οὐσίαι , καὶ αἱ εἰδικαὶ οὐσίαι ὁμοίως οὐσίαι ὡς ἴσον ἀφεστηκυῖαι τῶν ἀτόμων οὐσιῶν . καὶ οὕτω μὲν ἡμεῖς . | ||
εὖ εἰδέναι ἔφη ὅτι οὐδὲν μᾶλλον σφίσιν οὔθ ' αἱ ἀφεστηκυῖαι προσχωρήσονται οὔθ ' αἱ ὑπάρχουσαι βεβαιότεραι ἔσονται : οὐ |
ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς | ||
τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ |
' οὐ πανταχοῦ , ἡ δύναμις δὲ ἁπανταχοῦ καὶ αἱ ἀκτῖνες , καὶ ἐν γῇ καὶ ἐν θαλάττῃ καὶ ἐν | ||
τοῦ ἡλίου ὑφίστηται νέφος ὑφ ' οὗ ἐὰν σχίζωνται αἱ ἀκτῖνες χειμερινὸν τὸ σημεῖον . Καὶ ὅταν καυματίας δύηται καὶ |
μέσους δρόμους ὦσιν , ὅπου μείζους εἰσὶν αἱ τῶν παραυξήσεων ὑπεροχαί , τήν γε μέχρι τῶν τοσούτων ὡρῶν πάροδον , | ||
λϚ , τετραπλάσιος τοῦ θ , ἀπλανῶν . Αἱ δὲ ὑπεροχαί : λϚ ὑπερέχει δ , λβ η , κδ |
τὰς ΑΒ ΑΓ ΑΔ ἀπό τινος σημείου τοῦ Ε δύο διήχθωσαν αἱ ΕΖ ΕΒ , ἔστω δὲ ὡς ἡ ΕΖ | ||
τῆς ὑπὸ ΓΑΒ . Ἔστω κύκλος ὁ ΑΓΒΔ , καὶ διήχθωσαν δύο διάμετροι αἱ ΑΒ , ΓΔ τέμνουσαι ἀλλήλας πρὸς |
, τὸ δὲ ὑπὸ ΑΔ ΓΒ τῷ ἀπὸ ΕΗ . Ἐπεζεύχθωσαν γὰρ αἱ ΗΓ ΗΔ ΑΖ ΖΒ . ἐπεὶ οὖν | ||
σφαίρας διάμετρος δυνάμει τριπλασία ἐστὶ τῆς πλευρᾶς τοῦ κύβου . Ἐπεζεύχθωσαν γὰρ αἱ ΚΗ , ΕΗ . καὶ ἐπεὶ ὀρθή |
, τὸ δὲ ὄμμα κείσθω ἐπὶ τοῦ Β , καὶ προσπιπτέτωσαν ἀκτῖνες αἱ ΚΒ , ΒΔ , ΒΓ , ΒΖ | ||
. κείσθω δὴ ὄμμα τὸ Δ , ἀφ ' οὗ προσπιπτέτωσαν ἀκτῖνες αἱ ΔΒ , ΔΓ , καὶ ἀπὸ τοῦ |
οὗτος γάρ ἐστι πεντάκις πέντε : ἰδοὺ οὖν ὅτι αἱ πλευραὶ αὐτοῦ ἐκ πέντε εἰσίν : ἀπὸ ε οὖν ἀρχόμεθα | ||
ιη καὶ η ὅμοιοί εἰσι , δῆλον : εἰσὶ γὰρ πλευραὶ τοῦ μὲν ιη ὁ Ϛ καὶ ὁ γ , |
προηγούμενα τῶν ζῳδίων μοίρας ια θ , αἷς ὑπερέχουσιν αἱ διπλασίονες τῆς ἀποχῆς μοῖραι κδ κγ τὰς τοῦ πλάτους ιγ | ||
Τούτοις προστεθέντος καὶ τοῦ τρίτου , γίνονται οἱ τρεῖς ὁμοῦ διπλασίονες τοῦ τρίτου καὶ ἔτι ὑπερέχοντες μονάδων κ . Ἐὰν |
δέον μὴ ἀνάλωσεν . Εἰρῆσθαι δέ φησι πρότερον , ὅτι ὑπερβολαὶ καὶ ἐλλείψεις εἰσὶν ἡ ἀσωτία καὶ ἡ ἀνελευθερία : | ||
γὰρ τῷ πλεονάζειν τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . |
Ζ κύκλοι οἱ ΓΝ , ΘΒ , ΑΛΗ . καὶ ἐπεζεύχθωσαν αἱ ΘΒ , ΗΒ , ΗΛ , ΗΑ : | ||
ΒΓ ΓΑ περιφερειῶν , καὶ ἔστω τὸ Δ , καὶ ἐπεζεύχθωσαν αἱ ΔΑ ΔΒ ΔΓ . ἐπεὶ οὖν στερεὰ γωνία |
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , | ||
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , |
καὶ ἀπὸ τοῦ Ρ ἐπὶ μὲν τὰς ΘΟ , ΚΠ κάθετοι ἤχθωσαν αἱ ΡΝ , ΡΞ , ἐπὶ μὲν τὴν | ||
, καὶ ἀπὸ τοῦ Ε ἐπὶ τὰς ΑΒ , ΓΔ κάθετοι ἤχθωσαν αἱ ΕΖ , ΕΗ , καὶ ἐπεζεύχθωσαν αἱ |
καὶ αἱ ἑξῆς κάθετοι τῶν καθ ' αὑτὰς διαμέτρων εὑρεθήσονται πολλαπλάσιαι κατὰ τοὺς ἑξῆς μονάδι ἀλλήλων ὑπερέχοντας ἀριθμούς , καὶ | ||
Ο κύκλου , καὶ αἱ ἑξῆς κάθετοι τῶν οἰκείων διαμέτρων πολλαπλάσιαι κατὰ τοὺς ἑξῆς μονάδι ἀλλήλων ὑπερέχοντας ἀριθμούς . Ἤχθω |
κύκλος ὁ ΛΕΝ . Ἐπεὶ οὖν ἐν σφαίρᾳ δύο κύκλοι ἐφάπτονται ἀλλήλων ὅ τε ΑΕΒ καὶ ὁ ΓΕΔ , διὰ | ||
τὸ Ζ , ἀλλὰ κατὰ τὸ Η . ἐπεὶ οὖν ἐφάπτονται αἱ ΒΔ , ΔΑ , καὶ ἐπὶ τὰς ἁφάς |
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε | ||
ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται . |
γραφεισῶν περιφερειῶν αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι περιέξουσι τὴν λείπουσαν ὁμοίως εἰς τὰς δύο ὀρθὰς τῆς | ||
καὶ ἡ ὑπὸ ΓΗΔ ὀρθή . Τῶν αὐτῶν ὄντων αἱ ἐπιζευγνύμεναι ἴσας ποιοῦσι γωνίας πρὸς ταῖς ἐφαπτομέναις . τῶν γὰρ |
τοῦ ἄρα δʹ ἄστρου ἐστὶν ἡ ἑῴα ἀληθινὴ ἐπιτολή : ὕστεραι δέ εἰσιν αἱ φαινόμεναι τῶν ἀληθινῶν . Ἔστω δὴ | ||
τῷ τὴν ἐαρινὴν ἰσημερίαν περιέχοντι τῶν εἰρημένων ἡμισφαιρίων ἀπολαμβανομένων αἱ ὕστεραι κατὰ πλάτος πρὸς τὸν ἰσημερινὸν σχέσεις βορειότεραι πᾶσαι τῶν |
ΗΘ εὐθεῖαι οὐδὲ ἐπὶ τὰ Ε , Η μέρη ἐκβαλλόμεναι συμπεσοῦνται . αἱ δὲ ἐπὶ μηδέτερα τὰ μέρη συμπίπτουσαι παράλληλοί | ||
ἀγομένη ΗΘ ἴσην ἀποτέμνει τῇ ζητουμένῃ τὴν ΘΒ . [ συμπεσοῦνται γὰρ αἱ ΓΔ ΒΖ ὡς ἐπὶ τὸ Η ἠγμέναι |
ἐπιπαρουσίας ἐπιχρησιμεύουσιν οἵδε : πάντα τὰ κέντρα καὶ αἱ τούτων ἐπαναφοραὶ καὶ τὸ ἕκτον ἀπὸ ὡροσκόπου , προκεκριμένου μέντοι γε | ||
τι καὶ μὴ ἀκμαῖον εἶναι μηδὲ λαμπρόν . αἱ μέντοι ἐπαναφοραὶ εἰ κατὰ κόμμα γίνοιντο , γοργὸν ποιοῦσι τὸν λόγον |
γὰρ μεγίστων ἀποστάσεων τηρήσεις , ἐφ ' ὧν αἱ ἑῷοι πάροδοι ταῖς ἑσπερίοις ἴσον ἀπὸ τῆς ἡλιακῆς μέσης παρόδου , | ||
. θʹ . πῶς ἀπὸ τῶν περιοδικῶν κινήσεων αἱ ἀκριβεῖς πάροδοι γραμμικῶς λαμβάνονται . ιʹ . πραγματεία τῆς τῶν ἀνωμαλιῶν |
γὰρ αἱ ΑΒ , ΒΓ , ΓΑ καὶ ταύταις παραπλησίως λαμβανόμεναι ἀδιαφοροῦσιν εὐθειῶν . καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΒΓ | ||
τῶν ὅρων ὁ δὲ ἐν μέρει , ὅσαι ἐξ ὑπαρχουσῶν λαμβανόμεναι προτάσεων συζυγίαι ἐν τῷ τρίτῳ σχήματι συλλογιστικὰς ἐποίουν συμπλοκάς |
ἥβη καὶ γένειον ψιλά : εἰ δὲ καὶ ἐπιμίμνοιεν παῦραι τρίχεϲ , ἀπρεπέϲτεραι τῶν ἀποιχομένων . δέρμα τῆϲ κεφαλῆϲ κατερρωγὸϲ | ||
τε βλαβήϲεται πρὸϲ ἁπάντων τῶν ἔξωθεν . τοῖϲ τοιούτοιϲ αἱ τρίχεϲ τῆϲ κεφαλῆϲ βρέφεϲι μὲν οὖϲιν ὑπόπυρροι , παιϲὶ δὲ |
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ | ||
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο |
ὑπὸ ΖΗΘ , ἐκτὸς τοῦ Η , ὡς ἔχουσιν αἱ καταγραφαί . ἐπεὶ οὖν τὸ δὶς ὑπὸ ΡΗΘ ἢ ΡΗΖ | ||
͵Ϛχκʹ καὶ ὁ τῶν Μιγ ͵εσμʹ : ὡς ἔχουσιν αἱ καταγραφαί . Ἐπὶ δὲ τῶν ἀπύκνων γενῶν ἀκολούθου τοῖς προδιωρισμένοις |
. ἐὰν τὰ στελέχη τῶν ἀμπέλων κισσῷ δασεῖ περιδήσωμεν , εὑρεθήσονται μετ ' ὀλίγον οὐ μόνον οἱ μύρμηκες , ἀλλὰ | ||
γὰρ οὐδέν ἐστι παρὰ τὰ γένη καὶ τὰ εἴδη , εὑρεθήσονται ἐκ τοῦ μηδαμῇ μηδαμῶς ὄντος προελθοῦσαι αἱ διαφοραὶ ἐν |
, τὰς δὲ ἰσχυροτέρας δευτέρας : εἰ γὰρ αἱ ἰσχυρότεραι πρότεραι τεθεῖεν , οὐκέτι χώραν ἕξουσιν αἱ ἀσθενέστεραι . εἰσάγονται | ||
τῶν ἐξ αὐτῶν προϊουσῶν προχειρίσεων ἤτοι ἐνεργειῶν : καὶ φύσει πρότεραι , εἴπερ αἴτιαι , ὡς δὲ πρὸς ἡμᾶς , |
συμπεσεῖται ἑκατέρᾳ τῶν ΑΒ , ΓΔ ἐκτὸς τῆς τομῆς . κατήχθωσαν γὰρ ἀπὸ τῶν Ε , Ζ τεταγμένως ἐπὶ μὲν | ||
ὅτι ἡ ΕΖ συμπεσεῖται ἑκατέρᾳ τῶν ΑΒ , ΓΔ . κατήχθωσαν ἀπὸ τοῦ Η ἐπὶ τὰς ΑΒ , ΓΔ τεταγμένως |
ἔσται ἅπαντα κατὰ τὰ αὐτά . Κείσθωσαν τῇ ΕΗ περιφερείᾳ ἴσαι περιφέρειαι αἱ ΗΘ , ΘΚ , ΚΛ , ἡ | ||
, ΗΘ , ΘΚ ἐπὶ τῆς τοῦ λοξοῦ κύκλου περιφερείας ἴσαι ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων |
ὕψεσιν , ἴσοι εἰσὶν ἐκεῖνοι . Ἔστωσαν ἴσοι κῶνοι καὶ κύλινδροι , ὧν βάσεις μὲν οἱ ΑΒΓΔ , ΕΖΗΘ κύκλοι | ||
ΟΠΡΣ , ΤΥΦΧ ἴσοι ὄντες τοῖς ΑΒΓΔ , καὶ νενοήσθωσαν κύλινδροι οἱ ΠΡ , ΡΒ , ΔΤ , ΤΧ . |
. Συνεχῆ μὲν οὖν τὰ φιλήματα καὶ ὥσπερ συμπεφυκότων αἱ περιβολαί : καὶ τὰ φιλήματα δειλὰ ἦν καὶ αἱ περιβολαὶ | ||
τοῦ ἵνα : τί δ ' : ἑπτάπυργοι πῶς ἔχουσι περιβολαί : ἀντὶ τοῦ ἑπτάπυλοι . πύργος γὰρ ἡ ἀσφάλεια |
, μίαν δὲ αὐτῶν ἴσην τῇ Ε . Ὅσον γὰρ ὑπερέχουσιν αἱ ΑΒ ΒΓ τῆς Ε , ἔστω ἡ Ζ | ||
: παροιμία ἐπὶ τῶν τολμώντων τὶ λέγειν ἐπὶ τοῖς τοσοῦτον ὑπερέχουσιν , ὅσον οἱ θεοὶ τῶν ἀνθρώπων . Καὶ τόπος |
θαλασσίας . ἦν δὲ λέβης χαλκοῦς , εἰς ὃν αἱ ψῆφοι κατήγοντο : καὶ κυλιόμεναι ἦχον ἀπετέλουν ἐοικότα βροντῇ . | ||
, καθαιροῦσι τὸ κρέσσον : ἐν ἀναισθήτοισι γάρ εἰσιν αἱ ψῆφοι : οὔτε δ ' οἱ πάσχοντες συνομολογέειν ἐθέλουσιν , |
χρὴ τὰς φλέβας ἀποκαίειν τὰς πιεζούσας τὰς ὄψιας , αἳ σφύζουσιν αἰεὶ καὶ μεταξὺ τοῦ τε ὠτὸς καὶ τοῦ κροτάφου | ||
κροτάφων καὶ τῶν ὤτων , αἳ πιέζουσι τὰς ὄψεις καὶ σφύζουσιν αἰεί : μοῦναι γὰρ αὗται οὐκ ἄρδουσι τῶν φλεβῶν |
δευτέρου μικρότερον , λόγον τῶν αὐλῶν τῶν συρίγγων ἐπέχοντα . ἑλίτροχοι ] περὶ ἃς ἑλίσσονται οἱ τροχοί . ἱππικῶν ] | ||
. σύριγγες ἔκλαγξαν ] αἱ ὀπαὶ τοῦ ἄξονος ἤχησαν . ἑλίτροχοι ] αἱ συνελοῦσαι τοὺς τροχοὺς δι ' ὧν τὸ |
τὸν μέγιστον πόδα τοῦ ἐλαχίστου πενταπλάσιον . Διαφέρουσι δὲ οἱ μείζονες πόδες τῶν ἐλαττόνων ἐν τῷ αὐτῷ γένει ἀγωγῇ . | ||
δέκα , οἱ δὲ καὶ τριάκοντα , ἱστοροῦνται δὲ καὶ μείζονες . φολίσι τε κέχρηνται καθ ' ὅλον τὸ σῶμα |
' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
' αὐτοῦ τὸ περὶ ταῦτα ἱλαρὸν αἱ ὑπ ' αὐτοῦ γραφεῖσαι σατυρικαὶ κωμῳδίαι τῇ πατρίῳ φωνῇ . : Νικόλαος δ | ||
' αὐτοῦ τὸ περὶ ταῦτα ἱλαρὸν αἱ ὑπ ' αὐτοῦ γραφεῖσαι σατυρικαὶ κωμῳδίαι τῇ πατρίῳ φωνῇ . Τιρυνθίους δέ φησι |
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις | ||
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων |
τὴν κόμην , ὅπως ὀρθοφυῆ τ ' ᾖ καὶ αἱ ῥάβδοι μὴ ἀπαρτῶνται . μετὰ δὲ ταῦτα περιτέμνουσιν , ὁπόταν | ||
λαγαραί * στίλβουσι : λάμπουσι * διαυγέες : καθαραί * ῥάβδοι : γραμμαί ἀίδηλον ἤτοι δήξαντος ἀπροσδοκήτως φρίκη ἔδραμεν ἐπὶ |
σπόνδυλοι ἐννεάδεσμοι : αἱ ἁρμογαὶ τῶν σπονδύλων τοῦ οὐραίου ἐννέα ἐννεάδεσμοι : ἀντὶ τοῦ πολύδεσμοι : οὐ γὰρ ὁρᾶται πλείους | ||
οἱ κέντροιο κοπίς , τοιῷ δ ' ἐπὶ κέντρῳ σφόνδυλοι ἐννεάδεσμοι ὑπερτείνουσι κεραίης . ἄλλος δ ' ἐμπέλιοςφορέει δ ' |
τὸ δὲ μέλαν , τοσαῦται ἔσονται διαφοραὶ ὅσαι καὶ αἱ τομαὶ τοῦ πράγματος ὑπάρχουσιν . ὥστε φανερὸν ὅτι ὁρισμὸς οὐδέν | ||
τῆς ἐκ τοῦ κέντρου τετραγώνῳ . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι τομαὶ αἱ Α , Β , Γ , Δ , |
ἐπιψαύωσι , καθ ' ἕτερον σημεῖον οὐ συμπεσοῦνται . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΓΔ καὶ ἕτεραι αἱ ΑΓ , | ||
μέν εἰσιν ὑπερτελεῖς , οἱ δὲ ἐλλιπεῖς , καθάπερ ἀκρότητες ἀντικείμεναι ἀλλήλαις , οἱ δὲ ἀνὰ μέσον ἀμφοτέρων , οἳ |
τὴν πρώτην ἄκανθαν ὀνομαζομένην καλοῦνται κυνόλοφα , κέρναι δὲ αἱ πλάγιοι δύο : αἱ δὲ λοιπαὶ κάτω προνεύουσιν . τῶν | ||
οὐσίαν τοῦ πράγματος ἀλλ ' ἐκ πλαγίου : ὅθεν καὶ πλάγιοι λέγονται , ὡς ἐκ πλαγίου σημαίνουσαι τὴν οὐσίαν τοῦ |
κῶνος ὀρθός : ἴση γὰρ ἡ ΖΒ τῇ ΖΞ . ἐκβεβλήσθωσαν δὴ αἱ ΒΖ , ΖΞ , ΜΖ , καὶ | ||
τὴν ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΕΖ καὶ ἐκβεβλήσθωσαν , καὶ εἰλήφθω τῶν ΔΕΖ μέση ἀνάλογον ἡ ΕΘ |
δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ | ||
μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ |
, καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον | ||
διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ |
πίτταν διαπέμπων εἰς Ἐπίδαυρον . καλοῦνται δὲ ἀσκώματα καὶ οἱ γνάθοι ἀπὸ μεταφορᾶς τῶν χαλκευτικῶν ἀσκωμάτων , ἅ εἰσι φῦσαι | ||
πίνειν λευκόν . Τῇ Ἀσπασίου ὀδόντος δεινὸν ἄλγημα : καὶ γνάθοι ἐπήρθησαν : καστόριον δὲ καὶ πέπερι διακλυζομένη , ὠφελέετο |
. Πρὸς γὰρ τοῦτο τὸ ἓν κλίμα καὶ αἱ κρικωταὶ σφαῖραι κατασκευάζονται καὶ αἱ στερεαί , τῶν ἀρκτικῶν μόνων μεταπιπτόντων | ||
μὴ , ἐπίδεσις μὲν οὐκ ἐπιτήδειον , διάτασις δὲ , σφαῖραι ποιηθεῖσαι , οἷαι πέδαις , ἡ μὲν παρὰ σφυρὸν |
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
ἀπὸ τῶν Τ , Φ ἐπὶ τὴν κορυφὴν τὴν Δ ἐπιζευχθῶσιν εὐθεῖαι ὡς αἱ ΤΔ , ΦΔ , τὸ διὰ | ||
ἐμπίπτωσιν εὐθεῖαί τινες αἱ ΑΔ ΑΖ ΒΓ ΒΖ , καὶ ἐπιζευχθῶσιν αἱ ΕΔ ΕΓ , [ ὅτι ] γίνεται εὐθεῖα |
τοῦ αἵματοϲ # δ καὶ ϲυνέψει , ἕωϲ διαλυθῶϲιν αἱ ϲάρκεϲ τοῦ ἰχθύοϲ ἢ φρυγῶϲιν , εἶτα ϲειρώϲαϲ ἐπίβαλλε τῷ | ||
τοῦ νοϲήματοϲ : ξηραὶ δὲ καὶ πυκναὶ τοῖϲ μελαγχολῶϲι αἱ ϲάρκεϲ . ἄλειμμα λιπαρὸν ἅμα τρίψιοϲ εὐαφοῦϲ , πολλῷ τῷ |
ἢ ὧν ὁ ἐξ ἀρχῆς ἐφήπτετο , ἔτι δὲ αἱ ἁφαὶ ὦσιν ἐπὶ τοῦ ἐξ ἀρχῆς μεγίστου κύκλου , ἀπὸ | ||
ἢ ὧν ὁ ἐξ ἀρχῆς ἐφήπτετο , ἔτι δὲ αἱ ἁφαὶ ὦσιν ἐπὶ τοῦ ἐξ ἀρχῆς μεγίστου κύκλου , ἀπὸ |
. τούτων δ ' αὐτῶν φησι τῶν ἀρετῶν αἱ τιμιώτεραι μονιμώτεραι , ὡς οἰκεῖον ὂν τῶν ἀρετῶν τὸ μόνιμον καὶ | ||
δὲ τελευταὶ τῶν οὕτως ἐπιδουμένων ἐπὶ τὸ μέτωπον ἄγονται , μονιμώτεραι : τοῦτο γὰρ τὸ χωρίον τοῦ ἰνίου μονιμώτερον . |
: ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη | ||
ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ |
ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι | ||
τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν |
: καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : | ||
: καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : |
δὲ τὸ Β , ὄψεις δὲ αἱ ΒΑ , ΒΓ ἀνακλώμεναι ἐπὶ τὰ Ε , Δ , ὁρώμενον δὲ ἔστω | ||
δὲ τὸ Β , ὄψεις δὲ αἱ ΒΓ , ΒΔ ἀνακλώμεναι ἐπὶ τὰ Ε , Κ . οὐκοῦν φαίνεται ἐκβληθεισῶν |
. πρόλογοι οἱ μείζονες , οἷον τριπλάσιος , ὑπόλογοι οἱ ἐλάσσονες , οἷον τριτημόριος . παρ ' οὐδὲν ἀντὶ τοῦ | ||
οὐδεμίαν οὐδ ' οὗτοι , ὅτι ἀριθμῷ τε καὶ ἰσχύι ἐλάσσονες ἐμοὶ δοκεῖν ἢ κατὰ πόλεως ἦσαν οἰκισμόν . μετὰ |
διαμνημονεύονται , οἱ δὲ μακρὰν τοῖς τόποις διεστῶτες τοῖς πλεῖστον ἀπέχουσιν ὡς πλησίον παρεστῶσι διὰ τῶν γεγραμμένων ὁμιλοῦσι : ταῖς | ||
τῇ ΚΛ , ἐπεὶ καὶ τῇ ΘΚ : ἴσον γὰρ ἀπέχουσιν ἀπὸ τοῦ κέντρου : καί ἐστιν ἑκατέρα τῶν ΘΚ |
, διὰ δὲ τοῦ Κ τῇ ΑΒ παράλληλος ἤχθω ἡ ΚΝ , καὶ ἐκβεβλήσθω ἡ ΔΘ ἐπὶ τὸ Ν . | ||
τὸ Α ὄμμα ἐπὶ τὸ Ν , καὶ περὶ τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ |
τῆς γενέσεως πῆξιν ὁπόταν ἔχωσι τὰ χρονικὰ ἢ καὶ αἱ ἀναφοραὶ τῶν ζῳδίων κατὰ τὸν αὐτὸν χρόνον συμπληρούμενοι τύχοιεν . | ||
εἰσὶν αἱ τῶν ηζ ζε εδ δγ γβ βα περιφερειῶν ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλοις κείμενοι , ἀρχόμενοι |
ἐν τῇ θαλάσσῃ νῆσοι πετρώδεις οὐ πάνυ μεγάλαι δύο , ἀπέχουσαι ὀλίγον τῆς ἠπείρου . Ὁμοῦ ἀπὸ τοῦ στομίου τῆς | ||
αἱ ΘΚ , ΛΚ , ἐν ἴσῳ δὲ αἱ ἴσον ἀπέχουσαι τοῦ ἰσημερινοῦ καὶ δύνουσι καὶ ἀνατέλλουσιν . . . |
μετεχάραττεν ἀφανίζων τὰ ἐνσημανθέντα πρότερον . αἰεὶ γὰρ ἐπιτεθειμέναι δεύτεραι σφραγῖδες τοὺς τῶν προτέρων τύπους διαφθείρουσιν . ὁ δέ γε | ||
δύναται διαιρεῖν καὶ ῥυθμίζειν , ἐξ ἧς δ ' αἱ σφραγῖδες οὔ . καὶ πάλιν ὁ λίθος ᾧ γλύφουσι τὰς |
σμικραὶ σφαῖραι καὶ σκληραὶ , οἷαι ἐκ τῶν πολλῶν σκυτέων ῥάπτονται : ἢν γὰρ μή τι τοιοῦτον ἐγκέηται , οὐ | ||
εἰς τὸ ἴρινον ἢ κύπρινον καθήσομεν , ἢ δακτυλήθρας : ῥάπτονται δ ' αἱ δακτυλῆθραι ἐκ δέρματος Καρχη - δονίου |
ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
διὰ τὸ ἕκαστον τῶν ⃞ων , ἐάν τε προσλάβῃ Μο ͵γτξ , ἐάν τε λείψῃ , ποιεῖν ⃞ον : ἀλλ | ||
τοὺς ἐπάνω ⃞ους . λοιπὸν δεῖ τοὺς τρεῖς ἰσῶσαι ΔΥ ͵γτξ , καὶ πάντα , ἵνα ἓν μόριον γένηται , |
πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα | ||
Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ |
συμπληροῦντα τὴν ἀρίστην μαῖαν εἰπεῖν ἀναγκαῖον , ἵνα αἱ μὲν ἄρισται γινώσκωσιν ἑαυτάς , αἱ δὲ ἀρτιμαθεῖς ὡς εἰς ἀρχετύπους | ||
δὲ ἄλλαι αἱ ἐς τὰ κάτω τρεπόμεναι πᾶσαι ἀγαθαί : ἄρισται δὲ καὶ ἐνταῦθα πολλῷ αἱ αἱματηρόταται . Ὁκόσοι δὲ |
δεῖξαι . παρακολουθεῖ δ ' αὐτόθεν , ὅτι , κἂν δοθῶσιν ἥ τε ΑΓ ὅλη περιφέρεια καὶ ὁ λόγος ὁ | ||
Ϛʹ . ἐὰν δ ' ἐν τριπλασίῳ λόγῳ πρὸς ἀλλήλους δοθῶσιν οἱ ἄκροι , οἷον ὁ ιηʹ καὶ ὁ Ϛʹ |
πρηνὴς ἐπὶ τοῦ βάθρου , ἵνα αἱ τῶν βρόχων ἀρχαὶ κατάλληλοι γίνοιντο τοῖς ἄξοσιν , περιτιθέσθωσαν δὲ τῇ ῥάχει ἤτοι | ||
τοῦ ἄξονος μὴ προστρίβωνται ἐκθέτοις οὔσαις ταῖς γωνίαις , ἀλλὰ κατάλληλοι ἐπ ' αὐτὸν ἄγωνται . τοιοῦτος καὶ ὁ Ἡρόδοτος |
περίιμεν ἔχοντες ὥσπερ οἱ ἐν ταῖς στήλαις καταγραφὴν ἐκτετυπωμένοι , διαπεπρισμένοι κατὰ τὰς ῥῖνας , γεγονότες ὥσπερ λίσπαι . ἀλλὰ | ||
Λίσπαι . οἱ δίχα πεπρισμένοι . Λίσπαι , οἱ μέσοι διαπεπρισμένοι ἀστράγαλοι καὶ ἐκτετριμμένοι . Λόγον λαμβάνειν Πλάτων Πολιτείας πρώτῳ |
τῆς ΖΘ τετράγωνον , οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον , ἀλλὰ μὴν καὶ ὡς τὸ ἀπὸ τῆς | ||
ΕΖΗΘ πυραμίς : καὶ ἡ ΑΒΓΔ ἄρα πυραμὶς πρὸς τὴν ΕΖΗΘ πυραμίδα τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν |
συνήθειαν λέξεων εἴδησις . μένουσι δὲ καὶ τούτοις αἱ αὐταὶ ἀπορίαι : οὔτε γὰρ πάντων τῶν παρὰ ποιηταῖς λεγομένων δύναται | ||
τὰ παρ ' ἐμοῦ , μετὰ ταῦτα ἴσως ἄλλαι σε ἀπορίαι λήψονται . πέμψεις οὖν αὖθις , ἂν ὀρθῶς βουλεύῃ |
οὐκ οἶδ ' ἥντιν ' ἂν εἴποιμεν : δούλῳ δὲ πληγαὶ καὶ ὁ τοῦ σώματος αἰκισμός , ἃ μήτε γένοιτο | ||
ὀπισθότονος ῥηθείη ἄν , εἰς τοὔπισθεν τοῦ σπασμοῦ ῥέποντος . πληγαὶ δὲ τούτων κατὰ τοῦ νωτιαίου τὰ αἴτια , καὶ |
τρεῖς εὐθείας τὰς ΒΝ , ΒΓ , ΒΖ δύο εὐθεῖαι διηγμέναι εἰσὶν αἱ ΔΕ , ΔΝ , ἔστιν , ὡς | ||
δοθεῖσα τῇ θέσει καὶ τῷ μεγέθει ἡ ΓΠ , καὶ διηγμέναι αἱ ΠΖΚ ΓΖΘ , ὥστε παράλληλον εἶναι τῇ ΓΠ |
, τὸ αὐτὸ τοῖς ῥήμασιν ἀναδέχεσθαι . . Αἱ γοῦν πλάγιαι πτώσεις ἀποστᾶσαι τῆς συνόδου τῶν ῥημάτων , τουτέστιν τὸ | ||
τοῦ ὑποθήματος οὐ διὰ πάσης πέφρακται , ἀλλά εἰσιν αἱ πλάγιαι τοῦ σιδήρου ζῶναι ὥσπερ ἐν κλίμακι οἱ ἀναβασμοί : |
ἄνευ τῆς ὕλης ἕκαστον . διὸ καὶ ἀπελθόντων τῶν αἰσθητῶν ἔνεισιν αἰσθήσεις καὶ φαντασίαι , τὰ τῶν αἰσθητῶν δηλαδὴ ἐγκαταλείμματα | ||
. Τῷ οὐκ εἰδότι ἄρα περὶ ὧν ἂν μὴ εἰδῇ ἔνεισιν ἀληθεῖς δόξαι περὶ τούτων ὧν οὐκ οἶδε ; Φαίνεται |
ταῖς γυναιξὶ τοὺς ἄνδρας : πρὸς γὰρ τῷ ἀσχήμονι καὶ ἀπόρροιαί τινες ἐκ τῶν γυναικείων σωμάτων καὶ περιττώματα χωροῦσιν , | ||
, οὐ γὰρ τὰς Ἡσιόδου καλουμένας Ἠοίας ἔσπευδον γράφειν , ἀπόρροιαί τινες , ὥσπερ ἀστέρων περιελείφθησαν , καὶ εἰς φιλοσοφούντων |
εἰσὶν οἱ Β , Γ , Δ τῷ πλήθει τοσοῦτοι εἰλήφθωσαν ἀπὸ τοῦ Ε οἱ Ε , ΘΚ , Λ | ||
ὡς ἀρχὴ καὶ μὴ οὖσα ἀριθμός , οὐκοῦν ἀπὸ τριάδος εἰλήφθωσαν : γ , ε , ζ , θ , |
φθερσιγενεῖς ] αἱ ἐπὶ τῷ φθείρειν γεγονυῖαι . . αἱ φθείρουσαι τὸ γένος ἡμῶν . . κῆρες ] θανατηφόροι . | ||
φθερσειγενεῖς ] αἱ φθείρουσαι τὰ γένη . φθερσειγενεῖς ] αἱ φθείρουσαι τὸ γένος . φθερσειγενεῖς ] αἱ τὰ γένη φθείρουσαι |
ἰσοσκελῆ γραμμὴν τὴν ἀκτῖνα βαλών : πᾶσαι δὲ αἱ τρίγωνοι δορυφορίαι ἀμείνονες τῶν τετραγώνων καὶ διαμέτρων , αἱ δὲ ἑξάγωνοι | ||
. Τότε δὲ αἱ πρὸς τὸν Ἥλιον γινόμεναι τῶν ἀστέρων δορυφορίαι ἐνεργεῖς καὶ ἰσχυρότεραι ὑπάρχουσιν , ὅταν ἐν τῷ αὐτῷ |
μὴ ϲτύφειν τὴν τίτανον θᾶττον ἀποπίπτουϲιν αἱ ἀπ ' αὐτῶν ἐϲχάραι . κάλλιον δὲ μένειν αὐτάϲ : φθάνει γὰρ ὑποϲαρκοῦϲθαι | ||
ἵνα ἐϲχαρωθῇ , εἶτα μετὰ ῥοδίνου , ἵνα ἐκπέϲωϲιν αἱ ἐϲχάραι : φυλαϲϲέϲθω δὲ ἀκατούλωτα τὰ μέρη ἐπὶ ἡμέραϲ μβ |
σχήμασιν . Ὅταν δὲ ἐς ὑποδήματος λόγον ἴῃ , ἀρβύλαι ἐπιτηδειόταται αἱ πηλοπάτιδες καλεόμεναι : τοῦτο γὰρ ὑποδημάτων ἥκιστα κρατέεται | ||
τὸ κοῖλον τῆς μασχάλης ἐνθεῖναι στρογγύλον τι ἐναρμόσον | : ἐπιτηδειόταται δὲ πάνυ αἱ μικκαὶ σφαῖραι αἱ σκληραί , οἷον |
] ὑπεστησάμην ὁρίζοντα τοιοῦτον μὴ μειζόνων ἐφαπτόμενον ἤπερ εἰσὶν οἱ τροπικοὶ κύκλοι , φανερὸν οὖν ὅτι διὰ τὸ προαποδεδειγμένον παρθένος | ||
θερινός , τοῖς δὲ ὑπὸ τῷ ἰσημερινῷ οἰκοῦσιν οἱ δύο τροπικοὶ χειμερινοὶ τυγχάνουσιν , ἐπειδὴ μακρότατα ἀφίσταται αὐτῶν ὁ ἥλιος |
ἀναμένειν δεῖ καὶ ὅταν πλεονάϲῃ τὸ ὑγρὸν καὶ διαϲτῶϲιν αἱ ῥαφαὶ καὶ φανερὸν γένηται τὸ ὑγρόν , διαιρεῖν τὸν κορυφούμενον | ||
εʹ Ἐπιδημιῶν φησιν : ἔκλεψαν δέ μου τὴν γνώμην αἱ ῥαφαὶ τοῦ βέλεος ἐν ἑαυταῖς τὸ σίνος ἔχουσαι . καμπυλεύεσθαι |
ζώνας , δύο μὲν ἴσας ἀλλήλαις , αἳ πρὸς τοῖς πόλοις εἰσὶ κατεψυγμέναι καὶ διὰ τοῦτ ' ἀοίκητοι , δύο | ||
τῶν γραφομένων δηλονότι τοῖς ταύτης τῆς πάντα ὁμαλῶς περιαγούσης σφαίρας πόλοις , ὧν ὁ μέγιστος κύκλος ἰσημερινὸς καλεῖται διὰ τὸ |
αἳ πρὸς τοῖς πόλοις εἰσὶ κατεψυγμέναι καὶ διὰ τοῦτ ' ἀοίκητοι , δύο δὲ τὰς μεθορίους τούτων τε καὶ τῆς | ||
ἡ μεταξὺ χειμερινοῦ τροπικοῦ μέχρις ἀνταρκτικοῦ , αἱ δὲ λοιπαὶ ἀοίκητοι δύο μὲν διὰ ψυχρότητα , αἱ ὑπὸ ἀρκτικὸν καὶ |
καὶ [ Γαλλίαν ] Ναρβωνησίαν . Ἀλλ ' αἱ μὲν προειρημέναι τρεῖς ἐπαρχίαι προσοικοῦσι τῷ ὠκεανῷ πρὸς τὰς ἄρκτους ἐστραμμέναι | ||
παρ ' ἑκάτερα δὲ τοῦ ποταμοῦ αἱ διατριβαί εἰσιν αἱ προειρημέναι καὶ αἱ ἀνάπαυλαι . διὰ μέσων δὲ τῶν Τεμπῶν |
τῆς γῆς κατὰ σύμπτωσιν τῶν εὐθειῶν , αἳ ἀπὸ τῶν ὡρολογίων ἤχθησαν ἐπὶ τὸ κέντρον τῆς γῆς , γινομένη , | ||
ἔχοντα παραλλαγὴν πρὸς τὰς χειμερινὰς τροπάς , καὶ αἱ τῶν ὡρολογίων καταγραφαὶ ἐκδήλους ποιοῦσι τὰς κατὰ ἀλήθειαν γινομένας τροπάς , |
δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν | ||
διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου . |
καὶ πρὸ τῆς ψυχῆς , δῆλον ὅτι αἱ τῆς ψυχῆς στιγμαὶ ἐν τῷ αὐτῷ ἔσονται τόπῳ ταῖς ἐν τῷ σώματι | ||
τῷ μεγέθει πηχυαῖα , ἐκ πάχους ἐπὶ λεπτὸν ἠγμένη : στιγμαὶ δὲ καθ ' ὅλον τὸ σῶμα εἰσὶ κιρραὶ καὶ |
' αὐτῶν ἐξικνεῖσθαι : αἱ γὰρ τῶν βαρβάρων λόγχαι παχέαι φαινόμεναι ἀγχέμαχοι μέν , ἄφοβοι δὲ ἐς τὸ ἐσακοντίζεσθαι ἦσαν | ||
: αἱ μὲν γὰρ αὐτῶν ἀληθιναὶ λέγονται , αἱ δὲ φαινόμεναι . Ἀληθιναὶ μέν , ὅταν ἅμα κατὰ ἀλήθειαν ἐπὶ |
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ | ||
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν |
τὸ σώζειν . σωστικοὶ γὰρ τῆς εἴσω περιφερσίας εἰσὶν οἱ κανθοί . τὸ δὲ χνοαὶ βαρύτονον . τὰ εἰς η | ||
τοῖς βλεφάροις περίδρομος , ὥσπερ τῶν βλεφάρων τὰ ἑκατέρωθεν ἄκρα κανθοί , ὧν αἱ ῥίζαι ἐγκανθίδες . καὶ οἱ μὲν |
ἡ γὰρ χύσις αὕτη τάσις ἐστίν : ἀκτῖνες γοῦν αἱ αὐγαὶ αὐτοῦ ἀπὸ τοῦ ἐκτείνεσθαι λέγονται . ὁποῖον δέ τι | ||
οὐκ ἀκρατῶς , οὐδὲ ἐκφύλως , ἀλλ ' ὥσπερ ἀκτίνων αὐγαὶ τὰ Ἀττικὰ ὀνόματα διαφαίνεται τοῦ λόγου . καὶ τὸ |
ἀφ ' ὧν ἐκεῖνοι ταχέως ἀπῆλθον : ἐμοὶ δὲ ἐνέβαλον ἀλγηδόνες , αἳ τῆς κλίνης ἐξανιστᾶσαι περιτρέχειν ἠνάγκαζον . ταυτὶ | ||
συμβεβηκότα χρόνον . τά τε πάθη καὶ αἱ ἀπάθειαι ἤτοι ἀλγηδόνες ἢ ἡδοναὶ ἐτύγχανον , διὰ δὲ τοῦτο οὐκ οὐσίαι |
γήμαντος ἀδελφὸς δαήρ . αἱ δ ' ἀδελφοῖς δύο συνοικοῦσαι εἰνάτερες , οἱ δ ' ἀδελφὰς γήμαντες ὁμόγαμβροι ἢ σύγγαμβροι | ||
ἀδελφή : δαὴρ δὲ , ὁ τοῦ ἀνδρὸς ἀδελφός : εἰνάτερες δὲ , αἱ νῦν παρὰ τῇ συνηθείᾳ σύνυμφοι : |