| ἴαμβοι . οὗτοι μὲν ἀκατάληκτοι τρίμετροι . ὁ δὲ δʹ ἑφθημιμερής . ὁ δεύτερος χοριαμβικὸς τρίμετρος καταληκτικὸς , τὸν πρῶτον | ||
| † ιαʹ ιβʹ , ὡς μὲν κεκώλισται , ἐστὶ χορίαμβος ἑφθημιμερής , συνῆπται δέ : δύναται δὲ τὸ αʹ αὐτῶν |
| καταληκτικοῦ , ὃς γίνεται δάκτυλος . Τὸ γʹ ἀντισπαστικὸν διπλοῦν Φερεκράτειον : σύγκειται γὰρ ἐκ βʹ κώλων Φερεκρατείων , ὧν | ||
| τὸ ζʹ τροχαικὸν δίμετρον ὅμοιον τῷ εʹ . τὸ ηʹ Φερεκράτειον λεῖπον μιᾷ συλλαβῇ . τὸ θʹ ἰαμβικὸν δίμετρον ὑπερκατάληκτον |
| τὰ πέρατα ἐπέχει μοίρας ιδʹ γοʹʹ μβʹ ∠ ʹʹ καὶ ιϚʹ μγʹ καὶ ἡ Ἰδουβέδα , ἧς τὰ πέρατα ἐπέχει | ||
| χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν καθαρὸν δίμετρον ἀκατάληκτον , καθαρὰν ἰαμβικὴν ἔχον τὴν |
| ἐννέα , καὶ ἡ ἐπῳδὸς κώλων ἐννέα . τὸ αʹ ἐγκωμιολογικὸν δίμετρον καταληκτικόν . τὸ βʹ προσοδιακὸν δίμετρον ἀκατάληκτον ἐκ | ||
| ἡ στροφὴ καὶ ἀντίστροφος κώλων ὀκτώ . τὸ αʹ Πινδαρικὸν ἐγκωμιολογικὸν , τὴν τελευταίαν συλλαβὴν μεταθὲν εἰς τὴν πρώτην . |
| τὸ ἰαμβικὸν μέτρον καὶ ἄριστά γε εἰδέναι τί ἐστι τὸ ἰαμβικόν , οὕτως ἔχει καὶ ἐπὶ τῶν μελῳδουμένωνοὐ γὰρ ἀναγκαῖόν | ||
| . Καὶ ἀπορήσεις ἐντεῦθεν , πῶς ἐπεὶ καὶ τὸ Δημοσθένης ἰαμβικόν ἐστιν ὄνομα , ἅτε τὴν παραλήγουσαν βραχεῖαν ἔχων , |
| ξδʹ , ὅς ἐστι τετράγωνος ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος | ||
| τῶν σνηʹ λόγῳ πρὸς τὰ σνϚʹ , ὅς ἐστιν ἐπὶ ρκηʹ . Τὴν δὲ βραχεῖαν οὕτω παραλλαγὴν δυνατὸν εἶναι κρῖναι |
| ἰαμβέλεγος πλεονάζων συλλαβῇ . τὸ δʹ ἐπιχοριαμβικὸν Πινδαρικὸν , ἢ ἰαμβέλεγος . τὸ εʹ προσοδιακὸν δίμετρον ὑπερκατάληκτον . τὸ Ϛʹ | ||
| πενθημιμερές . τὸ Ϛʹ τροχαϊκὸν ἢ ἐπίτριτος . τὸ ζʹ ἰαμβέλεγος . τὸ ηʹ ἰαμβικὸν πενθημιμερές . τὸ θʹ ὅμοιον |
| δʹ τὸν πρῶτον πόδα ἐπίτριτον τέταρτον , τὸν δὲ βʹ ἀμφίβραχυν . ἐπὶ τῷ τέλει παράγραφος μόνη . διπλάκεσσιν : | ||
| ἐστιν , ἐς τὴν ἰαμβικὴν κατακλεῖδα περαιοῦται , τουτέστιν εἰς ἀμφίβραχυν ἢ βακχεῖον διὰ τὴν ἀδιάφορον : περαιοῦται μὲν γὰρ |
| ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ ἴαμβος πενθημιμερής . δʹ ἀπὸ | ||
| χοριαμβικὸν † δίμετρον . τὸ ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ |
| ΒΓ . ἄλογον ἄρα διὰ τὸν ὅρον . Διὰ τὸ κζʹ τοῦ ιʹ δυνατόν ἐστι πορίσασθαι τὸ δεδομένον τῆς προτάσεως | ||
| καὶ οὐκ εἰς τὰ προηγούμενα , σελήνη μὲν ἐν ἡμέραις κζʹ καὶ τρίτῳ μάλιστα ἡμέρας καὶ νυκτὸς διέρχεται : ὁ |
| πέντε τὸν ἀριθμὸν , ὧν ἡ μὲν δυτικωτέρα καλεῖται Αἰβοῦδα ιεʹ ξβʹ ἡ δ ' ἐφεξῆς αὐτῆς πρὸς ἀνατολὰς ὁμοίως | ||
| ἀπολῶ σε κακῶς ” μονόμετρον ἐκ δύο ἀναπαίστων : τὸ ιεʹ “ εἰπέ , τί ποιῶν ” μονόμετρον ἐξ ἀναπαίστου |
| ιβʹ , ιαʹ καὶ λοιπὰ Ϛʹ : ταῦτα δωδεκάκις γίνονται οβʹ , καὶ ἑκάστου ἐκκρουσθέντος κύκλου ἀνὰ αʹ , γίνονται | ||
| ' ἑαυτά , καὶ γίνεται παʹ : ηʹ θʹ ξδʹ οβʹ παʹ : εἶτα πάλιν τούτων ἕκαστον ληφθήτω τρίς , |
| ὅσα πρὸς τῷ τελείῳ προσέλαβε μέρος ποδός , οἷον ἐπὶ ἰαμβικοῦ εἶμ ' ὧτε πυσσάκω λυθεῖσα : τοῦτο μὲν οὖν | ||
| μιᾶς λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ , |
| , τοῦ γʹ πάλιν χοριάμβου . Τὸ δʹ ἐγκωμιολογικὸν ἤτοι διπενθημιμερὲς ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμεροῦς . Τὸ εʹ τροχαϊκὸν | ||
| παράγραφος . Ἡ ἐπῳδὸς κώλων ιʹ . Τὸ αʹ ἐγκωμιολογικὸν διπενθημιμερὲς ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν . Τὸ βʹ δακτυλικὸν |
| κεʹ πεντάμοιρα τῆς κατὰ μοῖραν ἐπιδιαιρέσεως ἀρκεθησομένης ἐπὶ μόνων τῶν ιδʹ πενταμοιριῶν τῶν περιεξουσῶν τὰς μεταξὺ τῶν ἄκρων φθόγγων μοίρας | ||
| δὲ Μοῖσαι . τῶν γὰρ ἄλλων στροφῶν καὶ ἀντιστροφῶν ἀνὰ ιδʹ ἐχουσῶν κῶλα αὕτη μόνη εἶχεν , ὅπερ ἦν ἄτοπον |
| . Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
| Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
| τὸ πρῶτον ἰαμβικὸν δίμετρον ἀκατάληκτον , ἔχον τὸν πρῶτον πόδα ἀνάπαιστον , τὸν δὲ δεύτερον τρίβραχυν . ἑξῆς δύο καὶ | ||
| ' ἐκφωνῶν * ἠιόνες * : τὸ γὰρ ἰαμβικὸν καὶ ἀνάπαιστον δέχεται πόδα , οἷός ἐστιν οὗτος , καὶ δάκτυλον |
| υπʹ , νομίσματα ζʹ ʂ . Τὸ τάλαντον ἄγει λίτρας ρκεʹ , νομίσματα ͵θ . Ἔστι δὲ ὁ κύαθος # | ||
| [ ἐκ στίχων ] ἀναπαιστικῶν τετραμέτρων καταληκτικῶν ⌈ καὶ ἀκαταλήκτων ρκεʹ , ὧν τελευταῖος διὰ τοὺς ἵππους τοὺς κοππατίας καὶ |
| ] νέα γὰρ ἦν . κῶλα ιβʹ . τὰ πρῶτα ἰαμβικὴ βάσις , τὰ δὲ δεύτερα τροχαϊκὰ ἑφθημιμερῆ . + | ||
| ξένων βέλτιστε : διπλῆ καὶ ἄλλη περίοδος τοῦ χοροῦ , ἰαμβικὴ καὶ αὕτη , ἐκ τριῶν μὲν διμέτρων ἀκαταλήκτων καὶ |
| ἀσυνάρτητον ἐξ ἰαμβικοῦ διμέτρου βραχυκαταλήκτου , τὸν αʹ ἔχοντος πόδα τρίβραχυν ἤγουν χορεῖον , καὶ τροχαϊκοῦ πενθημιμεροῦς . εἴη δ | ||
| [ τουτέστι δευτέραν , τετάρτην , ἕκτην ] ἴαμβον καὶ τρίβραχυν καὶ ἀνάπαιστον : τοῦτον δὲ παρὰ τοῖς κωμικοῖς συνεχῶς |
| , ἐκ δύο χοριάμβων καὶ συλλαβῆς , εἰ δὲ βούλει ἀναπαιστικὸν ἑφθημιμερές : τὸ βʹ ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον | ||
| ἀπ ' ἐλάττονος δίμετρα ἀκατάληκτα καθαρά : τὸ δὲ γʹ ἀναπαιστικὸν ἑφθημιμερές . ἐπὶ τῷ τέλει παράγραφος καὶ διπλαῖ . |
| κʹ . Ἡ λίτρα ἔχει # ιβʹ . Ἡ δὲ οὐγγία δραχμὰϲ ηʹ , αἵτινεϲ καὶ ὁλκαὶ λέγονται . Ἡ | ||
| κοδράντης , ἡ δὲ δραχμὴ ἔχει κεράτια ιηʹ , ἥτις οὐγγία καλεῖται . τὸ δὲ τάλαντον λίτρας ρκεʹ καὶ λεπτὰς |
| ὀβολοὺς μηʹ , θέρμους οβʹ , κεράτια ρμδʹ , χαλκοῦς τπδʹ , νομίσματα Ϛʹ . καλεῖται δὲ ἡ # τετρασάριον | ||
| καυθέντων καὶ σβεσθέντων ὕδατι καὶ διηθηθέντος τοῦ ὕδατος , ⋖ τπδʹ , τοῦτ ' ἔστι λι δʹ , κηροῦ ⋖ |
| δίμετρον ἀκατάληκτον παίωνα ἔχον ἀντὶ ἰωνικοῦ : τὸ δʹ δακτυλικὸν πενθημιμερές : τὸ αὐτὸ δὲ καὶ χοριαμβικὸν δύναται εἶναι δίμετρον | ||
| τῆς ἀμφήκης . λάμπων πρόβολος ἐμός ] τὸ ηʹ ἀναπαιστικὸν πενθημιμερές . πρόβολος ] τεῖχος , ἀσφαλὴς προστάτης . πρόβολος |
| δίμετρα ἀκατάληκτα ἃ καλεῖται κρητικὰ δίρρυθμα . τὸ δὲ δʹ τροχαϊκὸν ἑφθημιμερὲς ὃ καλεῖται Εὐριπίδειον ἢ ληκύθιον , ὁ εʹ | ||
| ἑξῆς δʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , τὸ δὲ εʹ , τροχαϊκὸν ἑφθημιμερές . ὁ κζʹ ἰαμβικὸς στίχος τρίμετρος ἀκατάληκτος . |
| τὴν βάσιν : οἷον εἰ ἐκκειμένου μὲν ἑνὸς δακτύλου , διμέτρου δὲ ἀναπαιστικοῦ κατὰ μέσον πέσοι σπονδεῖος , ἄδηλον πότερα | ||
| δέ ἐστι παρὰ Ἀρχιλόχῳ ἀσυνάρτητον ἐκ δακτυλικοῦ πενθημιμεροῦς καὶ ἰαμβικοῦ διμέτρου ἀκαταλήκτου ἀλλά μ ' ὁ λυσιμελής , ὠταῖρε , |
| καταβολὴ κατὰ τῆς ἀριστερᾶς ὠμοπλάτης , εἶτ ' ἐπὶ τὴν κατακλεῖδα φέρεται , καὶ κατὰ τοῦ στήθους ὑπὸ τὴν δεξιὰν | ||
| τῆς ἀδιαφόρου . τὸ ιγʹ χοριαμβικὸν δίμετρον καταληκτικὸν εἰς ἰαμβικὴν κατακλεῖδα περαιούμενον , τουτέστιν εἰς ἀμφίβραχυν ἢ βακχεῖον διὰ τὸ |
| Στησιχόρειον τῷ Πινδαρικῷ ἰδιώματι : ὁ γὰρ τελευταῖος ἀντὶ τροχαίου ἴαμβον ἔχει . τὸ δʹ ἀναπαιστικὸν μονόμετρον ἀκατάληκτον . τὸ | ||
| τῶν αὐτῶν σύνταξις . τὸ μὲν οὖν ἰαμβικὸν μέτρον εἰς ἴαμβον ἢ πυρρίχιον καταλήγει πάντως , εἰ μὴ χωλεύοι : |
| ἐπὶ τῇ εὐχῇ πρὸς τοὺς θεατάς . τὸ ἐπίρρημα στίχων τετραμέτρων καταληκτικῶν καὶ ἀκαταλήκτων κʹ , ὧν τελευταῖος ἐπὶ τὸ | ||
| ὑμῶν ὦ θεαταί : τὸ ἐπίρρημα ἐκ στίχων ἐστὶ τροχαϊκῶν τετραμέτρων καταληκτικῶν κʹ , ὧν τελευταῖος : μηδὲν ἀττικοῦ καλεῖσθαι |
| ἁπασῶν τελευταίας συλλαβὰς εἰς μακρὰν ποιήσει τις , ὁ Ἱππώνακτος ἴαμβος ἔσται . ὅτι ἐν τῷ βυρσηναίων καλουμένῳ χορῷ ἕκαστον | ||
| ἔχειν αἱμάτων ἄγος ἐπαίροντα . στροφὴ ἑτέρα κώλων εʹ . ἴαμβος . μάντι ] ὦ . αὐτὸς ἑαυτὸν καλέσας ἐπὶ |
| εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
| λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
| . εἰσὶ δὲ τὰ μὲν δίμετρα , τὰ δὲ τρίμετρα καταληκτικὰ καὶ βραχυκατάληκτα καὶ ἀκατάληκτα . νῦν δ ' ὤρθωσας | ||
| ] ἐπὶ δακτυλικοῦ Μῶς ' ἄγε Καλλιόπα θύγατερ Διός , καταληκτικὰ δέ , ὅσα μεμειωμένον ἔχει τὸν τελευταῖον πόδα , |
| ὅμοιον εἴη τῷ τῆς ἀντιστροφῆς ἤτοι δίμετρον : τὸ Ϙʹ ἀντισπαστικὸν ἐξ ἀντισπάστου καὶ κρητικοῦ ἤτοι ἀμφιμάκρου : τὸ ζʹ | ||
| καταληκτικόν . τὸ ηʹ ἰαμβικὸν δίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ τὸ αὐτό . τὸ |
| † ἥκω δολιχῆς : σύστημα ἕτερον κατὰ περικοπὴν κώλων ὁμοίων ἀναπαιστικῶν ιδʹ , ὧν τὸ θʹ μονόμετρον , τὰ λοιπὰ | ||
| ὃ καλεῖται παροιμιακόν : τούτῳ γὰρ ἐν ταῖς ἀποθέσεσι τῶν ἀναπαιστικῶν χρῶνται . τὸ ζʹ ἰαμβικὸν δίμετρον βραχυκατάληκτον . τὸ |
| . εἰσὶν οὖν τὰ τοῦ παρόντος χοροῦ κῶλα ἀντισπαστικὰ τρίμετρα βραχυκατάληκτα δʹ , τὸ δὲ εʹ δίμετρον βραχυκατάληκτον ἤτοι ἡμιόλιον | ||
| καὶ βραχυκατάληκτα , τὰ δὲ τρίμετρα καταληκτικὰ καὶ ἀκατάληκτα καὶ βραχυκατάληκτα , ὧν τελευταῖον : ὤλετ ' ἄκλαυστος ἄιστος . |
| ἢ δακτυλικὸν ὃ καλεῖται Φαλαίκειον . τὸ βʹ τροχαϊκὸν δίμετρον καταληκτικόν , ἤτοι ἑφθημιμερὲς Εὐριπίδειον . τὸ γʹ ἰαμβικὸν ἑφθημιμερές | ||
| ἀκατάληκτον μετρούμενον ὡς οἱ ἡρωϊκοί , τὸ δεύτερον δὲ ἑξάμετρον καταληκτικόν , τὸ τρίτον πεντάμετρον ἀκατάληκτον , τὸ τέταρτον πεντάμετρον |
| ὀνομάζεσθαι αὐτοὺς πενταχῶς , πρώτους , ἀσυνθέτους , γραμμικούς , εὐθυμετρικούς , περισσάκις περισσούς . μόνον δὲ οὕτως καταμετροῦνται . | ||
| ὀνομάζεσθαι αὐτοὺς πενταχῶς , πρώτους , ἀσυνθέτους , γραμμικούς , εὐθυμετρικούς , περισσάκις περισσούς . μόνον δὲ οὕτως καταμετροῦνται . |
| οἶμαί γε τῶν νεωτέρων τὰς καρδίας ” στίχος τρίμετρος ἰαμβικὸς ἀκατάληκτος : τὸ βʹ “ πηδᾶν ὅ τι λέξει ” | ||
| δʹ κῶλα . μεθ ' ὃ ἐν εἰσθέσει ἰαμβικὸς τρίμετρος ἀκατάληκτος . τῆς βʹ περιόδου κῶλα Ϛʹ , ὧν ὁ |
| ποιῆσαι πρίν με τὰς πληγὰς λαβεῖν . ὁ ξʹ μέντοι ἰαμβικὸς ἑφθημιμερής . εἶτα κῶλον ἀντισπαστικὸν ἐξ ἐπιτρίτου πρώτου ἡμιόλιον | ||
| τοῦ τέλους τῆς ἐπῳδοῦ τὰ σημεῖα , ὡς εἴρηται . ἰαμβικὸς τρίμετρος . τάδ ' αὐτόδηλα : αὐτὰ δὲ ταῦτα |
| σημείῳ τοῦ κέντρου τῆς σελήνης ὄντος ὑπόκειται τὸ ἥμισυ καὶ ιβʹ ἐκλείπουσα ἡ σελήνη τῆς ἰδίας διαμέτρου , δῆλον ὅτι | ||
| κατὰ τὰ αὐτὰ τριχῶς : τά τε τοῦ ὅλου κύκλου ιβʹ πρὸς τὰ θʹ τῆς ΑΒΔ περιφερείας , καὶ τὰ |
| τὸν ρκʹ , τὸν ρκβʹ κώλου τμήματα δʹ , ἃ μονόμετρά ἐστι βραχυκατάληκτα . μετὰ δὲ τὸν ρκδʹ ἕτερα βʹ | ||
| ἰώ , ἢ τὸ φεῦ φεῦ ἰώ : ταῦτα γὰρ μονόμετρά ἐστιν ἀκατάληκτα διὰ τὸ ἀπηρτισμένους ἔχειν τοὺς πόδας καὶ |
| πέμπτα πενθημιμερῆ . τὰ δεύτερα καὶ τέταρτα καὶ ἕκτα ἀναπαιστικὰ ἑφθημιμερῆ . τὰ δ ' ἕβδομα τροχαϊκὰ ἑφθημιμερῆ Εὐριπίδεια . | ||
| δὲ ζʹ ἑφθημιμερές . πάρεστι δ ' εἰπεῖν ] ὅμοια ἑφθημιμερῆ εʹ . ὁμόσποροι δῆτα ] ἀντισπαστικοὶ θʹ ἡμιόλιοι . |
| δὲ ζʹ ἀκατάληκτον δίμετρον : τὰ ηʹ θʹ ιαʹ δακτυλικὰ τρίμετρα : τὸ ιʹ τροχαϊκὴ βάσις : τὰ ιβʹ ιγʹ | ||
| ἰαμβικά . εἰσὶν οὖν τὰ τοῦ παρόντος χοροῦ κῶλα ἀντισπαστικὰ τρίμετρα βραχυκατάληκτα δʹ , τὸ δὲ εʹ δίμετρον βραχυκατάληκτον ἤτοι |
| , καὶ ἀντισπαστικὰ πενθημιμερῆ καὶ ἑφθημιμερῆ καὶ ἡμιόλια καὶ δίμετρα ἀκατάληκτα καὶ τρίμετρα βραχυκατάληκτα , ὧν τελευταῖον “ μνήστορες ἐστέ | ||
| τῷ αʹ : τὸ ιʹ καὶ τὸ ιαʹ τροχαϊκὰ δίμετρα ἀκατάληκτα : τὸ ιβʹ καὶ ιγʹ , τὸ τῆς γυναικὸς |
| Περὶ χαλαζίων . ιζʹ . Περὶ ἀκροχορδόνων καὶ ἐγκανθίδων . ιηʹ . Περὶ πτερυγίων . ιθʹ . Περὶ ϲταφυλωμάτων . | ||
| ιβʹ ὦμοι , ἀπὸ ιγʹ ἕως ιζʹ κοιλία , ἀπὸ ιηʹ ἕως κʹ μηροί , ἀπὸ καʹ ἕως κγʹ μέσαι |
| θʹ ἀναπαιστικὸν ἰσοκατάληκτον . τὸ ιʹ ἀπὸ ἰαμβικῆς βάσεως εἰς χοριαμβικήν . τὸ ιαʹ δακτυλικὸν ἑφθημιμερές . τὸ ιβʹ γλυκώνειον | ||
| συζυγίαν ἔχει τροχαϊκὴν ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν χοριαμβικήν , τὴν δὲ κατάκλειδα ἐξ ἰάμβου καὶ τῆς ἀδιαφόρου |
| δὲ , ὅτι τὰς λεγομένας στάσεις φησὶν , οὐ γὰρ συντίθεται Μινουκιανῷ τὴν στάσιν ἀπὸ τούτου εἰρῆσθαι ἐτυμολογοῦντι , ἀπὸ | ||
| μὲν ἔξωθεν ἀκροβολισμοὺς τῶν ἐραστῶν εἰς πεῖραν φέρει καὶ ἄφνω συντίθεται τοῖς νεύμασιν : ἐὰν δὲ αἰτήσῃς τὸ ἔργον προσελθών |
| λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
| ' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
| τὸ δὲ βʹ παίων πρῶτος . τὸ δὲ δʹ ἤτοι δακτυλικὸν διπλοῦν ἢ τροχαϊκὸν πενθημιμερὲς εἴη ἄν . τὸ εʹ | ||
| αʹ τῆς στροφῆς . τὸ ζʹ ἐγκωμιολογικόν . τὸ ηʹ δακτυλικὸν πενθημιμερές . τὸ θʹ Στησιχόρειον ὁμοίως τῷ θʹ τῆς |
| , τὸν στέφανον τοῖς στέρνοις προσαγαγοῦσα καινῷ μοιχῷ συμπλακῆναι . καʹ . Οὖσα ξανθὴ τί ῥόδα ζητεῖς ; καὶ μὴν | ||
| ' στιν ” μονόμετρον ἐξ ἀναπαίστου καὶ σπονδείου : τὸ καʹ “ παρὰ τοῖσι θεοῖς ” μονόμετρον ἐκ βʹ ἀναπαίστων |
| καὶ πρέπον ἥρωσιν , ἡ κωμῳδία δὲ συνέσταλται εἰς τὸ τρίμετρον ἡ νέα . Τὰ πολλὰ οὖν κώλοις † τριμέτροις | ||
| , ὅ ἐστι Φερεκράτειον παρὰ συλλαβήν . τὸ ζʹ ἐπιωνικὸν τρίμετρον καταληκτικόν . ἡ αʹ συζυγία ἰωνική : ἡ βʹ |
| υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
| τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
| τετράμετροι καταληκτικοί : ἔθος γάρ ἐστι μετὰ τὰς τοιαύτας περιόδους δίστιχον ἐπιτιθέναι . ἐπὶ τῷ τέλει τῆς μὲν ἐπεκθέσεως δύο | ||
| τετράμετρον καταληκτικόν : εἰώθασι γὰρ μετὰ τὰς τοιαύτας περιόδους ἐπάγειν δίστιχον . ἐπὶ τῷ τέλει τῆς μὲν ἐπεκθέσεως δύο συνήθως |
| ἰαμβικὰς ἢ εἰς ὄνομα κύριον καταληγούσας , σπανικὸν δὲ εἰς τροχαῖον : οὗτος γὰρ ὁ ποὺς εἰς κατάληξιν κόμματος ἢ | ||
| ψύχων . Τὸ τροχαϊκὸν κατὰ μὲν τὰς περιττὰς χώρας δέχεται τροχαῖον , τρίβραχυν καὶ δάκτυλον , κατὰ δὲ τὰς ἀρτίους |
| ξʹ , πλευρὰς δὲ ρνʹ . Ταῦτα μὲν οὖν τὰ ιγʹ σχήματα [ ἤτοι ἀνομοιογώνια ὄντα ἢ ] ὑπὸ ἀνίσων | ||
| ιζʹ : ιβʹ ♎ ιζʹ ιβʹ , κλῆρος πατρὸς Ϛʹ ιγʹ , ☿ Ϛʹ κβʹ . Ὁ Ἥλιος καὶ ὁ |
| , ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ | ||
| - ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν |
| οὕτως : τὰ ιβʹ τοῦ μήκους ἐφ ' ἑαυτὰ γίνονται ρμδʹ : καὶ τὰ εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ | ||
| διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ σπθʹ πρὸς ρμδʹ . καὶ δὴ ὁμοίως κατὰ τὸν αὐτὸν λόγον τῆς |
| Ἀντωνίνου Φαωφὶ ιʹ : εἰσὶ σμγʹ , καὶ γίνονται ὁμοῦ υλβʹ . ἀφαιρῶ τὰς τξʹ , λοιπαὶ οβʹ : ταύτας | ||
| . . . . . . . . . τπδʹ υλβʹ υπϚʹ φιβʹ φοϚʹ χμηʹ ψκθʹ λεῖμμα βπλάσιον τοῦ αʹ |
| τῆς σελήνης τοὺς τῶν ἀστέρων , τὴν μὲν ἐν τῷ λβʹ ἔτει φησὶ γεγονέναι τοῦ Μεχὶρ κζʹ πρωίας , τὴν | ||
| δραχ . κʹ κόμμεως . . . . δραχ . λβʹ τοῦ φαρμάκου . . . δραχ . λϚʹ ὕδωρ |
| ιβʹ . τὸ αʹ τὸ βτερον καὶ τὸ γʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , ἃ καλεῖται Ἀνακρεόντεια ὡς κατακόρως τούτοις τοῦ | ||
| τροχαϊκὴ βάσις : τὰ ιβʹ ιγʹ χοριαμβικὰ εἰς βακχεῖον περαιούμενα δίμετρα : τὸ ιεʹ ἀναπαιστικὸν δίμετρον βραχυκατάληκτον : τὰ ιζʹ |
| ὅτε τὴν μὲν αʹ ἔχει ἀντισπαστικήν , τὰς δὲ λοιπὰς ἰαμβικάς . ἐνταῦθα δὲ ἀντιπαθής ἐστιν ἡ μῖξις αὐτοῦ . | ||
| μὲν καὶ καθαρόν , συντίθεται δὲ καὶ ἐπίμικτον πρὸς τὰς ἰαμβικάς : ὡς ἐπίπαν δέ , ὅτε καταληκτικόν ἐστιν , |
| χοριαμβικὰ ὅμοια ιβʹ . ἆρα φρονοῦσι ] τὰ κῶλα ταῦτα ἀναπαιστικά ἐστι δίμετρα καὶ μονόμετρα ηʹ . χαίρετ ' ἐν | ||
| τοῦ χοροῦ κῶλα χοριαμβικὰ , τὰ δὲ τοῦ ἑτέρου προσώπου ἀναπαιστικά . εἰσὶ δὲ τὰ τῆς πρώτης ταύτης στροφῆς κῶλα |
| Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως | ||
| ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ |
| τὸ ηʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον : ἰδίως δὲ | ||
| τὸ βʹ τροχαϊκὸν μονόμετρον ὑπερκατάληκτον . τὸ γʹ Ἰωνικὸν δίμετρον βραχυκατάληκτον . τὸ δʹ χοριαμβικὸν δίμετρον ὑπερκατάληκτον . τὸ εʹ |
| αὕτη ἀμοιβαία τοῦ ὕμνου εἴσθεσις ἐκ στίχων ἐστὶν ἀναπαιστικῶν τετραμέτρων καταληκτικῶν ιβʹ , ὧν τελευταῖος ἐπακούσατε δεξάμεναι θυσίαν καὶ τοῖς | ||
| δὲ παραβάσεως τὸ μὲν κομμάτιόν ἐστι στίχων δύο ἀναπαίστων τετραμέτρων καταληκτικῶν , αὐτὴ δὲ ἡ παράβασις ἐξ ὁμοίων στίχων τριάκοντα |
| τις ὑμῶν ὦ θεαταί : τὸ ἐπίρρημα ἐκ στίχων ἐστὶ τροχαϊκῶν τετραμέτρων καταληκτικῶν κʹ , ὧν τελευταῖος : μηδὲν ἀττικοῦ | ||
| ἀντεπίρρημα ὅμοιον κατὰ πάντα τῷ ἐπιρρήματι , ἐκ στίχων κʹ τροχαϊκῶν τε - τραμέτρων καταληκτικῶν συγκείμενον , ὧν ὁ τελευταῖος |
| τε τῶν χμʹ καὶ ὁ τῶν χμηʹ καὶ ὁ τῶν χλʹ . ὡς ἔχουσιν αἱ καταγραφαί . Ὅτι δὲ οὐ | ||
| στάδια ͵ατʹ : Κῶ περίμετρος στάδια φνʹ : Σάμου στάδια χλʹ . Ἰκαρία δὲ ἐστὶ μακρὰ , τραχεῖα , μῆκος |
| , ἀπὸ μὲν τριμέτρου καταληκτικόν . ἀτακτότερον δὲ ἔχει τὴν τροχαϊκὴν βάσιν ἑπτάσημον . τὸ δὲ δεύτερον πενθημιμερὲς κοινὸν δακτυλικὸν | ||
| ἀναπαιστικὸν μονόμετρον ὑπερκατάληκτον . τὸ βʹ ἰωνικὸν δίμετρον καταληκτικὸν εἰς τροχαϊκὴν συζυγίαν . τὸ γʹ Φαλαίκειον ἀντισπαστικόν . τὸ δʹ |
| εἰκοσίκωλον , ὧν τὰ μὲν βʹ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ ἑφθημιμεροῦς : τὰ δὲ ἑξῆς δύο ἐν ἐκθέσει ἰαμβεῖα | ||
| . Ἄλλο ἀσυνάρτητον ὁμοίως κατὰ τὴν πρώτην ἀντιπάθειαν , ἐκ τροχαϊκοῦ διμέτρου ἀκαταλήκτου καὶ ἰαμβικοῦ ἑφθημιμεροῦς , ὅπερ ἐὰν παραλλάξῃ |
| ἀκατάληκτος . τὸ δʹ περίοδος καταληκτικὴ ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς : εἰ δὲ βούλει , χοριαμβικὸν δίμετρον καταληκτικὸν | ||
| Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται δὲ ἐκ τροχαϊκῆς συζυγίας , χοριάμβου καὶ Ἰωνικῆς καταληκτικῆς , ἤτοι ἀναπαίστου |
| τῆς στροφῆς . Τὸ εʹ τροχαϊκὸν δίμετρον ἀκατάληκτον . Τὸ Ϛʹ Ἰωνικὸν δίμετρον καταληκτικὸν ἀπ ' ἐλάττονος ἐκ τροχαϊκῆς συζυγίας | ||
| τὸ ἀνάπαλιν : ἐκ μονάδος καὶ δυάδος καὶ ἑαυτῆς τὸν Ϛʹ ποιεῖ κατὰ σύνθεσιν , ὅς ἐστι κυρίως πρῶτος τέλειος |
| ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
| ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
| τὰ δὲ παʹ τρὶς σμγʹ : ηʹ θʹ ξδʹ οβʹ παʹ ρϞβʹ σιϚʹ σμγʹ : εἶτα προστίθεμεν τοῖς σμγʹ ἀπὸ | ||
| θʹ , κατὰ δὲ ἐμβαδομετρίαν ὡς ὁ κεʹ πρὸς τὸν παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν |
| , τὰ δὲ πέρατα ἐπὶ μασχάλην ἀπαθῆ . Κεφ . οθʹ . Ἡ μεσότης ὑπὸ μασχάλην βραχίονος πεπονθότος αἱ ἀρχαὶ | ||
| τῶν ρηʹ ἐτῶν νδʹ καὶ τὰς ἐλαχίστας κεʹ : γίνονται οθʹ . τῷ δὲ Ἄρει τῆς αὐτῆς αἱρέσεως ὄντι ἡ |
| δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει , ἥτις οἰκειότητα πρὸς τροχαϊκόν | ||
| τὸν δεύτερον ἔχων πόδα πεντασύλλαβον . τὸ τρίτον περίοδος ἐξ ἰαμβικῆς καὶ τροχαϊκῆς βάσεως . τὸ δʹ ἀσυνάρτητον ἐξ ἀναπαιστικῆς |
| ὁ Α ἄρα τοῦ Γ ἐστιν ἐπόγδοος . Τὰ ἓξ ἐπόγδοα διαστήματα μείζονά ἐστι διαστήματος ἑνὸς διπλασίου . ἔστω γὰρ | ||
| ἐν λόγῳ μὲν ἐπογδόῳ : τὰ γὰρ θʹ τῶν ηʹ ἐπόγδοα : ἡ δὲ τάσις ἐλέχθη τόνος . ὅτι δὲ |
| ἐξ ἀντισπάστου , διτροχαίου καὶ ἀναπαίστου . καλεῖται δὲ τοῦτο Φαλαίκειον , ὅτε τὴν μὲν αʹ ἔχει ἀντισπαστικήν , τὰς | ||
| συζυγίαν . Τὸ γʹ ἀντισπαστικὸν τρίμετρον καταληκτικόν , ὃ καλεῖται Φαλαίκειον : Φάλαικος γὰρ τούτου εὑρετής . ἔχει δὲ τὴν |
| βʹ τὰ δʹ διπλάσια , τῶν δὲ δʹ τὰ Ϛʹ ἡμιόλια . ἵνα δὲ ἀναλόγως μέσον ᾖ , δεῖ αὐτὸ | ||
| ἠέ καὶ τὸ ὀά ἰδίως τίθει ἐκτὸς τῶν κώλων ἰωνικὰ ἡμιόλια βʹ : τὸ δὲ γʹ χοριαμβικόν ἑφθημιμερῆ βʹ προσοδιακὸν |
| . ἀτεχνῶς ] ἐκ παντὸς τρόπου . Γ ] τοῦτο παρατέλευτον λέγεται . πάντα ⌈ σοι , φησίν , δίδωμι | ||
| φησί , τὰ εἰς ρ βραχύτονα ἔχοντα τὴν ει δίφθογγον παρατέλευτον μετατιθέντες τὸ ι εἰς ἕτερον ρ προφέρονται τὸ κείρω |
| βάξις ] φήμη τοῦ πυρός . ἐτητύμως ] ἀληθῶς . ἴαμβοι . θεῖον ] ἐκ θεοῦ . ἐστὶ ] τοῦτο | ||
| αἵματι . θ ἰαμβικοὶ στίχοι γʹ . + κατὰ περικοπὴν ἴαμβοι γʹ , εἶτα παράγραφος . πως ] παρέλκον . |
| οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ | ||
| ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους |
| πρὸς τὴν ΛΓ , διὰ τὸ νῦν ἄρα δειχθὲν τοῦ ογʹ τὸ πρῶτον λόγος τοῦ ΓΜ πρὸς τὸ ΕΗ δοθείς | ||
| ἐν τῷ γʹ ὅρῳ ἔτη ογʹ : καὶ ἐτελεύτησεν τῷ ογʹ ἔτει . εἰ δὲ ὁ τῆς Σελήνης γνώμων ὑπερεῖχεν |
| , ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις καὶ ἀναπαίστοις διμέτρων ὀκτωκαίδεκα : ὧν τὰ μὲν αʹ , βʹ , | ||
| τοῦ μακροῦ καὶ τῆς ἐκθέσεως τούτου παράγραφος . κώλων δέκα διμέτρων πλὴν τοῦ τελευταίου καταληκτικῶν . ἐπὶ πᾶσι παράγραφος . |
| σελιδίου , γίνεται # νϚ ιζ . πάλιν τὰ τοῦ ηʹ σελιδίου ἑξηκοστῶν μγ κδ ἐπὶ τὰ τοῦ ἕκτου σελιδίου | ||
| δʹ Ϛʹ , Ϛʹ καὶ Ϛʹ ιβʹ , ιβʹ καὶ ηʹ κʹ , κʹ καὶ ιʹ λʹ : ὥστε εἶεν |
| τροχαϊκὴν ἀλλὰ ἰαμβικὴν καὶ μὴ ἐν τῇ αʹ χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν | ||
| πυρριχίου : τρέπει δὲ πολλάκις ἐν τῇ πρώτῃ διποδίᾳ τὸν σπονδεῖον εἰς ἴαμβον κατὰ πᾶν μέγεθος μέτρου . πρόεισι δ |
| δίδασκε καὶ κόλαζε : διπλῆ καὶ ἔκθεσις εἰς ἰάμβους τριμέτρους ἀκαταλήκτους ηʹ . κόλαζε : ἀντὶ τοῦ ” παίδευε “ | ||
| σύστημα κατὰ περικοπήν . διπλῆ ἡ εἴσθεσις εἰς ἰάμβους τριμέτρους ἀκαταλήκτους κγʹ . ἰαμβικοὶ τρίμετροι ἀκατάληκτοι κγʹ , ὧν τελευταῖος |
| Τὸ ηʹ ὅμοιον τῷ αʹ τῆς στροφῆς . Τὸ θʹ Στησιχόρειον ἐξ ἐπιτρίτων Στησιχόρου εὑρόντος αὐτό : δεύτεροι δὲ οἱ | ||
| συλλαβῇ τοῦ Ἀρχιλοχείου ἢ τοῦ Ἐρασμονίδη Χαρίλαε . τὸ ιαʹ Στησιχόρειον . Γέγραφε τὴν ᾠδὴν Ἡροδότῳ τῷ Θηβαίῳ , τινὲς |
| ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
| δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
| , τὸ δὲ καὶ ἀποδέχεται . † ἐν εἰσθέσει δὲ ἰαμβικὴν τὴν “ ἄληθες ὦπίτριπτε ” . Γ καὶ συκοφάντης | ||
| : ἔστι γὰρ ἐκ χοριαμβικοῦ ἐπιμίκτου , τοῦ τὴν δευτέραν ἰαμβικὴν ἔχοντος καὶ τροχαϊκοῦ ἑφθημιμεροῦς : Εὔιε κισσοχαῖτ ' ἄναξ |
| ἐστιν ὁμοῦ πέντε , τετράκις ποιῶ τὰ ρκʹ , γίνεται υπʹ , μερίζω παρὰ τὸν εʹ καὶ ἔχω μέρος ἓν | ||
| . Σικύου ἀγρίου ῥίζης ⋖ φοϚʹ , σκίλλης καθαρᾶς ⋖ υπʹ , ἀσφοδέλου ῥίζης ⋖ ρμδʹ , ἐλαίου ῥαφανίνου ⋖ |
| † : . , : . , ἰαμβικοὶ τρίμετροι βʹ ἀντισπαστικὰ κῶλα δʹ ὅμοια τοῖς πρὸ αὐτῶν : ἔοικε δὲ | ||
| τὸ τίμιον ἔδαφος . ἑτέρα ἀντιστροφή . τὰ δὲ κῶλα ἀντισπαστικὰ τρίμετρα ὅμοια τοῖς ἄνω βʹ . τὸ δὲ γʹ |
| δὲ οβʹ γίνεται σιϚʹ , τὰ δὲ ξδʹ τρὶς γίνεται ρϞβʹ . τούτων ἐπίτριτα τὰ σνϚʹ , ἅτινα πρὸς σμγʹ | ||
| τοῖς ποδαγρικοῖς : λιθαργύρου ⋖ ϞϚʹ , ἐλαίου παλαιοῦ ⋖ ρϞβʹ , οἴνου παλαιοῦ καὶ κιρροῦ διαυγοῦς καὶ ἠρέμα γλυκέος |
| καὶ μέγεθος μεγέθει , οὕτω καὶ ῥοπὴ ῥοπῇ : οἷον μνᾶ πρὸς μνᾶν καὶ πρὸς τάλαντον ἴση ῥηθείη καὶ ἄνισος | ||
| νήσων μία Ἄνδρος . . . . μνῶν ] ἡ μνᾶ ἐστι μέγιστον τῶν τοῦ ταλάντου μερῶν , ὡς εἰς |
| χοροῦ προῳδικὴ , διὰ τὸ προτίθεσθαι τῆς κορωνίδος , ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις ηʹ . ὧν τὰ | ||
| ] λέγω . Αὐλίδος ] τῆς Εὐρίπου . στροφὴ ἑτέρα κώλων ιβʹ . μολοῦσαι ] ἐρχόμεναι . κακόσχολοι ] ἐπὶ |
| Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας | ||
| ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον . |
| : μέγαρον βλέφαρον γάργαρον ἔντερον ἔλλερον . τὸ μέντοι πτερόν δισύλλαβον , καὶ τὸ σαυρόν ἀττικῶς . Τὰ εἰς ΡΟΝ | ||
| γένους λάβωμεν ἀλλὰ τὰ συμβεβηκότα αὐτῷ , τὸ εἶναι αὐτὸ δισύλλαβον , τὸ καλεῖσθαι αὐτὸ γένος , τὸ καθολικῶς αὐτὸ |
| εἰσὶ χοριαμβικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικὰ , ἤτοι ἑφθημιμερῆ , πενθημιμερῆ καὶ ἡμιόλια , καὶ τρίμετρα βραχυκατάληκτα καὶ καταληκτικά . | ||
| , κώλων ἀναπαιστικῶν εʹ . ὧν τὰ αʹ , βʹ πενθημιμερῆ . τὰ γʹ , δʹ δίμετρα ἀκατάληκτα . τὸ |
| τὰ τροχαικά : τὸ βʹ ὅμοιον δίμετρον καταληκτικὸν ἤτοι ἑφθημιμερὲς Εὐριπίδειον : τὸ γʹ ὅμοιον τὸν τρίτον ἔχον πόδα ἴαμβον | ||
| τούτου λέγουσιν , οὔ μοι δοκεῖ εὔλογα . Τὸ ζʹ Εὐριπίδειον ἢ ληκύθιον : τροχαϊκὸν γάρ ἐστιν ἑφθημιμερές . Τὸ |
| ιβʹ . ἡμέτερον : + ἰὼ ἰώ : σύστημα ἕτερον ἀμοιβαῖον κατὰ περικοπὴν ἐν ἐκθέσει κώλων ιβʹ , ὧν τὸ | ||
| . τοῦθ ' ἕτερον αὖ μεῖζον : διπλῆ καὶ μέλος ἀμοιβαῖον , οὗ ἡ ἀρχὴ ” τοῦθ ' ἕτερον αὖ |
| τὰ φύσει συνεστῶτα τὰ μὲν πολυσύνθετα αὐτῶν καὶ συγκρίματα καλούμενα ἀναλύσεις εἰς τὸ ἐπὶ πᾶσι τοῖς συγκριθεῖσιν εἶδος : οἷον | ||
| ὀξύτερον , ἀνάλυσις δὲ τοὐναντίον . τὰς ἀγωγὰς καὶ τὰς ἀναλύσεις δεῖ μελῳδεῖν ἐκτείνοντας μᾶλλον καὶ μὴ βραχύνοντας τοὺς φθόγγους |
| πρὸς παιδοποιΐαν . Ἐλαίου παλαιοτάτου # αʹ , σκώληκας τιθυμάλλου ϞϚʹ : λάμβανε δὲ τὰς καμπὰς ἐν τῷ θέρει , | ||
| μηʹ , τοῦτ ' ἔστιν γο Ϛʹ , κηροῦ ⋖ ϞϚʹ , τοῦτ ' ἔστιν γο ιβʹ , πίσσης ξηρᾶς |