὰς ΝΣΕ καὶ ΝΤΖ καὶ ΝΗΥ , πάλιν τὰς | ||
Κ . Φανερὸν οὖν , ὅτι . , ] ἐὰν ἐπιζεύξωμεν ἀπὸ τοῦ Θ ἐπὶ τὸ Γ καὶ ἐπὶ τὸ |
προηγούμενα τῶν ζῳδίων μοίρας ια θ , αἷς ὑπερέχουσιν αἱ διπλασίονες τῆς ἀποχῆς μοῖραι κδ κγ τὰς τοῦ πλάτους ιγ | ||
Τούτοις προστεθέντος καὶ τοῦ τρίτου , γίνονται οἱ τρεῖς ὁμοῦ διπλασίονες τοῦ τρίτου καὶ ἔτι ὑπερέχοντες μονάδων κ . Ἐὰν |
γοῦνα φέρει . . ἡ διπλῆ ὅτι σαφῶς οἱ Τρῶες ἐλάττονες συνίστανται τῶν Ἑλλήνων , καὶ τῶν ἐπικούρων ἐξεληλυθότων . | ||
τῆς ὑπὸ ΔΗΒ , τουτέστιν δύο τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ |
καὶ ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ μὲν τῶν διπλασίων ἡμιόλιοι , ἐκ | ||
κατὰ αὐθάδειαν δρᾶν ἕκαστα , ἀλλὰ συνέθεντο ἐφ ' οἷς συστήσονται τὸν ἀγῶνα . δηλοῖ δὲ καὶ τοῦτο ἐν τῷ |
χρείαν , μέχρις οὗ πάντες οἱ ὑπ ' αὐτὸν ἀβλαβῶς διέλθωσιν , ἵνα μὴ ἐκ τοῦ σπουδάζειν πάντας προλαβεῖν συντριβαὶ | ||
. καταπαττόμενος : τῇ χιόνι παττόμενος , ἐὰν αἱ Νεφέλαι διέλθωσιν . λέγεται δὲ ” παιπάλη “ τὸ λεπτότατον τοῦ |
τοῦ ἐλαχίστου ὑπερέχει Μο ιγ : αἱ δὲ Μο ιγ συντεθεῖσαί εἰσι ⃞ων τοῦ δ καὶ τοῦ θ : γέγονεν | ||
ἁπλαῖ οὖσαι σύνταξιν τὴν ἐφ ' ἕτερον πρόσωπον ἔχουσιν , συντεθεῖσαί γε μὴν ἠλλοτρίωνται τῆς μεταβάσεως τοῦ προσώπου . ὅπερ |
τῶν δ ' ἀμφισβητούντων πρὸς ταύτας τὰς ζημίας αἱ κρίσεις ἔστωσαν ἐπὶ τοῦ δήμου . τοῦτον τὸν νόμον ἐπιψηφίσαντες οἱ | ||
στερεὰ παραλληλεπίπεδα ἀνάλογον ᾖ , καὶ αὗται ἀνάλογον ἔσονται . ἔστωσαν ὁσαιδηποτοῦν εὐθεῖαι ἀνάλογον ἡ ΑΒ , ΓΔ , ΕΖ |
ἐν τῷ δευτέρῳ σχήματι , ὅταν ἀμφότεραι αἱ προτάσεις καταφατικαὶ ληφθῶσιν : ἀλλ ' οὐχ οὕτως ἔδει ταύτας λαβεῖν , | ||
καὶ μέχρι γήρως τοῦ ἐσχάτου : ὁκόσοι δ ' ἂν ληφθῶσιν ὑπὸ νουσήματός τινος ὑπὲρ τεσσαράκοντα ἔτεα , οὐ μάλα |
, οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
“ δοκεῖ ” διάφορον ἔχει τὴν σημασίαν : σημαίνει γὰρ δισταγμὸν ἢ ἀξίωμα ἢ μέτριον ἦθος . καὶ διστακτικῶς μέν | ||
. διὰ δὲ τοῦ ἴσως εἰπεῖν ὡς ἐν ἐπανορθώσει τὸν δισταγμὸν τὸν πρὸς σφᾶς ὑπέφηνεν . προφάσεσι . ἴσως ἄν |
ἐπιζευγνυμένη εὐθεῖα ἐν τῷ αὐτῷ ἐπιπέδῳ ἐστὶ ταῖς παραλλήλοις . Ἔστωσαν δύο εὐθεῖαι παράλληλοι αἱ ΑΒ , ΓΔ , καὶ | ||
ἀπάγεται γὰρ εἰς τὰ πτωτικὰ τοῦ ἑπτακαιδεκάτου . κγʹ . Ἔστωσαν δύο κύκλοι οἱ ΑΒ ΓΔ , καὶ ἐκβεβλήσθω ἡ |
δίκαιον ᾖ : εἰ δ ' οἱ μὲν κακοὶ μηδὲν ποιήσουσιν , οἱ δ ' ἀγαθοὶ καὶ δυνατοὶ ἀθύμως ἕξουσι | ||
Ϛ μετὰ Ϟῶν Ϛ λείψει μῶν σ , μονάδας ρ ποιήσουσιν αἵπερ εἰσὶ τῆς ὅλης διαιρέσεως τοῦ μείζονος καὶ ἐλάσσονος |
χειμαζόμενοι σωθήσονται . Κεφαλὴ ἐὰν ἅλληται ἢ αἱ τρίχες ὀρθαὶ ἱστῶνται ἢ ἐν ἀκαίρῳ φρίσσωσιν ἐπιμόνως πλείονα χρόνον , ἐπιβουλὴν | ||
τῶν δύο τούτων , ἐμπροσθοτόνου καὶ ὀπισθοτόνου , ὅταν ὀρθοὶ ἱστῶνται καὶ οὔτε ἀνατεῖναι ἑαυτοὺς , οὔτε κάμψαι δύνωνται . |
χρή , μὴ ἀποδαρῇ τὸ δέρμα : ὅταν δὲ οἱ ἰχῶρεϲ ἐκρέωϲιν , κατάντλει ὕδατι θερμῷ ἐπὶ πολὺν χρόνον , | ||
ἢ πικρῶν θέρμων ἢ ἀϲπαράγου ῥίζηϲ . ὅταν δὲ πλείονεϲ ἰχῶρεϲ ῥέωϲι , κατάπλαϲϲε φύλλοιϲ ἰτέαϲ μεθ ' ὕδατοϲ ἢ |
ἐκκείσθω τεταρτημόριον κύκλου θέσει δεδομένον τὸ ΖΗΕ , καὶ γεγράφθω τετραγωνίζουσα ἡ ΖΘΚ , καὶ τῇ βεβηκυίᾳ γωνίᾳ ἐπὶ τῆς | ||
ἐκπεσόντων , μάλισθ ' ὅταν καὶ ἡ σελήνη παροῦσα ἢ τετραγωνίζουσα ἢ διαμηκίζουσα τύχῃ τοὺς εἰρημένους τόπους . Ἐφωδευμένου δὲ |
ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων | ||
ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ |
, μίαν δὲ αὐτῶν ἴσην τῇ Ε . Ὅσον γὰρ ὑπερέχουσιν αἱ ΑΒ ΒΓ τῆς Ε , ἔστω ἡ Ζ | ||
: παροιμία ἐπὶ τῶν τολμώντων τὶ λέγειν ἐπὶ τοῖς τοσοῦτον ὑπερέχουσιν , ὅσον οἱ θεοὶ τῶν ἀνθρώπων . Καὶ τόπος |
. τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
τὰς θέσεις τῶν ἀστέρων φανέντων , ἐπὰν δοτῆρες οἱ χρόνοι τύχωσι , καθάπερ προείπαμεν , ἐπὶ τοῦ περιποιητικοῦ παρῆν ὁ | ||
γίνονται , ὅταν κατὰ τὸ αὐτὸ ζῴδιον ἰσόμοιροι τῷ Ἡλίῳ τύχωσι μὴ ἀπέχοντες ἀπ ' αὐτοῦ πλεῖον ἢ ἔλαττον λεπτῶν |
οἱ μερίζοντες καὶ περὶ τὴν ἐκείνου ἁπλότητα διπλασιαζόμενοι καὶ ἔτι πολλαπλασιαζόμενοι , ἐκεῖνο γὰρ τῷ ἓν εἶναι , πάντα ἐστὶ | ||
. Καὶ πάλιν γίνεται δίτονον ὁ η καὶ ὁ θ πολλαπλασιαζόμενοι : ὁ γὰρ οβ εὑρίσκεται ἀνάλογον μεταξὺ καὶ ποεῖ |
τῆς γῆς κατὰ σύμπτωσιν τῶν εὐθειῶν , αἳ ἀπὸ τῶν ὡρολογίων ἤχθησαν ἐπὶ τὸ κέντρον τῆς γῆς , γινομένη , | ||
ἔχοντα παραλλαγὴν πρὸς τὰς χειμερινὰς τροπάς , καὶ αἱ τῶν ὡρολογίων καταγραφαὶ ἐκδήλους ποιοῦσι τὰς κατὰ ἀλήθειαν γινομένας τροπάς , |
. Κιμμερίου διὰ Βοσπόρου ] Πλησίον γάρ εἰσιν οἱ Κιμμέριοι κείμενοι παρὰ τὸν ἰσθμὸν , οὗ ἐστιν ὁ Ταῦρος : | ||
ἐπὶ τὴν δεξιὰν , ποτὲ δὲ παρὰ τὴν ἀριστερὰν πλευρὰν κείμενοι καὶ κοιταζόμενοι , προνοούμενοι τοῦ συμφέροντος . φέρει : |
ὁ πλείων καὶ τοῦ πέριξ ἦχος . Πῶς γὰρ ἂν σύμφωνοι ἐγίγνοντό τινες φθόγγοι εἰ μὴ ἰσότης ἦν ; ἀσύγκριτον | ||
, ὁμοίως δὲ καὶ εἰ οἱ κοσμικοὶ κυκλικοὶ τῆς γενέσεως σύμφωνοι ἢ οἱ αὐτοί . πρὸς ἐπὶ τούτοις δὲ καὶ |
ὑπὸ ΖΗΘ , ἐκτὸς τοῦ Η , ὡς ἔχουσιν αἱ καταγραφαί . ἐπεὶ οὖν τὸ δὶς ὑπὸ ΡΗΘ ἢ ΡΗΖ | ||
͵Ϛχκʹ καὶ ὁ τῶν Μιγ ͵εσμʹ : ὡς ἔχουσιν αἱ καταγραφαί . Ἐπὶ δὲ τῶν ἀπύκνων γενῶν ἀκολούθου τοῖς προδιωρισμένοις |
καὶ ἡ Κατακεκαυμένη καὶ Κνίδος καὶ Σμύρνα καὶ ἄλλοι ἀσημότεροι τόποι διαφόρως χρηστοινοῦσιν ἢ πρὸς ἀπόλαυσιν ἢ πρὸς διαίτας ἰατρικάς | ||
τετρακοσίους ἄνδρας καὶ πλείους ἔτι , καθὼς ἂν ἐκποιῶσιν οἱ τόποι τό τ ' ἀπὸ τῶν πόλεων δέξασθαι καὶ τῶν |
μετὰ τὰς μονάδας ὁ ἐφεξῆς ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ | ||
ἀπὸ μονάδος ἐπί τε πλάτος καὶ ἐπὶ βάθος γαμμοειδῶς οἱ δεύτεροι ἐφ ' ἑκάτερα καὶ αὐτοὶ γαμμοειδῶς ἀπὸ τετράδος ἀρχόμενοι |
πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
εἰσὶν οἱ Β , Γ , Δ τῷ πλήθει τοσοῦτοι εἰλήφθωσαν ἀπὸ τοῦ Ε οἱ Ε , ΘΚ , Λ | ||
ὡς ἀρχὴ καὶ μὴ οὖσα ἀριθμός , οὐκοῦν ἀπὸ τριάδος εἰλήφθωσαν : γ , ε , ζ , θ , |
ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ | ||
καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ |
ἀπὸ ΝΞ . καὶ εἰσὶν ἀμφότεραι ἄκρον καὶ μέσον λόγον τετμημέναι : διὰ τὸ ἐν ἀρχῇ τοίνυν ἐστὶν ὡς ἡ | ||
μὲν ἰϲχυροτέροιϲι αἱ ῥίζαι ἐϲ μέγεθοϲ ἄμηϲ ἢ ὀλίγον ἁδρότερον τετμημέναι : ξὺν χόνδρῳ τε πλυτῷ ἢ φακῷ ἡ δόϲιϲ |
τὸν μέγιστον πόδα τοῦ ἐλαχίστου πενταπλάσιον . Διαφέρουσι δὲ οἱ μείζονες πόδες τῶν ἐλαττόνων ἐν τῷ αὐτῷ γένει ἀγωγῇ . | ||
δέκα , οἱ δὲ καὶ τριάκοντα , ἱστοροῦνται δὲ καὶ μείζονες . φολίσι τε κέχρηνται καθ ' ὅλον τὸ σῶμα |
ζώνας τε καὶ περισκελῆ πᾶσι : τὰς μέν , ὅπως ἀνεμπόδιστοι καὶ ἑτοιμότεροι πρὸς τὰς ἱερὰς ὑπουργίας ὦσι , σφιγγομένων | ||
, εἴπερ εἰσὶν ἑκάστης ἕξεως , ἤτοι ἀρετῆς , ἐνέργειαι ἀνεμπόδιστοι , καὶ ἐάν ἐστιν εὐδαιμονία πασῶν τῶν ἕξεων , |
ἡμερῶν κβʹ δύο τρίτων , ταύτας ἐπὶ τὸν ζʹ ἥμισυ πολυπλασιάσωμεν : εὑρήσομεν ροʹ : τοσαύτας Ἀφροδίτη ἕξει ἐκ τῶν | ||
πρὸς τέταρτον τὸ Γ . ἐὰν ἄρα τὸ ὑπὸ μέσων πολυπλασιάσωμεν , τουτέστι τὸν δέκα καὶ πέντε , καὶ παραβάλωμεν |
κύκλος ὁ ΛΕΝ . Ἐπεὶ οὖν ἐν σφαίρᾳ δύο κύκλοι ἐφάπτονται ἀλλήλων ὅ τε ΑΕΒ καὶ ὁ ΓΕΔ , διὰ | ||
τὸ Ζ , ἀλλὰ κατὰ τὸ Η . ἐπεὶ οὖν ἐφάπτονται αἱ ΒΔ , ΔΑ , καὶ ἐπὶ τὰς ἁφάς |
ἀλλήλους παρακαλέσαντες τὴν μὲν νῦν οὖσαν περὶ τῆς πόλεως δόξαν ἐκβάλωμεν , φανῶμεν δὲ ἄξιοι βασιλεῖ τῆς προτέρας ἐλπίδος . | ||
τῆς σφαίρας ἀπ ' αὐτοῦ ἐπιζεύξωμεν ἐπὶ τὸ ὁρώμενον καὶ ἐκβάλωμεν ὡς ἐν τοῖς πρὸς αὐτοῦ , θεωρηθήσεται τὸ ΕΔ |
ἔχει ἢ καθόλου καταφατικόν . ὑποκείσθωσαν γὰρ νῦν οἱ καταφατικοὶ προσδιορισμοί : τὰς γὰρ καταφάσεις μόνον τέως ζητοῦμεν . γεγόνασιν | ||
διορισμῷ . γίνονται τοίνυν ιϚ . εἰσὶν μὲν γὰρ δ προσδιορισμοί : πολυπλασιαζόμενοι οὗτοι ποιοῦσι ιϚ προτάσεις : τετράκις γὰρ |
, ὁμοίως δέ : ὅταν μὲν γὰρ αἱ προτάσεις ὦσιν ἄρτιαι , οἱ ὅροι περισσοί , ὅταν δὲ αἱ προτάσεις | ||
τούτῳ ἑπόμενα παραδίδωσιν , ὅτι τοῦ κατηγορικοῦ τοῦ προσεχοῦς συλλογισμοῦ ἄρτιαι μὲν αἱ προτάσεις , περιττοὶ δὲ οἱ ὅροι : |