καθ ' ἑκάτερον : οὔτε γὰρ πάντας ἀριθμοὺς οἱ ἄλλοι μοναδικοὺς εἶναί φασιν , ἀλλὰ μόνον τὸν μαθηματικόν , οὔτε | ||
ποτὲ λέγωμεν ἢ κύβους τῶν φυσικῶν ἀριθμῶν ἐνίους , οὐ μοναδικοὺς αὐτοὺς ποιοῦμεν , ὥσπερ τὸν θ καὶ τὸν κζ |
ἐπειδὰν δὲ τὰ δέκα ἔτη διατελέσωσιν , ἐξέρχονται εἰς τοὺς τελείους ἄνδρας . ἀφ ' οὗ δ ' ἂν ἐξέλθωσι | ||
ἐκλέγου δὲ τὰ ἀπὸ μιᾶς ῥίζης ἔχοντα τοὺς ἰδίους κλάδους τελείους . Ἀναγαλλίς : διττόν ἐστιν εἶδος αὐτῆς διαφέρον ἄνθει |
ἔφη : Κοινῶς ποιητὰς ἔθος ἐστὶν καλεῖν , καὶ τοὺς περιττοὺς τῇ φύσει καὶ τοὺς κακούς : ἔδει δὲ κρίνειν | ||
δὲ ὅτι καὶ ἡ τοῦ μαθηματικοῦ ἀριθμοῦ ἀρχὴ πάντας τοὺς περιττοὺς καὶ τοὺς ἀρτίους διπλασιάζουσα τὸν ἄρτιον ὑφίστησι : καὶ |
μὲν οὖν ἐπὶ μονάδα αἱ ἀφαιρέσεις περαιωθῶσι , πρώτους καὶ ἀσυνθέτους αὐτοὺς ἀποφαίνουσι πρὸς ἀλλήλους , ὅταν δὲ ἐπὶ ἕτερόν | ||
ψεύστας , διαβόλους , ἐπιόρκους , βαθυπονήρους , ἐπιβουλευτικούς , ἀσυνθέτους , ἀδεξιάστους , νοθευτάς , γυναικῶν διαφθορέας καὶ παίδων |
καὶ δυσεντερικούς . ] Μῆλα κυδώνια ἀριθμῷ δʹ . ῥοὰς ὁλοκλήρους ιʹ . οὖα ἀριθμῷ ηʹ . ὕδατος Ἰταλικοῦ ξ | ||
δὲ ἀκοαί τε καὶ ὄψεις , ἃς ἔχων μέν τις ὁλοκλήρους ἐγήγερται καὶ ἀνωρθίασται , στερόμενος δὲ αὐτῶν κλίνεται καὶ |
λεγόντων οἱ μὲν ἁπλᾶς ἔλεγον καὶ ὁμογενεῖς , οἱ δὲ συνθέτους καὶ ἀνομογενεῖς καὶ ἐναντίας , κατὰ δὲ τὸ ἐπικρατοῦν | ||
λόγῳ μεταλαμβάνειν τὰς τοιαύτας τῶν ἀντωνυμιῶν εἴς τε ἁπλᾶς καὶ συνθέτους , τὰ νῦν περιγραφομένης τῆς πολλῆς παραθέσεως ὑπὲρ τοῦ |
ἥδε . Τῶν μερῶν τοῦ λόγου ἃ μὲν μετασχηματίζεται εἰς ἀριθμοὺς καὶ πτώσεις , ὡς τὸ ὄνομα καὶ τὰ ἄλλα | ||
αὐτὰ ἄτοπα συμβαίνει καὶ εἴ τινες τῶν παρ ' ἡμῖν ἀριθμοὺς ὡς ἐπὶ τοῦ κροκοδείλου λαμβάνουσι τὴν ἑξηκοντάδα ὡς οἰκείαν |
καὶ τῇ ὑστεραίῃ ἱδρὼς ἐγένετο , καὶ τὰς ἄλλας τὰς ἀρτίους ἐγένετο αἰεί . Ἔτι δὲ ὁ πυρετὸς εἶχεν : | ||
ἐκθέσθαι δεῖ πάντας ἑξῆς ἀπὸ τριάδος , τοὺς δὲ ἀρτιάκις ἀρτίους αὐτοὺς ἐπὶ ἑαυτῶν καὶ γνώμονες ἀπὸ τετράδος τάξει , |
ὃς σύγκειται ἐκ δύο τετραγώνων , μεταδιελεῖν εἰς δύο ἑτέρους τετραγώνους . Ἔστω τὸν ιγ , συγκείμενον ἔκ τε τοῦ | ||
τρεῖς ἀριθμοὺς ὅπως ὁ ὑπὸ δύο ὁποιωνοῦν ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , |
, τοὺς δὲ λοιποὺς ἰάμβους ἔχοντες , τέσσαρες δὲ δύο τροχαίους , ἴσους δὲ ἰάμβους , ἤτοι κατὰ τὸ ἑξῆς | ||
ἐμπέσῃ . χαριεστέρα δ ' αὐτοῦ τομὴ ἡ εἰς τρεῖς τροχαίους : ἐπιδέχεται δὲ καὶ τὰς ἄλλας . Τὰ δ |
φύσιν , οἷον δὲ ὁρισμὸν αὐτοῦ ποιούντων , τὰς διαφορὰς ἐκθώμεθα . συγκεφαλαιούμενοι δὲ καὶ τούτων οἱ τρόποι εὐαρίθμητοι γίνονται | ||
τὴν τοῦ ὅρου ἐξήγησιν ἡμῖν ἰτέον . καὶ πρῶτον αὐτὸν ἐκθώμεθα , εἶτα δείξομεν ὅτι οὐδὲν οὔτε περισσὸν ἔχει οὔτε |
καὶ ποιοῦσι τὸ πρόβλημα . λα . Εὑρεῖν δύο ἀριθμοὺς ἴσους τετραγώνῳ , ὅπως ὁ ὑπ ' αὐτῶν , ἐάν | ||
ιϚ # ʂ ιϚ . βούλομαι τοὺς δύο λοιπὸν συντεθέντας ἴσους εἶναι Μο ιϚ . ΔΥ ἄρα ε Μο ιϚ |
Διὸς Τύχης ἐστὶν ἐκ παλαιοτάτου ναός , εἰ δὴ Παλαμήδης κύβους εὑρὼν ἀνέθηκεν ἐς τοῦτον τὸν ναόν . τὸ δὲ | ||
δ ' αὐτῇ οἱ κυβεύοντες καὶ πρὸς τὸ βάλλειν τοὺς κύβους , καὶ πρὸς τὸ συμβάλλειν τοὺς ὄρτυγας καὶ τοὺς |
διάνοιαν καὶ τοῖς ὀνόμασι διαφέρουσιν . Ἐπεὶ γοῦν δύο μὲν κανόνας τῶν εἰς ην ὀνομάτων , ὥς φαμεν , ὁ | ||
φαίνεσθαι , ἃ δὴ καὶ φανδούρους καλοῦσιν οἱ πολλοὶ , κανόνας δ ' οἱ Πυθαγορικοὶ , καὶ τὰ τρίγωνα τῶν |
ἡμῶν , μήτε τούτους εἰδέναι ὅστις ἑκάστῳ αὑτῶν δεσπότης , περαίνοντας μὲν δὴ τὰ δέοντα οὐ πάνυ ἔστιν ὁρᾶν αὐτῶν | ||
τε καὶ τοὺς ὁμοίους τούτοις , ἐλλιπεῖς καὶ ἀπόρους καὶ περαίνοντας καὶ ἐγκεκαλυμμένους κερατίνας τε καὶ οὔτιδας καὶ θερίζοντας . |
ἁπλῶς οἱ καθ ' ἑβδομάδα προχωροῦντες πρὸς τοὺς ἀπὸ δυάδος εὐτάκτους ἀρτίους . εἶτα πάλιν ἐξ ὑπαρχῆς ὁ ι πρὸς | ||
. ἐνταῦθα ὑπεμφαίνει , ὅτι σιωπὴν ἐδίδασκεν . ἔδει ] εὐτάκτους ὄντας , νόμιμον ἦν , χρεία ἦν . ἢ |
τὸ πρῶτον ἰαμβικὸν δίμετρον ἀκατάληκτον , ἔχον τὸν πρῶτον πόδα ἀνάπαιστον , τὸν δὲ δεύτερον τρίβραχυν . ἑξῆς δύο καὶ | ||
' ἐκφωνῶν * ἠιόνες * : τὸ γὰρ ἰαμβικὸν καὶ ἀνάπαιστον δέχεται πόδα , οἷός ἐστιν οὗτος , καὶ δάκτυλον |
εἶναι καὶ ἀριθμόν , συνάξει , ὅτι ἄρτιοί εἰσιν ἢ περιττοὶ οἱ ἀστέρες , οὔτε δὲ τὸ περιττοὺς αὐτοὺς εἶναι | ||
εἰς περιττόν . καὶ οἱ ἄρτιοι δὲ ἵπποι δύνανται καὶ περιττοὶ γενέσθαι ἑτέρου προσθήκῃ . ἀλλὰ καὶ τὸ χρῶμα εἰ |
ἢ ἀφελόντας τῶν ἰσημερινῶν χρόνων πρότερον : ἀμφοτέρους γὰρ τοὺς γνώμονας ἐπισυνθέντες καὶ τὴν ἡμίσειαν λαβόντες εὑρήσετε τὸ συνεχὲς ζητούμενον | ||
ἐπ ' ἄκρας τῆς Ἰνδικῆς ἰδεῖν ἔστιν ἀσκίους ὄντας τοὺς γνώμονας , νυκτὸς δὲ τὰς ἄρκτους ἀθεωρήτους : ἐν δὲ |
μετοχὴν ἕκαστον τῶν ὄντων ἐστὶν ἕν , δεῖ κατειληφέναι ἀπειράκις ἀπείρους νοητὰς μονάδας , ἀδύνατον δὲ καταλαβεῖν ἀπειράκις ἀπείρους μονάδας | ||
. § : τί δὲ δεῖ καταλέγεσθαι τὰς δεκάδος ἀρετὰς ἀπείρους τὸ πλῆθος , πάρεργον ποιούμενος ἔργον μέγιστον , ὃ |
] ? [ ἴσον ] ἰσάκις γίγνεσθαι [ ] τῶι τετραγώνωι [ ] ? τὸ σχῆμα ? ? ἀπεικάσαντες ? | ||
[ τῶι ] ποδιείωι [ ] ? ? [ ] τετραγώνωι [ ] ? [ , τὰ ] δὲ κατὰ |
. ἀλλ ' εἰς καθόλου τινὰς ἀνάγει φωνάς , οὐκ ἀορίστους δέ , ἀλλὰ τῷ τῆς δεκάδος ἀριθμῷ περικεκλεισμένας : | ||
. Καὶ ἰακῶς τετύφατο . Ἑνικά . Ἐτύφθην : τέσσαρας ἀορίστους εὑρίσκομεν ἐν τοῖς παθητικοῖς , δύο παθητικούς , πρῶτον |
. ἔνεστι γὰρ κοινῶς ἐφ ' ὅλην διατείνειν αὐτὴν τοὺς μαθηματικοὺς λόγους , ἔνεστι δὲ καὶ περὶ τὰ μέρη τῆς | ||
τῆς φιλοσοφίας ὠνόμαζον , καὶ τοὺς ἐμπείρους τῶν τοιῶνδε λόγων μαθηματικοὺς ἀπέφαινον . ἐνόμιζον δὲ καὶ κάλλιστα παραδείγματα εἶναι τὰ |
εἰκόνες προσεπεφύκεσαν τῇ κεφαλῇ : χιτῶνα δὲ ἐνεδέδυτο καὶ ἐς ἄκρους τοὺς πόδας : δελφὶς δὲ ἐπὶ τῆς χειρὸς ἦν | ||
δοκῇ πάνυ ῥᾳδίως μεγάλων ἠξίωσας , τῶν δὲ Ἑλλήνων τοὺς ἄκρους καὶ παρὰ πᾶσι βεβοημένους ἐν φαύλῳ καθαιρεῖς , οὐδὲν |
τίς γὰρ οὐκ ἂν γελάσειεν ἀκούων , ὅτι οἱ Πυθαγόρειοι χωριστοὺς ἀριθμοὺς οὐκ ᾔδεσαν ; αὐτοῦ μὲν Πυθαγόρου διχῶς εἰωθότος | ||
ἓν κατὰ τὴν ἐκείνων ἐκλαμβάνεις διάνοιαν οὔθ ' ἕπεται τῷ χωριστοὺς εἶναι τοὺς ἀριθμοὺς τὸ μετέχειν αὐτοὺς ἀκράτου τοῦ κακοῦ |
ἀστραγάλων ἤ τινων ἄλλων ἐξετάζειν τὸν συμπαίζοντα πότερον ἀρτίους ἢ περισσοὺς κατέχει , ὡς καὶ Ἀριστοφάνης Πλούτῳ στατῆρσι δ ' | ||
ὑπάρχον καὶ ταὐτὸν ἀεί . γεννᾶται δὲ δυάδος τοὺς τάξει περισσοὺς μηκυνούσης , ἵν ' ἐπειδὴ δυάδι οἱ γνώμονες ἀλλήλων |
ἐν εἰσθέσει μονόμετρον ἰαμβικόν , μεθ ' ὃ ἔκθεσις εἰς στίχους ἰαμβικοὺς ἀκαταλήκτους τριμέτρους παʹ . Γ ἀλλ ' οὐ | ||
τοῦ Διονυσίου καυχωμένου περὶ τῶν ἰδίων ποιημάτων , καί τινας στίχους τῶν δοκούντων ἐπιτετεῦχθαι προενεγκαμένου , καὶ ἐπερωτῶντος Ποῖά τινά |
καὶ τὰ μὴ γραφόμενα ἔστιν εὑρίσκειν : εὑρήσεις δὲ τοὺς συλλογισμοὺς καὶ ἀπὸ αἰτιῶν καὶ ἀπὸ τεκμηρίων , πάντας δὲ | ||
. Φανερὸν οὖν ἐκ τῶν εἰρημένων οὐ μόνον ἐνδέχεσθαι τοὺς συλλογισμοὺς πάντας γίνεσθαι κατὰ τὴν εἰρημένην μέθοδον , ἀλλὰ καὶ |
κόρους καὶ κόρας , καὶ ἅμα δὴ θεωροῦντάς τε καὶ θεωρουμένους μετὰ λόγου τε καὶ ἡλικίας τινὸς ἐχούσης εἰκυίας προφάσεις | ||
ἀστέρας πρὸς τὸ κακοποιεῖν ἢ μὴ ἐπί τε τῶν κέντρων θεωρουμένους καὶ ἐπὶ ταῖς ἀναφοραῖς ἢ τοῖς ἀποκλίμασιν , ἀλλ |
ἢ συμβεβηκός , ἐνδέχεται καὶ διαφόρους μέσους λαβεῖν καὶ διαφόρους ἐλάττονας , κἀντεῦθεν συναγαγεῖν καὶ διάφορα συμπεράσματα . κατὰ σημεῖον | ||
οἱ δὲ πορρωτέρω , καὶ διὰ τοῦτο ἢ πλέονας ἢ ἐλάττονας περιέπλευσαν σταδίους : τοῦ δὲ ἐπ ' εὐθείας γινομένου |
. καί εἰσι μὲν τὸ μέγεθος τῶν παρὰ τοῖς Ἕλλησι διπλασίους , ὤκιστοι δὲ τὸ τάχος . εἰσὶ δὲ πυρρότριχες | ||
τὸν ι . ἐκθοῦ οὖν ἐν τῷ δευτέρῳ στίχῳ τοὺς διπλασίους : β , δ , Ϛ , η , |
σημαίνεσθαι κατὰ | τὴν λέξιν ταύτην | τὸ μὴ συλλογισμοὺς διαλεκτικοὺς | ἔχειν αὐτούς | : οὐ γάρ τινες τοῦτο | ||
θεῖν οἷόν τε , οὕτω καὶ τοὺς ῥητορικοὺς πρὸς τοὺς διαλεκτικοὺς ἔχειν . Πλάτωνα δὲ ἐξαιρῶ τοῦ λόγου , ἱκανὸς |
οἷον ἐπιδιμερῶν τὸν πέντε πρὸς τρία , εἶτα διπλασίους καὶ τριπλασίους τούτων καὶ ἐπ ' ἄπειρον , ἐπιτριμερῶν δὲ ἑπτὰ | ||
ἐπὶ μιᾶς εὐθείας ἐφεξῆς τούς τε διπλασίους ἐκτάττων καὶ τοὺς τριπλασίους , πρῶτον μὲν ἰσχυρίζεται τῇ λεγομένῃ κατὰ μῆκος σχίσει |
σοφία καὶ εὐδαιμονία τελεία , ποιεῖ τε ἡμᾶς τοῖς θεοῖς ὁμοίους , ἡ δὲ τῶν ἀνθρωπίνων ἐπιστήμη τάς τε ἀνθρωπίνας | ||
ἐν τῷ παρόντι κακῶς πάσχειν , γενναῖον δὲ εἶναι τοὺς ὁμοίους ἀπὸ τοῦ ἴσου τιμωρεῖσθαι . καὶ ἅμα αὐτὸς μὲν |
ἐξ ἀργυρέων τελαμώνων . ἡγεμόνας τε τῆς ὀρχήσεως αὐτῶν τοὺς ἐνδιδόντας τοῖς ἄλλοις καὶ προκαταρχομένους εἰσάγων τοιάδε γράφει : Πολλὸς | ||
τύχοι ταῖς ὄχθαις τοὺς προσοικοῦντας τῷ Ὑδάσπῃ Ἰνδοὺς τοὺς μὲν ἐνδιδόντας σφᾶς ὁμολογίαις παρελάμβανεν , ἤδη δέ τινας καὶ ἐς |
διεζευγμένοις , εἰ δὲ τρεῖς , τετράς , εἰ δὲ τέσσαρας , πεντάς , καὶ τοῦτο ἐφ ' ὁποσονοῦν . | ||
ἀκράτου . Φερεκράτης δ ' ἐν Κοριαννοῖ δύο ὕδατος πρὸς τέσσαρας οἴνου , λέγων ὧδε : ἄποτος , ὦ Γλύκη |
, καὶ τούτων λάμβανε τὸ λϚʹʹ , καὶ ἕξεις πήχεις ἐπιπέδους . Ἐὰν δὲ ᾖ τὸ μῆκος διὰ πήχεων , | ||
μήκη καὶ πρὸς ἑτέρων σύστασιν λαμβανόμενοι , ὁτὲ δὲ εἰς ἐπιπέδους , ὅταν ἐκ πολλαπλασιασμοῦ δύο ἀριθμῶν γεννηθῶσιν , ὁτὲ |
δʹ εʹ Ϛʹ ζʹ ηʹ θʹ ιʹ , Πρὸς τοὺς ὁρισμοὺς αʹ , Περὶ ὀδμῶν αʹ , Περὶ οἴνου καὶ | ||
ὅρος καὶ ἑτερόριστος : ἑτερόριστος μὲν ὅτι πάντας τοὺς ἄλλους ὁρισμοὺς ὁρίζεται , αὐθόριστος δὲ ὅτι καὶ ἑαυτὸν σὺν ἐκείνοις |
τοὺς πρώτους καὶ γνωριμωτάτους καὶ κυριωτάτους λόγους πολλαπλασίους τε καὶ ἐπιμορίους ἤδη καὶ σύμφωνοι . συμφωνοῦσι δὲ φθόγγοι πρὸς ἀλλήλους | ||
στίχον τοὺς πολλαπλασίους ποιοῦσι , πρὸς δὲ τοὺς γείτονας τοὺς ἐπιμορίους , οἷον ὁ γ πρὸς τὸν β τὸν ἡμιόλιον |
, ἡ δὲ Ἀφροδίτη ἱλαρούς , χαρίεις , ἀστείους , μουσικούς , ἐμπορικούς , ἁβροδιαίτους , θηλύφρονας , ὁ δὲ | ||
καθ ' ἡμᾶς κιθαρῳδοῦ , ἀνδρὸς τεχνίτου κατὰ νόμους τοὺς μουσικούς . οὗτός ποτε βράδιον ἥκων ἐπὶ τὸ συμπόσιον ἡμῶν |
παρὰ τὰ αἰσθητά , ! ! ! ἀπέστησαν τοῦ λέγειν εἰδητικοὺς ἀριθμοὺς καὶ τὸν μαθηματικὸν μόνον ἐποίησαν . Τοὺς περὶ | ||
ὡς πρὸς τὰς ἰδέας ἠπόρησεν ἐπισκεψώμεθα . Ἐπειδὴ καὶ ἀριθμοὺς εἰδητικοὺς ὁ Πλάτων ἐκάλει τὰς ἰδέας ἑπόμενος τοῖς Πυθαγορείοις , |
δὲ οἱ ποτὲ μὲν εἰς χρόνους , ποτὲ δὲ εἰς ῥυθμοὺς ἀναλυόμενοι , ὡς οἱ ἑξάσημοι . τῶν δὲ συνθέτων | ||
ἀνήκει τῷ οἰκείῳ θεῷ , οἷον ὁ μουσικὸς φθόγγους , ῥυθμοὺς καὶ τὰ ὅμοια , ὁ φιλόσοφος γεωμετρίαν , ἀστρονομίαν |
ὀνομάζεσθαι αὐτοὺς πενταχῶς , πρώτους , ἀσυνθέτους , γραμμικούς , εὐθυμετρικούς , περισσάκις περισσούς . μόνον δὲ οὕτως καταμετροῦνται . | ||
ὀνομάζεσθαι αὐτοὺς πενταχῶς , πρώτους , ἀσυνθέτους , γραμμικούς , εὐθυμετρικούς , περισσάκις περισσούς . μόνον δὲ οὕτως καταμετροῦνται . |
τἆλλα κατὰ τὸ ἑξῆς εἴδη . ὑπόδειγμα δὲ πάντων εὐτάκτων πολυπλασίων σαφὲς ἕξομεν ἐὰν ἐκθέμενοι τὸν ἀπὸ μονάδος συνεχῆ ἀριθμὸν | ||
ἀρτιοπερίττων δὲ πέντε , πάσας δὲ λόγων τῶν ἐν ἀριθμοῖς πολυπλασίων καὶ ἐπιμερῶν καὶ ὑποεπιμερῶν περιέχει , πάσας δ ' |
ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
οὐκοῦν καὶ κατὰ τοὺς ἐξ ἀρχῆς λόγους καὶ κατὰ τοὺς δευτέρους τούτους καὶ ὅποι στρέφοι τις ἂν καλὸν καὶ γενναῖον | ||
τὸ γένος σώζων τε καὶ ποιῶν ἀθάνατον , ἀεὶ τοὺς δευτέρους τοῖς προτέροις παραπλησίους : ἐγὼ δὲ ἄλλως μὲν οὐκ |
: οὐδὲν γὰρ κωλύει φαῦλον ὄντα τινὰ γεωμετρικὸν εἶναι ἢ ἀριθμητικόν , ἃ δήπουθεν ἀγαθά . καὶ τὸ συμπέρασμα διττόν | ||
ἕδη ] ἑδράσματα , ἀγάλματα . τοῦτο μὲν γὰρ ] ἀριθμητικόν ἐστι τὸ σχῆμα , παρὰ τοῖς ῥήτορσιν οὕτω λαμβανόμενον |
σφοδρὸν ὁδοιπορεῖ νόμον . Τούτους δὲ τοὺς διηνεκῶς οὐρανῷ τελουμένους φθόγγους ἀγνοοῦμεν ἢ διὰ τὴν ἀπὸ πρώτης γονῆς συνήθειαν ἐνδελεχῶς | ||
“ οὐκ αἰσχύνῃ , ” ἔφη , “ τοὺς μὲν φθόγγους τῷ ξύλῳ προσαρμόττων , τὴν δὲ ψυχὴν εἰς τὸν |
ἀλλήλους εἰσίν : ὅπερ ἔδει δεῖξαι . Ἐὰν δύο ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινα , τὸν δὲ γενόμενον ἐξ αὐτῶν | ||
γὰρ ἀριθμοὶ οἱ Α , Β ἀριθμόν τινα τὸν Γ πολλαπλασιάσαντες τοὺς Δ , Ε ποιείτωσαν : λέγω , ὅτι |
ταύτην ὁδὸν ἡγεμονεύσει ; Τρύφων μέντοι φησὶν ἐπὶ τοῦ τοιούτου συνδέσμους ἀντιπαρειλῆφθαι , τὸν γάρ ἀντὶ τοῦ δέ καὶ τὸν | ||
καὶ λιθώδεις συστάσεις πήγνυσθαί τε τὰ προαιρετικὰ νεῦρα καὶ τοὺς συνδέσμους καὶ τοὺς τένοντας , ἐπιτηδείως ἔχοντας εἰς τοῦτο διὰ |
καὶ ἐλλείψεις τοῦ δέοντος : ἀλλ ' ὅμως οὔτε τοὺς μέσους σώφρονας λέγομεν οὔτε τοὺς ὑπερβάλλοντας ἀκολάστους . εἰ δὲ | ||
- τοῦ , πορφυραῖ δὲ ἄρα στιγμαὶ τοὺς ὀφθαλμοὺς αὐτῷ μέσους ἐς κάλλος γράφουσιν . ὁ δὲ τοξότης ἐν τῇ |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
, μᾶλλον ἄν τις ὑπονοήσειεν : περὶ δὲ τὰ σώματα μεριστὰς εἰ μὲν τὰς πρώτας λέγοι ποιότητας , οἷον ὑγρότητα | ||
ὡροσκόπους καὶ τοὺς λεγομένους κραταιοὺς καὶ ἡγεμόνας παραδιδόασι , τὰς μεριστὰς τῶν ἀρχῶν διανομὰς ἀναφαίνουσιν . Τά τε ἐν τοῖς |
δὲ τοῦ Ἑρμοῦ ἀνατολικὸς τῇ μὲν μορφῇ ποιεῖ μελίχροας καὶ συμμέτρους τοῖς μεγέθεσι καὶ εὐρύθμους καὶ μικροφθάλμους καὶ μεσότριχας , | ||
θρεπτικὴν τῶν ἐπιγείων ἀπεργάζεται , στόλων δὲ εὐπλοίας καὶ ποταμῶν συμμέτρους ἀναβάσεις καὶ τῶν καρπῶν δαψίλειαν καὶ ὅσα τούτοις παραπλήσια |
τοῦτο ἀποφατικῶς ἢ καταφατικῶς , καὶ ποιεῖ τοὺς δύο καθόλου προσδιορισμούς , φημὶ δὴ τὸν πᾶς καὶ τὸν οὐδείς , | ||
ὑποκειμένων οὐ καθόλου ἀποφαίνονται , μὴ συντάττουσαι αὐτοῖς τοὺς καθόλου προσδιορισμούς , οἳ ποιοῦσι καθόλου ἡμᾶς ἀποφαίνεσθαι περὶ τῶν καθόλου |
λέγομεν μετρεῖσθαι τὸν ἀριθμόν . ἰστέον δέ , ὅτι τὸν περισσάρτιον τὸν ὑπὸ τῶν Πυθαγορείων οὕτως καλούμενον τὸν πλείονας διαιρέσεις | ||
μὲν ἀρτίου τὸ ἀρτιάκις ἄρτιον καὶ τὸ ἀρτιοπέριττον καὶ τὸ περισσάρτιον , τοῦ δὲ περιττοῦ τὸ πρῶτον καὶ ἀσύνθετον , |
Στησιχόρειον τῷ Πινδαρικῷ ἰδιώματι : ὁ γὰρ τελευταῖος ἀντὶ τροχαίου ἴαμβον ἔχει . τὸ δʹ ἀναπαιστικὸν μονόμετρον ἀκατάληκτον . τὸ | ||
τῶν αὐτῶν σύνταξις . τὸ μὲν οὖν ἰαμβικὸν μέτρον εἰς ἴαμβον ἢ πυρρίχιον καταλήγει πάντως , εἰ μὴ χωλεύοι : |
μὲν δεῖ ὀργιζομένου καὶ ὡς δεῖ καὶ κατὰ τοὺς ἄλλους διορισμούς , πάλιν δὲ μὴ ὀργιζομένου , ὅτε μὴ προσήκει | ||
, ὥστε ἐπιθυμεῖν ὧν δεῖ καὶ ὅσα κατὰ τοὺς ἄλλους διορισμούς : οὕτω δὲ καὶ ὁ λόγος τάττεται . . |
καὶ ἐπὶ μὲν τῶν πρακτικῶν καὶ ἐνιαυσιαίων ἀφέσεων κατά τινας ἁρμονικοὺς ἀριθμοὺς εἰς τοὺς αὐτοὺς τόπους ἢ καὶ τοὺς ἀστέρας | ||
ᾗ προηγεῖται ἡ μονάς . τὴν δὲ τετάρτην ὡς τοὺς ἁρμονικοὺς περιέχουσαν λόγους καὶ τὸν διὰ τεσσάρων τὸν καὶ ἐπίτριτοντρία |
καὶ μέσον περιεχούσας , δείκνυσιν ἐκ τοῦ τὰς δ εὐθείας ἀναλόγους ἄγεσθαι τὰς Α , Δ , Ε , Γ | ||
πρῶτον ἑκατοντάρχην , τὸν λεγόμενον ἰλάρχην , ἔχοντα ἴσους καὶ ἀναλόγους τοὺς νεωτέρους ἤτοι τὰς ἀκίας : ἐν δὲ τῇ |
τὸ ἐρυσίσκηπτρον ὑπὲρ οὗ καὶ ἀρτίως ἐλέχθη . Βρέχουσι δὲ συντιθέντες τῷ οἴνῳ τῷ εὐώδει : ἔοικε δ ' οὖν | ||
καὶ τοιαύταις τισὶ μηχαναῖς προσχρώμενοι , τὸ δὲ ἐφεξῆς τούτῳ συντιθέντες οὐδὲ εἶναι πολλὰ ἔφασαν , ἀλλὰ ἕν : εἰ |
. Τὸ εʹ ἀντισπαστικὸν δίμετρον ὑπερκατάληκτον : ἔχει δ ' ἐπιτρίτους δʹ ἀντὶ ἀντισπάστων . Τὸ Ϛʹ σύνθετον ἔκ τε | ||
εἰ θέλεις ἡμιολίους εὑρεῖν , τοὺς διπλασίους ζήτει , εἰ ἐπιτρίτους , τοὺς τριπλασίους , καὶ τοῦτο ἐφεξῆς . οἷον |
ὁ δὲ τετράγωνος τοὺς δυάδι μὲν διαφέροντας , ἕνα δὲ παραλείποντας , πεντάγωνος δὲ ἀκολούθως τοὺς τριάδι μὲν διαφέροντας , | ||
καὶ τὸ κατιέναι ἡμᾶς διὰ τῶν διὰ μέσου , μηδὲν παραλείποντας ἐν ταῖς διαιρέσεσιν , οὐ σμικρόν τι συντελεῖ πρὸς |
τετράκις δʹ ιϚʹ . οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομήκεις περιλαμβάνουσι κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους αὐτοὺς ποιοῦσι | ||
πρὸς ἑαυτοὺς διαφορὰς τοὺς περισσοὺς μόνον ἔχουσιν , οἱ δὲ ἑτερομήκεις τοὺς ἀρτίους : ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη |
τὰ αὐτὰ εἴδη τῶν ψυχικῶν διαθέσεων τρέπεταί πως ἐπὶ διαγωγὰς ἀνομοίους , συνελκόμενα τοῖς ἔθεσι τῶν κατὰ καιροὺς πολιτειῶν ἐπὶ | ||
εἶναι τῶν τε ἄλλων Σκυθῶν καὶ τῶν Σαυροματῶν τοὺς βίους ἀνομοίους : τοὺς μὲν γὰρ εἶναι χαλεποὺς ὥστε καὶ ἀνθρωποφαγεῖν |
οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους . Σημειωτέον , ὅτι , | ||
, δυνάμει ἄπειρα καὶ τὰ εἴδη . συμβαίνει τοὺς μὲν ὑπολόγους . ὑπολόγους μὲν καλεῖ τοὺς ἐλάττονας , προλόγους δὲ |
κανών : χρὴ μέντοι εἰδέναι , ὅτι οἱ Ἀττικοὶ ἰδίους ὑπερσυντελίκους ποιοῦσι συναρχομένους τοῖς παρακειμένοις αὐτῶν , ὀμώμοκα ὀμωμόκειν , | ||
. , : παραδίδωσι γὰρ Ἡρακλείδης ὅτι Ἀττικοὶ τοὺς τοιούτους ὑπερσυντελίκους ἐν τῷ η μόνῳ περατοῦσιν ᾔδη λέγοντες καὶ ἐνενοήκη |
ἐπενεχθησομένης ψηφοφορίας τὴν διόρθωσιν ἀποληψομένης . ἐπεὶ γὰρ κατὰ τοὺς ἐκκειμένους μέσους λόγους ἡ μὲν κατὰ πλάτος ἀμφοτέρων τῶν ἀστέρων | ||
ἀνέμων προσηγορίας ἀκολούθως ταῖς ἐπὶ τῆς κρικωτῆς σφαίρας παρὰ τοὺς ἐκκειμένους πέντε παραλλήλους καὶ τοὺς πόλους διασημασίαις . Ὑπογραφὴ δ |
ἐγένετο . Τοῦτον τὸν τόπον οἱ παλαιοὶ μυστικῶς καὶ σκοτεινῶς διέγραψαν , ἡμεῖς δὲ τηλαυγέστερον . Περὶ μὲν οὖν προτρεπτικῶν | ||
: οὕτω Πραξιφάνης . : ὅτι δὲ τὸ προοίμιόν τινες διέγραψαν , ὥσπερ ἄλλοι τε καὶ Ἀρίσταρχος ὀβελίζων τοὺς στίχους |
λέγονται μερικαὶ γνώσεις , οὕτω καὶ εἰσὶ καὶ καθ ' ὅρους μόνον βεβήκασι καὶ ἄνευ συνθέσεως ἐν ἑνὶ τῷ ὑποκειμένῳ | ||
γὰρ μεταπίπτειν . Θέσει ἄρα . , ] διὰ τοὺς ὅρους . κύκλος γὰρ τῇ θέσει καὶ τῷ μεγέθει δεδόσθαι |
γ . λέγω , ὅτι καὶ ὁ β τοῦ α ἐπιμόριός ἐστι κατὰ τὸ ὁμώνυμον μόριον τοῦ γ ἐναλλάξ , | ||
μέτρου . ἄφελε ἴσον τῷ Θ τὸν ΗΖ καὶ ἐπεὶ ἐπιμόριός ἐστιν ὁ ΔΖ τοῦ Θ , ἡ ὑπεροχὴ ὁ |
ἤν τε καθαρτικωτέροισιν ἤν τε μαλθακωτέροισι : μετὰ δὲ τοὺς κλυσμοὺς μαλθακτήρια προστιθέναι : ἢν δὲ μὴ εὔλυτον τὸ στόμα | ||
αὐτέοισιν : ἐπὴν δὲ καθαρθῇ τὰ ὑποχωρεῦντα πρὸς τούτους τοὺς κλυσμοὺς , καὶ ἢν γίνηταί τι αἱματῶδες , οἷον ἀφ |
Πέτρωνος καὶ λόγον , ὡς ἑκατὸν καὶ ὀγδοήκοντα καὶ τρεῖς κόσμους ὄντας , ἁπτομένους δ ' ἀλλήλων κατὰ στοιχεῖον , | ||
καὶ σῶμα . ἀμέλει καὶ λέγουσιν οὕτως ἀπείρους εἶναι τοὺς κόσμους καὶ πανταχοῦ εἶναι τοῦ κενοῦ , τί γὰρ μᾶλλον |
τοὺς μὲν κατηγορικοὺς ἁπλῶς οὕτως ὀνομάζομεν συλλογισμούς , τοὺς δὲ ὑποθετικοὺς τὸ μὲν ὅλον τοῦτο ἐξ ὑποθέσεως συλλογισμούς , ἁπλῶς | ||
λέγομεν συμπέρασμα , ἐκεῖνοι ἐπιφορὰν καλοῦσι . τοὺς δ ' ὑποθετικοὺς συλλογισμοὺς ἀναποδείκτους καλοῦσι καὶ θέματα . γ . τὴν |
καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί | ||
δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν , |
τῶν εʹ : γίνονται ρπʹ . Ἐὰν δὲ Τόσοι πόδες εὐθυμετρικοὶ πόσοι πήχεις εὐθυμετρικοί ; ποίει τὸ ἀνάπαλιν . Ἐὰν | ||
καὶ ὧν ἥμισυ γίνεται ρνʹ . Ἐὰν δὲ Τόσοι πόδες εὐθυμετρικοὶ πόσοι πήχεις εὐθυμετρικοί ; τὸ ἀνάπαλιν ποίει : δὶς |
ὀκτώ , μουσικῇ τρία τέσσαρα ἕξ : βουλόμενοι γὰρ τοὺς περιέχοντας λόγους τὰς τρεῖς συμφωνίας ἐπιδεικνύναι κατὰ τὸ ἑξῆς , | ||
καὶ ζηλωτὴς ὢν τῆς Ἡρακλέους ἀρετῆς , ἐπεβάλετο τελεῖν ἄθλους περιέχοντας ἀποδοχήν τε καὶ δόξαν . πρῶτον μὲν οὖν ἀνεῖλε |
ἄτμητον φυλαχθῆναι , τὴν δ ' ἐντὸς ἑξαχῆ τμηθεῖσαν ἑπτὰ κύκλους τῶν λεγομένων πλανήτων ἀποτελέσαι : ὃ γάρ , οἶμαι | ||
λόγων κεκαθαρμένων καὶ πρὸς εὐθύτητα ἀπεξεσμένων , ἐμβεβλημένων δὲ ξύλοις κύκλους ἀποτελοῦσιν : οἱ δὲ κύκλοι ἐκ τοῦ ἐδάφους ἀρχόμενοι |
νόμιμον : ἔτι γὰρ καὶ νῦν κατὰ τὸν θερισμὸν τοὺς πρώτους ἀμηθέντας στάχυς θέντας τοὺς ἀνθρώπους κόπτεσθαι πλησίον τοῦ δράγματος | ||
τοῖς ἀθανάτοις θεοῖς συνεισελθοῦσα καὶ ποιοῦσα ἐν αὐτοῖς τοὺς μὲν πρώτους , τοὺς δὲ δευτέρους . εἰ γὰρ καὶ ὡς |
μέσος τοῦ τε θʹ καὶ γʹ διαστήματος , καὶ οὗτος ἀριθμητικός : ὑπερέχει γὰρ καὶ ὑπερέχεται ͵αρνβ . καʹ ͵βφϘβ | ||
ποιητικός , μουσικός , ἀστρονόμος ἀστρονομικός , γεωμέτρης γεωμετρικός , ἀριθμητικός , στατικός , ἰατρός ἰατρικός . καὶ τὰ ἐπιρρήματα |
πόλεμοι πλεονάκις αὐτοῖς πρὸς τοὺς Σικανούς , ἕως συνθήκας ποιησάμενοι συμφώνους ὅρους ἔθεντο τῆς χώρας 〚 περὶ ὧν τὰ κατὰ | ||
συμφώνους ὄντας , τοὺς δὲ διαφώνους , καὶ τοὺς μὲν συμφώνους μίαν κρᾶσιν τὴν ἐξ ἀμφοῖν ποιοῦντας , τοὺς δὲ |
ἔφη , ὥς γ ' ἂν δόξειεν τοῖς περὶ τοὺς τοιούσδε λόγους διατρίβουσιν . Μηδὲν ἄρα θαυμάζωμεν εἰ καὶ τοῦτο | ||
γὰρ πτυάλου ἀναγωγόν ἐστι , καὶ εὔπνοον . Καιροὺς μέντοι τοιούσδε ἔχει : τὸ μὲν γὰρ κάρτα ὀξὺ οὐδὲν ἂν |
δέ , χαῖρε , γῦπες σῷ ξίφει σάρκας καταβρώξουσι τὰς ἀσυστάτους . Χαυδᾶς , ὁ χανδὸν γῆν ὅλην λαβεῖν θέλων | ||
τινος παραδοῦναι τοὺς διαιρετικοὺς τρόπους τούς τε κυρίως καὶ τοὺς ἀσυστάτους : ἔστι γὰρ εἰπεῖν ὅτι τὸ διαιρούμενον ἢ καθ |
τὰς ἀναφορὰς ἐκτεθειμένων ἀπὸ τῆς προτεταγμένης ἑκάστου ἐπιγραφῆς εἰς τοῦτον εἰσοίσομεν τὴν εἰλημμένην τοῦ ἡλίου μοῖραν καὶ τοὺς μὲν αὐτῇ | ||
γενομένῳ προσθέντες τὸν ἐξ ἀρχῆς τοῦ ἀστέρος ἀριθμὸν τὸν συναχθέντα εἰσοίσομεν εἰς τοὺς αὐτοὺς ἀριθμούς , καὶ ὅσα ἂν ᾖ |
ἀνακαλεῖσθαι κελεύουσι πάντας ἐφεξῆς τοὺς ἱππέας , δεκαδάρχην πρῶτον καὶ διμοιρίτην ἐπὶ τούτῳ καὶ ὅστις ἐν ἡμιολίῳ μισθοφορᾷ , ἔπειτα | ||
, δεκαδάρχην μὲν τῆς δεκάδος ἡγεῖσθαι Μακεδόνα καὶ ἐπὶ τούτῳ διμοιρίτην Μακεδόνα καὶ δεκαστάτηρον , οὕτως ὀνομαζόμενον ἀπὸ τῆς μισθοφορᾶς |
κατὰ τὴν ὁμοίαν ἀνάκρισίν τε καὶ θέσιν . ἐὰν γὰρ ἰσοτόνους ἁρμοσώμεθα τοὺς ὀκτὼ φθόγγους ἐν ἴσοις τοῖς τῶν χορδῶν | ||
αὐτῆς τομῶν τείνωμεν τὰς χορδὰς παραλλήλους τε τῇ ΑΓ καὶ ἰσοτόνους ἀλλήλαις , καὶ τούτου γενομένου τὸν κοινὸν ἐσόμενον ὑπαγωγέα |
σὺν τούτοις τὴν Σελήνην τε καὶ τοὺς λοιποὺς ἀστέρας μὴ διαμέτρους ὑπάρχειν τούτους ἐκ τῶν ἰδίων ὑψωμάτων καὶ οἴκων τε | ||
περιτίθησι γνώμονα . ἄγει δὲ καὶ ἐν ἑκάστῳ τετραγώνῳ διαγωνίας διαμέτρους , λέγω δὴ τὴν ΑΘ καὶ τὴν ΘΖ καὶ |
τὴν λέξιν καὶ τὴν συνθήκην οὐκ ἀνάρμοστον , ὡς ἂν παίωνας εἶναι καὶ ἡρῴους τοὺς πλείστους , ἐξ ὧν εὔογκος | ||
ὁμοίως . τὰ μέντοι τῆς ἀντιστροφῆς ἀντ ' Ἰωνικῶν ἔχει παίωνας δευτέρους . τὰ τελευταῖα Ἰωνικὰ ἡμιόλια ἤτοι δίμετρα βραχυκατάληκτα |
ἐπιμορίου καὶ τῶν λοιπῶν εἰδῶν ἐν αὐτῶι , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί . τὸ μὲν | ||
ἐξ ἀρχῆς βάθος τι προσκτωμένου : οἷον καθ ' ὑποδιαίρεσιν γραμμικοὶ μέν εἰσιν ἀριθμοὶ ἁπλῶς ἅπαντες οἱ ἀπὸ δυάδος ἀρχόμενοι |
ἴαμβοι . οὗτοι μὲν ἀκατάληκτοι τρίμετροι . ὁ δὲ δʹ ἑφθημιμερής . ὁ δεύτερος χοριαμβικὸς τρίμετρος καταληκτικὸς , τὸν πρῶτον | ||
† ιαʹ ιβʹ , ὡς μὲν κεκώλισται , ἐστὶ χορίαμβος ἑφθημιμερής , συνῆπται δέ : δύναται δὲ τὸ αʹ αὐτῶν |
καὶ περὶ τῶν πραγμάτων ὅτι δεινότερός ἐστιν οἰκονομῆσαι Λυσίου καὶ ὅλους τοὺς λόγους καὶ τὰ μέρη αὐτῶν καὶ οὐδὲν ἔξω | ||
ὡς ἡ Ἐλάτεια κατείληπται . ἔστι δὲ καὶ ἱστορίας καὶ ὅλους λόγους ἀλλήλοις ἀντιπαραβάλλειν σκοποῦντα τὸ ἄμεινον ἐξειργασμένον , οἷον |
τῶν πόλων τοῦ ζῳδιακοῦ γραφομένων ἢ ἐπὶ διαφόρων μέν , τριγώνους δὲ ἢ τετραγώνους ἢ ἑξαγώνους διαστάσεις ποιούντων , τουτέστιν | ||
. ἐπεὶ οὖν δύο πυραμίδες εἰσὶν αἱ ΑΒΓΜ , ΑΓΔΜ τριγώνους ἔχουσαι βάσεις καὶ ὕψος ἴσον , πρὸς ἀλλήλας εἰσὶν |
οἱ μερίζοντες καὶ περὶ τὴν ἐκείνου ἁπλότητα διπλασιαζόμενοι καὶ ἔτι πολλαπλασιαζόμενοι , ἐκεῖνο γὰρ τῷ ἓν εἶναι , πάντα ἐστὶ | ||
. Καὶ πάλιν γίνεται δίτονον ὁ η καὶ ὁ θ πολλαπλασιαζόμενοι : ὁ γὰρ οβ εὑρίσκεται ἀνάλογον μεταξὺ καὶ ποεῖ |
ὅσας δὲ εἶναι τὰς σφαίρας , τοσούτους ὑπάρχειν καὶ τοὺς κινοῦντας θεοὺς ταύτας , ὧν μέγιστον τὸν πάσας περιέχοντα , | ||
ὅλον τὸν ὀφθαλμὸν τοῖς ὀστοῖς , ἅμα δὲ σκέποντος τοὺς κινοῦντας αὐτὸν μῦς . καί σοι καὶ τοῦτον ἤδη τὸν |
τοῦ ἑξῆς χοροῦ . ἔχει δὲ καὶ ταῦτα πεντασυλλάβους καὶ ἑξασυλλάβους πόδας . κλύοντες θεοὶ ] ἀντισπαστικὰ κῶλα εʹ ἰσόμετρα | ||
τὰ ἑξῆς πάντα τοὺς πλείους τῶν ποδῶν καὶ πεντασυλλάβους καὶ ἑξασυλλάβους . διαλύονται γὰρ καὶ τῶν τετρασυλλάβων ποδῶν αἱ μακραὶ |
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
ἀποφάσεις ἐπὶ τῶν μετὰ τρόπου προτάσεων , ὅτι τῷ τρόπῳ συνάπτοντας τὴν οὔ ἄρνησιν . Δεύτερόν ἐστι κεφάλαιον ἐν ᾧ | ||
δὲ βουληθείη τις τοὺς ἐν τῷ προπυλαίῳ πέντε τῷ ὑπαίθρῳ συνάπτοντας , ὃ κέκληκεν αὐλήν , τιθέναι χωρίς , ἀπολειφθήσεται |
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
τοὺς δὲ ὑπὸ φιλονεικίας τὰς τῶν σημαινομένων τάξεις ἐναλλάττοντας ὡς ἐριστικοὺς φευκτέον , τοὺς δὲ μετὰ τῆς τῶν ἐμφερομένων ἀκριβοῦς | ||
: ἡμεῖς δὲ ἀμφοτέρους εἰς ἓν κεφαλαιούμενοι κατὰ κοινόν τι ἐριστικοὺς καὶ φαινομένους συλλογισμοὺς ὀνομάζομεν καὶ τοὺς βεβλαμμένους τῷ σχήματι |
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
ὀξυβελεῖς μεγίστους , εἰς δὲ τὰς ἀνωτάτας ὀξυβελεῖς τε τοὺς ἐλαχίστους καὶ πετροβόλων πλῆθος , ἄνδρας τε τοὺς χρησομένους τούτοις | ||
ἐκ δὲ τῶν ἄλλων πολιτῶν , ἵν ' ὡς εἰς ἐλαχίστους τὴν βλασφημίαν ἀγάγω , τὸν μαθητήν , εἰ δὲ |