| μέσος τοῦ τε θʹ καὶ γʹ διαστήματος , καὶ οὗτος ἀριθμητικός : ὑπερέχει γὰρ καὶ ὑπερέχεται ͵αρνβ . καʹ ͵βφϘβ | ||
| ποιητικός , μουσικός , ἀστρονόμος ἀστρονομικός , γεωμέτρης γεωμετρικός , ἀριθμητικός , στατικός , ἰατρός ἰατρικός . καὶ τὰ ἐπιρρήματα |
| ἄξων . ἀποδέδωκεν γὰρ ἂν αὐτὸ σὺν τῷ ἄξονι ὁ γεωμέτρης : ἀλλ ' εἴ τις ἄξων , οὗτος καὶ | ||
| ' ἀδυνάτου . οἷον ὡς ἐπὶ τοῦ παραδείγματος βουλόμενος ὁ γεωμέτρης δεῖξαι , ὅτι ἡ διάμετρος τῇ πλευρᾷ ἀσύμμετρός ἐστι |
| στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ | ||
| οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος |
| δὲ ἡ μονὰς κατὰ τὸν ἕνα θεόν : πᾶς γὰρ ἀριθμὸς νεώτερος κόσμου , ὡς καὶ χρόνος , ὁ δὲ | ||
| γὰρ ἄλλα πάντα τὸν ἀριθμὸν φαίνεται μιμούμενα , ὁ δὲ ἀριθμὸς παρ ' ἑαυτοῦ ἀρχὰς μονάδα καὶ δυάδα . ὡς |
| . Εἰκοστὴ Θάσος . . . Σκύλαξ : Καρυανδεύς : μαθηματικὸς καὶ μουσικός . Περίπλουν τῶν ἐκτὸς τῶν Ἡρακλέους στηλῶν | ||
| παραγενόμενον αὐτόν , ἔφη : Οὐδὲν αὐτοῦ ἀχρωμότερον . Ἀφυὴς μαθηματικὸς μοιρολογῶν τινα ἔφη : Οὐκ ἦν σοι κατὰ γένος |
| τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ | ||
| εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ |
| Ἰδοὺ Ῥόδος , ἰδοὺ καὶ πήδημα : ὅτι πᾶς λόγος πέριττος ἐστίν , ἂν μὴ πρόχειρος ἡ ἀπόδειξις τοῦ πράγματος | ||
| Ἰδοὺ Ῥόδος , ἰδοὺ καὶ πήδημα : ὅτι πᾶς λόγος πέριττος ἐστίν , ἂν μὴ πρόχειρος ἡ ἀπόδειξις τοῦ πράγματος |
| διαιρετὸς καὶ ἀδιαίρετος : ἐπὶ μὲν τῶν ἀύλων εἰδῶν παντάπασιν ἀδιαίρετος ὅ τε χρόνος καὶ αὐτὸς ὁ νοῦς , ὅταν | ||
| ἀλλὰ μία ἐν ἑκάστῃ φύσει , πότερον ἀμέριστος αὕτη καὶ ἀδιαίρετος ἢ μεριστή τις καὶ πολυδύναμος . καὶ εἰ μὲν |
| λόγους ὅλα μέρεσι τοῖς αὐτῶν συγκρίνουσα , τὸ δὲ διαστηματικὸν ἀριθμητικὴ γνωματεύουσα , μερίζουσα τὸ ὅλον , τὰς τῶν μερῶν | ||
| , Ϛʹ ηʹ ιβʹ , τουτέστι τῷ τρίτῳ : καὶ ἀριθμητικὴ δὲ μεσότης ληφθέντος τοῦ Ϛʹ ἡμιολίου μὲν λόγου τῶν |
| καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
| ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
| μεγέθεσιν ἢ βάρεσιν ἢ χρόνοις ἤ τισιν ἄλλοις διπλασίοις ἢ τριπλασίοις ἤ τισι τοιούτοις πολλαπλασίοις ἢ ἐπιμορίοις ] . γεωμετρικὴ | ||
| : ἀεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος ἐν διπλασίοις ἢ τριπλασίοις ἢ συνόλως ἀναλογοῦσιν ἕβδομος ἀριθμὸς κύβος τε καὶ τετράγωνός |
| ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ . | ||
| ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς |
| γὰρ τέχνην ἔστι ψευδὴς συλλογισμός , οἷον κατὰ γεωμετρίαν ὁ γεωμετρικός Παρὰ τὰς γεωμετρικὰς ἀρχάς ἐστιν ὁ τοῦ Βρύσωνος τετραγωνισμός | ||
| Οὔχ , ὅσον γέ με εἰδέναι . Ἆρ ' οὐδὲ γεωμετρικός ; Πάντως δήπου , ὦ Σώκρατες . Ἦ καὶ |
| ρξβ . δῆλον οὖν , ὅτι ὁ Α τοῦ Β ὑφημιόλιός ἐστι καὶ οὐ μετρεῖ αὐτόν . ὁμοίως καὶ οἱ | ||
| ὁ β τοῦ γ κοινῶς μὲν ὑποεπιμόριος , ἰδικῶς δὲ ὑφημιόλιός ἐστιν , ὡσαύτως δὲ ὁ γ τοῦ δ κοινῶς |
| τῇ τέχνῃ , οἷον ἐξόχως . Πλάτων γοῦν ὁ φιλόσοφος διαιρούμενος τὰς πολιτείας τὴν μὲν πρώτως ἔχειν φησίν , τὴν | ||
| τοῦτο ἔστι διαφορά : ὁ μὲν γὰρ ἄρτιος εἰς ἄνισα διαιρούμενος ὁμοειδεῖς τοὺς ἀνίσους ποιεῖται , οἷον ὁ η εἰς |
| κίνησις , πᾶσα κίνησις ἀτελής : οὐ γὰρ ἦν ἡμῖν ὡρισμένος ὁ κατηγορούμενος . πάλιν δὲ ὁ τοῦδέ τινος πρὸς | ||
| ὅτι πόρρω τοῦ παρόντος νῦν . Τὸ δὲ ποτὲ χρόνος ὡρισμένος ὑπὸ τοῦ παρόντος νῦν καὶ τοῦ προτέρου καὶ τοῦ |
| τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
| . Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
| ἀποδείκνυσι λόγον . ἐπεὶ οὖν κατὰ Πυθαγόραν τὸν Σάμιον ἡ τριὰς εἰς γάμον συνελθοῦσα τῇ τετράδι ἀπεγέννησε τὴν ἑβδομάδα καὶ | ||
| τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος . ἔστι δὲ τριὰς ἐπῳδική . ἥκω σεβίζων ] αἱ ἑξῆς αὗται συστημάτων |
| τῇ αʹ . εἶτα ἀπ ' ἄλλης ἀρχῆς ἡ τρίτη ἑβδομὰς τὰς αὐτὰς διαθέσεις ποιεῖ τῇ ὑδατικῇ σφαίρᾳ , ἃς | ||
| ἑβδομάς . . . § : καλεῖται δ ' ἡ ἑβδομὰς ὑπὸ τῶν κυρίως τοῖς ὀνόμασιν εἰωθότων χρῆσθαι καὶ τελεσφόρος |
| , ἀφ ' ὧν λαμβάνεται πᾶσα μεσότης , ἀριθμητική , ἁρμονική , γεωμετρική . τούτων ἡ μὲν ἴσῳ ἀριθμῷ ὑπερέχει | ||
| τὸ ποιὸν ἀντὶ τοῦ περὶ τοὺς ὅρους . ἡ μέντοι ἁρμονική , ὡς περὶ ἑκάτερον ἔχουσα , διὰ τοῦτο τῶν |
| ἐντὸς τῶν Ἡρακλείων στηλῶν ] κειμένης θαλάσσης , ἣν ὁ περιέχων τὴν γῆν ὠκεανὸς [ πρὸς ] ἑσπέρας ἐπιτελεῖ , | ||
| διὰ τὸ τὰς δεκάτας ἐπέχειν , περὶ τὰ υ που περιέχων ἔτη καταλαμβάνεται . Τούτοις δ ' ἀκολούθως ἐζητήσαμεν τὰς |
| οὓς κῆρες φορέουσι μελαινάων ἐπὶ νηῶν . ἀθετεῖται , ὅτι περισσός : ἐν γὰρ τῷ κηρεσσιφορήτους τὸ αὐτὸ συντόμως εἴρηκεν | ||
| λοιπὸς ὁ ΓΑ ἄρτιός ἐστιν . Ἐπεὶ γὰρ ὁ ΑΒ περισσός ἐστιν , ἀφῃρήσθω μονὰς ἡ ΒΔ : λοιπὸς ἄρα |
| δεξιῷ ποδὶ τοῦ Ὀφιούχου , καὶ ὅτι ὁ πέμπτος καὶ ἕβδομος σφόνδυλος ἐπ ' εὐθείας εἰσὶ τῷ ἐν μέσῳ τῷ | ||
| ἤτοι κοπροφάγος . Τοιοῦτοι γὰρ οἱ ἐκεῖσε βόες . Βοῦς ἕβδομος : ἐπὶ τῶν ἀναισθήτων . Ἕβδομος δὲ , ὅτι |
| τὰ ἄκρα τῆς Ἰνδικῆς . , πάντα δὲ ταῦτα λέγει γεωμετρικῶς , ἐλέγχων οὐ πιθανῶς . ταῦτα δὲ καὶ αὐτὸς | ||
| , οὕτω καὶ τούτων ἀκροᾶται : εἰ μὲν γὰρ ἤχθη γεωμετρικῶς , δῆλον ὅτι τραφεὶς κατὰ γεωμετρικὴν λεπτουργίαν ἀπαιτήσει τὸν |
| ' ἐκάλεσαν ὅτι τῶν σχημάτων ὁ κύκλος ἀπήρτισται καὶ ἔστι τέλειος . καὶ τὸ ποτήριον οὖν τὸ δεχόμενον τὴν ὑγρὰν | ||
| καὶ ἀεὶ ἄλλη : ἡ δὲ κίνησις οὐκ ἦν ἡ τέλειος ἐνέργεια , καθάπερ εἴρηται πρότερον , ἀλλ ' ἡ |
| ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
| τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
| μυριάδων κεʹ καὶ ἔτι δισχιλίων σταδίων σύνεγγυς δείκνυσιν Ἐρατοσθένης , Ἀρχιμήδης δὲ τοῦ κύκλου τὴν περιφέρειαν εἰς εὐθεῖαν ἐκτεινομένην τῆς | ||
| ῥᾳδίως ἅπασαν ἀρδευόντων διά τινος μηχανῆς , ἣν ἐπενόησε μὲν Ἀρχιμήδης ὁ Συρακόσιος , ὀνομάζεται δὲ ἀπὸ τοῦ σχήματος κοχλίας |
| ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
| τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
| τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
| εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
| γίνεται . Τόνος δὲ λέγεται τετραχῶς : καὶ γὰρ ὡς φθόγγος καὶ ὡς διάστημα καὶ ὡς τόπος φωνῆς καὶ ὡς | ||
| τἀναντία συνισταμένῃ : ὅτε γὰρ τῷ διὰ τεσσάρων τινὸς βαρύτερος φθόγγος τῷ διὰ πέντε τοῦ ὁμοφώνου αὐτῷ κατὰ τὸ βαρύτερον |
| ἁπλῆ τίς ἐστι κατηγορία , ἡ δὲ τῶν πρός τι σύνθετος , ῥᾷον δὲ τὰ ἁπλᾶ μανθάνομεν τῶν πολυσχεδῶν ; | ||
| καὶ ὁ τῇδε ἵππος ἐκ τῶν τῇδε φύσεων ἀνομοίων οὐσῶν σύνθετος ᾖ . πάντα γὰρ ταῦτα κωμῳδοῦντός ἐστι μᾶλλον ἢ |
| ἀναλογίαν σώζων γεωμετρικήν , πρόλογος μὲν πρὸς τὸν ἐλάττονα , ὑπόλογος δὲ πρὸς τὸν μείζονα , οὐδέποτε δὲ πλείονες : | ||
| ' ἑκάτερα αὐτοῦ ἀποκρίνηται , πρὸς μὲν τὸν μείζονα ὡς ὑπόλογος , πρὸς δὲ τὸν ἐλάσσονα ὡς πρόλογος , συνημμένη |
| τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
| τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
| Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
| ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
| ἰδέα οὐδέποτε ἥξει . Οὐ δῆτα . Ἄμοιρα δὴ τοῦ ἀρτίου τὰ τρία . Ἄμοιρα . Ἀνάρτιος ἄρα ἡ τριάς | ||
| τοιούτοις . ἔοικε γὰρ ὁ γεωμέτρης πάντα ἀριθμὸν τὸν ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενον κατὰ ἄρτιον ἀριθμὸν ἀρτιάκις ἄρτιον ὀνομάζειν , |
| . ὅταν οὖν μάλιστα ἡ ☾ τῷ φωτὶ καὶ τοῖς ἀριθμοῖς ἀφαιρεῖ , ἔσονται διπλαῖ σημασίαι . καὶ οἱ πυρετοὶ | ||
| ☾ οὔσης ♑ κατακλιθῇ τις ἀφαιρούσης τῆς ☾ καὶ τοῖς ἀριθμοῖς καὶ τῷ φωτὶ ♄ συνόντος αὐτῇ , ἢ ☍ |
| ; εἰ γὰρ μετρήσει αὐτὸν περισσάκις , ἔσται ὁ Α περισσάκις περισσός , πᾶς δὲ περισσάκις περισσὸς ἥμισυ οὐκ ἔχει | ||
| τε γὰρ ἀρτίου ἀρτιάκις μετρεῖται καὶ ὁ αὐτὸς ὑπὸ ἀρτίου περισσάκις , οὐδετέρῳ δὲ τῶν προτέρων τοῦθ ' ἅμα συμβέβηκεν |
| ΒΓ τοῦ ΔΖ ἡμιόλιος , ὁ δὲ ΔΖ τοῦ Θ ἐπίτριτος : φημὶ τὸν ΒΓ τοῦ Θ διπλάσιον εἶναι . | ||
| τὸ τρίτον αὐτοῦ , ἤγουν τὸ Γ . Ὁ Η ἐπίτριτος τοῦ Ϛʹ . Περιέχει γὰρ ὅλον τὸν Ϛʹ , |
| ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
| ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
| , ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
| λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
| , Β , Γ : ὅπερ ἔδει δεῖξαι . Ἐὰν ἐλάχιστος ἀριθμὸς ὑπὸ πρώτων ἀριθμῶν μετρῆται , ὑπ ' οὐδενὸς | ||
| δυάδος : ἔστω ʂ α Μο β . ὁ ἄρα ἐλάχιστος ἔσται Μο β # ʂ α . Καὶ ἐπειδὴ |
| διαλαβεῖν : κοινὸν γὰρ τοῦτο τὸ βιβλίον γεωμετρίας τε καὶ ἀριθμητικῆς καὶ μουσικῆς καὶ πάσης ἁπλῶς τῆς μαθηματικῆς ἐπιστήμης . | ||
| Ϛʹ τοῦ εʹ : κοινὸν τὸ θεώρημα γεωμετρικῆς ἀναλογίας καὶ ἀριθμητικῆς . Ἐν τῷ λόγῳ ἄρα εἰσὶ τῆς ἀριθμητικῆς ἀναλογίας |
| ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
| ' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
| ἀριθμοὶ πίστις : αὐτίκα ὁ ἀπὸ μονάδος ἐν διπλασίονι λόγῳ παραυξηθεὶς ἕβδομος , ὁ τέσσαρα καὶ ἑξήκοντα , τετράγωνος μέν | ||
| ἐπὶ τέσσαρα τετράκις : καὶ πάλιν ὁ ἐν τριπλασίονι λόγῳ παραυξηθεὶς ἀπὸ μονάδος ἕβδομος , ὁ ἑπτακόσια εἰκοσιεννέα , τετράγωνος |
| , ἄρχοντος δὲ νοῦ ὅμως ἀνάγκης . Ὁ μὲν γὰρ νοητὸς μόνον λόγος , καὶ οὐκ ἂν γένοιτο ἄλλος μόνον | ||
| τὸ ἔξω . Καὶ μέχρι τοῦ πρὸ τοῦ εἰδώλου ὁ νοητὸς κόσμος ἅπας τέλεος ἐκ πάντων νοητῶν , ὥσπερ ὅδε |
| γιγνόμενος ποιεῖ τὸν ἡμιόλιον λόγον , ἐξ ὧν ἀμφοτέρων ὁ διπλάσιος σύγκειται λόγος , τοῦ δʹ φμηὶ πρὸς τὸν βʹ | ||
| τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον ἤτοι διπλάσιος ἤτοι δὶς δίς , ὅπερ ἐδήλωσεν εἰπών : τὰ |
| τἆλλα κατὰ τὸ ἑξῆς εἴδη . ὑπόδειγμα δὲ πάντων εὐτάκτων πολυπλασίων σαφὲς ἕξομεν ἐὰν ἐκθέμενοι τὸν ἀπὸ μονάδος συνεχῆ ἀριθμὸν | ||
| ἀρτιοπερίττων δὲ πέντε , πάσας δὲ λόγων τῶν ἐν ἀριθμοῖς πολυπλασίων καὶ ἐπιμερῶν καὶ ὑποεπιμερῶν περιέχει , πάσας δ ' |
| ἔχει προνομίαν : ἀεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος ἐν διπλασίοις ἢ τριπλασίοις ἢ συνόλως ἀναλογοῦσιν ἕβδομος ἀριθμὸς κύβος τε | ||
| καὶ τετράγωνοί εἰσι , δῆλον οὕτως . ἐν μὲν τοῖς διπλασίοις , κειμένων πλειόνων ἀριθμῶν οἷον αʹ βʹ γʹ δʹ |
| ὅρους τοῦ ὅρου κατ ' εἶδος ἡμῖν παραστήσουσιν . Ἔστιν ὅρος ὅρου ἕτερος λόγος ὁ δηλῶν διὰ τί ἐστι , | ||
| , ποιεῖ καὶ ὁ ὅρος , διὰ τί ἐπενοήθη ὁ ὅρος ; καὶ λέγομεν διὰ τὸ γνῶναι ἡμᾶς τὰς συστατικὰς |
| καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
| τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
| ] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
| , οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
| περὶ τούτων ἅλις . Γράμμα ἐστὶ χαρακτὴρ καὶ τύπος στοιχείου εἰδοποιούμενος ποιότητος καὶ ποσότητος γραμμῶν . Διενήνοχε δὲ ἀλλήλων τὰ | ||
| ἀνενδεές . εἰ δέ τις λεγόμενος λόγος μὴ καθάπερ εἶπον εἰδοποιούμενος , ἀλλ ' ἐνδεὴς ὢν τούτων λέγοιτο εἶναι διάλογος |
| τὰ χρησιμώτατα ἐκλέγουσαν ἀφ ' ἑκατέρας , οὐδείς ἐστι χαρακτὴρ ἴδιος , ἀλλ ' ὡς ἂν οἱ μετιόντες αὐτὴν προαιρέσεως | ||
| , οἷον ἄρσεως ἢ βάσεως , ἢ ὅλου ποδός : ἴδιος δὲ ῥυθμοποιίας ὁ παραλλάσσων ταῦτα τὰ μεγέθη εἴτ ' |
| σῴαν ἔχων τὴν φρόνησιν καὶ ταῖς ἀρεταῖς ἁπάσαις κοσμούμενος , εἰδικῶς δ ' ἂν λέγοιτο σώφρων ὁ τοῖς κατὰ γεῦσιν | ||
| ἐπὸς γάρ ἐστιν ἀπὸ τοῦ ἐπεῖναι κατὰ τὴν ἀποτομήν . εἰδικῶς μέντοι Ὅμηρος οἶδεν ὀπόν τινα λεγόμενον , ὡς ὅταν |
| τοῦ κακῶς ποιεῖν πολεμοῦντες ἀλλήλους ; πότερα πρὸς τῶν θεῶν ἐπιστατεῖ τις τοῦ βίου νυνὶ τύχη ἄγροικος ἡμῶν , οὔτε | ||
| γὰρ δικαστὴς οὔτε θεατὴς ὥσπερ ποιηταῖς ἐπιτιμήσων τε καὶ ἄρξων ἐπιστατεῖ παρ ' ἡμῖν . Λέγωμεν δή , ὡς ἔοικεν |
| κατὰ μὲν ἑβδομάδα τασσομένου , τοῦ δὲ ψυχικοῦ καθ ' ἑξάδα , τὸ φυτικὸν ἀναγκαίως κατὰ τὴν πεντάδα πίπτει , | ||
| τὴν ὁλότητα . ὅτι ἑπτὰ τῶν σφαιρῶν οὐσῶν κατὰ τὴν ἑξάδα τὰ διαστήματά ἐστι : μονάδι γὰρ ἀεὶ ἐλάττονα . |
| ἐστὶν ἀποστηματώδης ἐκ παχέων χυμῶν , ἐν τοῖς σαρκώδεσι τόποις συνιστάμενος , ἐπιεικὴς μὲν ὑπάρχων , ὅτε ἐν αὐτῷ μόνῳ | ||
| τὸ πᾶν ἐστιν ὁ ἀήρ , καὶ οὗτος πυκνούμενος καὶ συνιστάμενος ὕδωρ καὶ γῆ γίνεται , ἀραιούμενος δὲ καὶ διαχεόμενος |
| ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ | ||
| ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη |
| ἐπ ' αὐτοῦ πῶς τὰ εἰρημένα ἐν τῷ ὅρῳ πάντα ἐφαρμόζει αὐτῷ . οἷον ἔστω συλλογισμὸς οὗτος : ἡ γραμμὴ | ||
| τῷ ὀνομάσαντι , καὶ ὑποπτήξασα λιπαρεῖ , καὶ τὸ στόμα ἐφαρμόζει τῷ στόματι ὡς φιλοῦσα , καὶ ἐπιπηδήσασα ἐκκρέμαται τοῦ |
| πιθανῶς δὲ ὁ Εὐριπίδης τὸν μῦθον προσήρμοσεν : ὁ γὰρ φυσικὸς λόγος τὸν ἥλιον ἀποδείκνυσι τὴν ἐναντίαν ἰόντα πορείαν τῷ | ||
| , ὅτι ὁ θυμός ἐστι φυσικός , ὅτι δέ ἐστι φυσικὸς δῆλον , διότι καὶ κατὰ γενεὰς ἐπακολουθεῖ . εἰ |
| ιʹ τῷ προκειμένῳ ἀριθμῷ . ἐὰν κατὰ τὰ μέσα ἡσδηποτοῦν ἑξάδος ὡς ἐπὶ τῆς δευτέρας δεδήλωται ἀπαρτηθῇ ὁ τριακοστὸς ἀριθμός | ||
| Διὸς ἀνατέλλοντος ἐν ταῖς μοίραις πλησίον : ἀπὸ δ ' ἑξάδος εἰκοστῆς καὶ μέχρι τριαντάδος ὁ Κρόνος ἐπαρέλαβεν , εἰ |
| γενεθλίοις , βωμοὶ δὲ ᾑμάττοντο , ἦγε δὲ πανήγυριν ὁ σύμπας οἶκος : δαίμων δέ , ὡς ἔοικεν , ἐπετώθασε | ||
| θυμίαμα συντίθεται , σύμβολα τῶν στοιχείων , ἐξ ὧν ἀπετελέσθη σύμπας ὁ κόσμος . στακτὴν μὲν γὰρ ὕδατι , γῇ |
| ἂν αὐτὸς ὢν τυγχάνῃ ἀπὸ μονάδος ἢ τοῦ πρώτου καὶ ἀσυνθέτου . τῷ μὲν γὰρ καθ ' ἕκαστον πρώτῳ πολλαπλασίῳ | ||
| παραμέσης καὶ ὑπάτης . ἔστι δέ τινα κοινὰ συνθέτου καὶ ἀσυνθέτου διαστήματα , τὰ ἀπὸ ἡμιτονίου μέχρι διτόνου . τὸ |
| τὸ ζῷον ὑλακτικόν ὑπάρχουσι δὲ καὶ ἕτεροι ἄνθρωποι πλείους , ὡρισμένοι μέντοι γε κατὰ τὸν ἀριθμόν : τίθεται γὰρ ἴδιον | ||
| ἢ ἔμπαλιν ὁ μὲν α ἀόριστος οἱ δὲ τελευταῖοι β ὡρισμένοι . τὰ δὲ παραδείγματα τούτων τῷ βουλομένῳ γράψαι σαφέστατα |
| τρίτος , Ἡλίου πρῶτος , χαλεπὸς λίαν . κʹ Ἀφροδίτης τέταρτος , ἀκίνδυνος κατὰ τὸ πλεῖστον : νόσοι δὲ ἐκ | ||
| οὖσα ἡ λιχανὸς τέσσαρας τόνους ἀπὸ τοῦ προσληφθέντος ἀφέξει φθόγγος τέταρτος ὤν , χρωματικὴ δ ' εἴτε μαλακοῦ χρώματος εἴθ |
| εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
| δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
| τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
| τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
| , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος καὶ ὁ ὑπεπίτριτος | ||
| κ τὸ τρίτον αὐτῆς : ἀπὸ γὰρ τοῦ τρία ὁ ὑποτριπλάσιος παρωνόμασται . καὶ ποιῶ τὰ λ ἐπὶ τὰ κ |
| εʹ τούτων ἀδύνατόν ἐστιν εὑρεῖν ἄλλα σχήματα ἴσοις καὶ ὁμοίοις ἰσοπλεύροις πολυγώνοις περιλαμβανόμενα , καὶ ὑπὸ τοῦ Εὐκλείδου καὶ ὑπό | ||
| τὰ μὲν τῆς ἰσότητος τῶν γωνιῶν ἢ πλευρῶν δεικτικὰ τοῖς ἰσοπλεύροις καὶ ἰσοσκελέσιν ἐφήρμοσται , τὰ δὲ τῆς ἀνισότητος τοῖς |
| , τοῦ δὲ Δ ἐπόγδοος ὁ Ε , τοῦ Ε ἐπόγδοος ὁ Ζ , τοῦ Ζ ἐπόγδοος ὁ Η : | ||
| δυνατοῦ δεῖξαι τὸ προκείμενον , ὅς ἐστι μονάδων ͵αφλϚʹ , ἐπόγδοος μὲν αὐτοῦ γίνεται ὁ τῶν ͵αψκηʹ , τούτου δὲ |
| ἐν ἐπιφανεστάτῳ δὲ τῆς πόλεως τὸ Αἰάκειον καλούμενον , περίβολος τετράγωνος λευκοῦ λίθου . ἐπειργασμένοι δέ εἰσι κατὰ τὴν ἔσοδον | ||
| μήκει συμμέτρων εὐθειῶν τετράγωνα πρὸς ἄλληλα λόγον ἔχει , ὃν τετράγωνος ἀριθμὸς πρὸς τετρά - γωνον ἀριθμόν : καὶ τὰ |
| δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
| δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
| τέταρτος ποιητὴς τραγῳδίας , πέμπτος Ἁλαιεὺς τέχνας γεγραφὼς ῥητορικάς , ἕκτος Ἀλεξανδρεὺς περιπατητικός . Ἥριλλος δ ' ὁ Καρχηδόνιος τέλος | ||
| κακοποιῶν μόνων ποιουμένη σίνη ἢ πάθη παρέχει . Ὁ δὲ ἕκτος τόπος καὶ ὁ κύριος αὐτοῦ ὑπὸ κακοποιοῦ μόνου θεωρούμενοι |
| καὶ ἐπὶ τρυφῇ καὶ μαλακίᾳ διαβοήτου γενομένου ἱστορεῖ Νίκανδρος ὁ Καλχηδόνιος ἐν τετάρτῳ Προυσίου Συμπτωμάτων . ΡΕΟΝΤΑ . οὕτως ποτήριά | ||
| δὲ τὸν ὑπὸ σελήνην , κτλ . Ξενοκράτης δὲ ὁ Καλχηδόνιος , τὸν μὲν ὕπατον Δία , τὸν δὲ νέατον |
| , ἐκεῖνα τὰ τετράπλευρα παραλληλόγραμμά ἐστιν , καὶ ἔτι ὧν τετραπλεύρων αἱ ἐπιζευγνύμεναι διαγώνιοι ἀμφότεραι δίχα τέμνουσιν τὰ τετράπλευρα , | ||
| αἱ ἀπεναντίον πλευραὶ ἴσαι ἀλλήλαις εἰσίν , ἢ πάλιν ὧν τετραπλεύρων αἱ ἀπεναντίον γωνίαι ἴσαι ἀλλήλαις εἰσίν , ἐκεῖνα τὰ |
| οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει | ||
| δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει |
| Ὑδροχόου , Ἓξ δ ' Ἀφροδίτη , Ζεὺς δὲ πάλιν ἑπτάδα , Ἄρης δὲ πέντε , πέντε δ ' αὖ | ||
| καὶ αἰωνίῳ μονῇ διακρατοῦντες τοσοῦτοί εἰσιν ἀστέρες . ὅτι τὴν ἑπτάδα οἱ Πυθαγόρειοι οὐχ ὁμοίαν τοῖς ἄλλοις φασὶν ἀριθμοῖς , |
| ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
| δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
| ' ὑφείμεναι . καὶ αἱ μὲ εἰς τὸ αὐτὸ τῆς δραστικῆς ποιότητος κεκραμέναι ἀποτείνονται , αἱ δ ' εἰς τὰ | ||
| πάντως γὰρ κατά τινα κίνησιν τῶν τε στοιχείων καὶ τῆς δραστικῆς ἀρχῆς ὀφείλει γίνεσθαι τὰ συγκρίματα . ἐὰν οὖν ὑπομνήσωμεν |
| εἰς τὸ κοινὸν ἀμφοτέρων γένος τιθέασιν . , Καὶ ὁ ὁρισμὸς εἷς ἐστίν , ὁμοίως δὲ οὐδὲ τοῦτον ἔχουσι λέγειν | ||
| δυνάμει , ποιήσει τὸ διωρισμένον συνεχές , καὶ ἔσται ὁ ὁρισμὸς αὐτοῦ φθαρτικός . Πέμπτον δεῖ ζητῆσαι εἰ ὑγιῶς ἔχει |
| τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
| μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
| , καθ ' ἣν ἕκαστον τῶν ὄντων ἓν λέγεται . Ἀριθμὸς δὲ τὸ ἐκ μονάδων συγκείμενον πλῆθος . Μέρος ἐστὶν | ||
| μερῶν ἐπιπέδῳ σὺν τῷ ἀπὸ τοῦ προειρημένου μέρους τετραγώνῳ . Ἀριθμὸς γὰρ ὁ αβ διῃρήσθω εἰς δύο ἀριθμοὺς τοὺς αγ |
| συναφὴν ὁ μέσος φθόγγος πρὸς ἀμφότερα τὰ ἄκρα ὁ αὐτὸς συγκρινόμενος διαφορουμένην παρέχῃ μόνην τὴν διὰ τεσσάρων συμφωνίαν , πρός | ||
| τῶν ὀφθαλμῶν : πάσχων γὰρ ὁ ὀφθαλμὸς καὶ διακρινόμενος ἢ συγκρινόμενος ἀντιλαμβάνεται τῶν αἰσθητῶν . τοῦτο δὲ τὸ πάθος τελειωτικόν |
| οἰκεῖα πληρώματα ὁ νοῦς , ἐξ ὧν ὁ σύμπας ὁμοῦ συμπληροῦται , ἐπιδεὴς ἂν εἴη αὐτὸς ἑαυτοῦ , οὐ μόνον | ||
| περιττοῦ φύσιν ἔχουσι : μὴν δὲ καθ ' ἑβδομάδας τέσσαρας συμπληροῦται , τῇ μὲν πρώτῃ ἑβδομάδι διχοτόμου τῆς σελήνης ὁρωμένης |
| ΛΘ , ΘΒ . ἐδείχθη δὲ καὶ ὅλος ὁ ΜΝΞ γνώμων ὅλῳ τῷ ΓΗ ἴσος : καὶ λοιπὸν ἄρα τὸ | ||
| γνώμων τετραπλάσιός ἐστι τοῦ ΖΗ τετραγώνου . ὁ ΞΟΠ ἄρα γνώμων καὶ τὸ ΖΗ τετράγωνον πεντα - πλάσιός ἐστι τοῦ |
| ἦσαν τὰ ἐπίπεδα , ὡς ἐδείχθη . Πάλιν οὖν ἄνωθεν ἑτερομήκης ἀριθμὸς λέγεται , οὗ ἐπιπέδως σχηματογραφηθέντος τετράπλευρος μὲν καὶ | ||
| τῆς εἴλης τετράγωνον ᾖ , ὁ ἀριθμὸς τῶν ἱππέων γίνεται ἑτερομήκης . Δοκεῖ δὲ τὸ ῥομβοειδὲς σχῆμα ἀναγκαιότατον παρειλῆφθαι : |
| εἴπομεν τρόπον ὑπὸ τὸν ἐντὸς τῶν διῃρημένων : εἶτα ὁ διῃρημένος αὐτὸς ἐμπολίζεται πρὸς τὸν δι ' ἀμφοτέρων τῶν πόλων | ||
| Ο , Π , Ρ : ὁ ἄρα κύκλος ἔσται διῃρημένος εἰς τὰ δώδεκα ἴσα , καὶ φανερόν , ὅτι |
| ἔπειτα δὲ οὐδὲ πάντα ἀπὸ τῶν αἰσθητῶν δύναται λαμβάνειν ἡ γεωμετρία : πολλὰ γὰρ σχήματα καὶ πάθη θεωρεῖ σχημάτων , | ||
| σχεδὸν δὲ αἱ αὐταὶ καὶ ἀκριβεῖς καὶ αὐτάρκεις , οἷον γεωμετρία καὶ ἀριθμητική : τῶν γὰρ τοιούτων καὶ ὥρισται τὰ |
| ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
| σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
| γιγνόμενον ὁρῶν . . ὁ δὲ Πολιτικὸς αὐτοῦ [ ] διάλογος ἁπάντων καταδρομὴν περιέχει τῶν Ἀθήνησιν δημαγωγῶν , ὁ δ | ||
| καὶ ὁ πολὺς προσελθεῖν οὐκ ἠδύνατο . Ἔστι δὲ ὁ διάλογος διὰ μὲν τὸν Φαῖδρον ἠθικὸς καὶ καθαρτικὸς , ἐλεγκτικὸς |
| ] ἰσχυρός . ἡμέτερον + ἀλλ ' ἐπεὶ δοκεῖς : ἔκθεσις τοῦ δράματος . οἱ δὲ στίχοι εἰσὶ τροχαϊκοὶ κεʹ | ||
| οὕτω φησί : διήγησίς ἐστι τῶν ἐν τῇ ὑποθέσει πραγμάτων ἔκθεσις εἰς τὸ ὑπὲρ τοῦ λέγοντος πρόσωπον ῥέουσα . Θεόδωρος |
| , ἐπὶ μὲν τῶν περιττῶν ἐκθέσεων ὁ μέσος τῶν ἄκρων ὑποδιπλάσιος ἦν , ἐπὶ δὲ τῶν ἀρτίων ἴσοι οἱ μέσοι | ||
| σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος |
| μουσικὴν καὶ ἀριθμητικήν . καὶ ἡ μὲν ἀριθμητικὴ τοὺς ἀριθμοὺς ἐπισκέπτεται , ἡ δὲ γεωμετρία τὰ μεγέθη καὶ τὰ σχήματα | ||
| διάνοια παρεῖται ἐξετάζεσθαι ἐν συλλογισμῷ , κατὰ δὲ τὸ λεληθὸς ἐπισκέπτεται καὶ αὐτή . Ζητοῦσι δέ τινες , τίνος χάριν |
| : μετὰ τοὺς ἀπὸ Εὐφήμου ἑπτακαίδεκα καὶ νῦν ὁ Ἀρκεσίλαος ὄγδοός ἐστιν . παισί : τοῖς Κυρηναίοις . τῷ μὲν | ||
| τὸν ἥλιόν ποτε κατὰ κορυφὴν αὐτοῖς γίγνεσθαι . ηʹ . ὄγδοός ἐστιν παράλληλος , καθ ' ὃν ἂν γένοιτο ἡ |
| Ἐρατοσθένους τὴν τοιαύτην πρόφασιν . πολλαχοῦ γὰρ ἐκπίπτει πρὸς τὸ ἐπιστημονικώτερον τῆς προκειμένης ἱστορίας , ἐκπεσὼν δὲ οὐκ ἀκριβεῖς ἀλλ | ||
| εἰς αὑτὸν αὐτὸς ἄνωθεν ἐπανελθών , εἰκότως ἂν ζητοῖ πάλιν ἐπιστημονικώτερον , τίς τε ἂν εἴη καὶ ποῖ κόσμου τεταγμένος |
| γʹ καὶ ἀντιστροφὰς τοσαύτας καὶ ἐπῳδόν . καλεῖται δὲ ταῦτα ἑπτὰς ἐπῳδική . ἐπὶ ταῖς ἀποθέσεσι παράγραφος , ἐπὶ δὲ | ||
| τρεῖς καὶ ἀντιστροφὰς τοσαύτας καὶ ἐπωιδόν . καλεῖται δὲ ταῦτα ἑπτὰς ἐπωιδική . ἐπὶ ταῖς ἀποθέσεσι παράγραφος , ἐπὶ δὲ |
| ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ | ||
| ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν , |
| : διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ | ||
| δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος |
| ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
| καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
| ἐν τῷ θεάτρῳ : καὶ γὰρ ἡ φωνὴ ἐνέργειά ἐστιν ἀμέριστος πανταχοῦ ὅλη ἡ αὐτὴ χωριστῶς αὐτῷ παροῦσα , ἅτε | ||
| πρὸς τὰς ἄλλας ἀμέριστον ἕνωσιν . καὶ γὰρ αὕτη ἡ ἀμέριστος ἕνωσις τοῖς χωρὶς τῶν σωμάτων προσήκει εἴδεσιν . εἰ |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |