, τοῦ μὲν ἐαρινοῦ , τοῦ δὲ μετοπωρινοῦ , καὶ διαμετρούντων ἄλληλα δοθείσης τε τῆς τῶν διαβατηρίων ἡμέρας τῇ τεσσαρεσκαι | ||
ἀνεπηρεάστους , κατὰ δὲ τῶν ἀσυν - δέτων ἢ τῶν διαμετρούντων σταθέντες ἔχθρας μεγίστας καὶ ἐναντιώσεις πολυχρονίους , μηδετέρως δὲ |
, ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ | ||
πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , |
ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
ἀπό τινος σημείου ἐπὶ θέσει δεδομένας παραλλήλους καταχθῶσιν εὐθεῖαι ἐν δεδομέναις γωνίαις ἤτοι ἀποτεμνοῦσαι πρὸς τοῖς ἐπ ' αὐτῶν δοθεῖσι | ||
, ἤτοι ἐν ἴσαις γωνίαις ἢ ἐν ἀνίσοις μέν , δεδομέναις δέ , ἔσται ὡς ἡ τοῦ πρώτου πλευρὰ πρὸς |
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
. ἀπὸ τῆς δυνούσης μοίρας λαβὼν κατὰ τὰς ἀναφορὰς τοῦ κλίματος ἕως τοῦ διαμέτρου τούτων τὴν ἡμίσειαν ἀπόλυε ἀπὸ τῆς | ||
τὸν ζωτικὸν ἀπολήψεται χρόνον καὶ τὴν ποσότητα κατὰ τὴν τοῦ κλίματος ἁρμονίαν : ὅτε δέ τις κατὰ μόνας αὐτοὺς ἀνακυκλήσῃ |
ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
Ἀνδρομέδας ἀστέρων καὶ ἐκ τοῦ παρακειμένου αὐτῷ ἀπ ' ἄρκτου Τριγώνου . λέγει γὰρ οὕτως περὶ αὐτοῦ : καὶ Κριοῖο | ||
ἐπιζευγνυμένη εὐθεῖα παρὰ τὴν λοιπὴν ἔσται τοῦ τριγώνου πλευράν . Τριγώνου γὰρ τοῦ ΑΒΓ παράλληλος μιᾷ τῶν πλευρῶν τῇ ΒΓ |
ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
' ὃ κλίμα τις βούλεται . Περὶ μὲν οὖν τῶν ἀναφορῶν καὶ ἐν τῇ αʹ βίβλῳ ἐδηλώσαμεν , νυνὶ δὲ | ||
ταῖς μεταξὺ διαστάσεσιν , οὐκέτι οἱ τῶν προκειμέ - νων ἀναφορῶν ἢ καταφορῶν ἢ μεσουρανήσεων χρόνοι τοὺς ἑπομένους τόπους οἴσουσιν |
ὁ Ζεύς ἔτυχεν ὁ εἷς ἐπιμερίζων , ὁ δὲ ἕτερος συνεπιμερίζων , ἔτυχον δὲ ἐχθροὶ ἐν τῇ καταρχῇ : δηλοῦσιν | ||
ὁ ἐπιμερισμὸς καὶ ὁ ἐπιμερίζων , πρὸς δὲ καὶ ὁ συνεπιμερίζων καὶ ὁ κύριος τοῦ φαρτάρου [ ἤγουν τοῦ ] |
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
ἐπεζεύχθω ἡ ΗΘ . καὶ ἐπεί , ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ τῶν πόλων αὐτοῦ ἀγομένη εὐθεῖα | ||
κύκλον ἐγγραφομένων . ὅπερ ἔδει δεῖξαι . Δωδεκάεδρον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν , ᾗ καὶ τὰ προειρημένα σχήματα , καὶ |
. Κιμμερίου διὰ Βοσπόρου ] Πλησίον γάρ εἰσιν οἱ Κιμμέριοι κείμενοι παρὰ τὸν ἰσθμὸν , οὗ ἐστιν ὁ Ταῦρος : | ||
ἐπὶ τὴν δεξιὰν , ποτὲ δὲ παρὰ τὴν ἀριστερὰν πλευρὰν κείμενοι καὶ κοιταζόμενοι , προνοούμενοι τοῦ συμφέροντος . φέρει : |
ὑπεπίτριτος , τοῦ δὲ δώδεκα ὑποδιπλάσιος , μείζων δὲ ὁ ὑπεπίτριτος λόγος τοῦ ἡμίσεως . τὸ ΑΒ ἄρα πρὸς τὸ | ||
Τ τὰ η : ὅ τε γὰρ ιη τοῦ κδ ὑπεπίτριτος καὶ ὁ Ϛ τοῦ η . Τὸ τοιοῦτον πολύγωνον |
Ἐπίκουρος οὗτος διοικεῖ πάντα λοιδορῶν , πάντα ὑποπτεύων , ἐπιστολὰς ἀδιαλύτους μοι γράφων , ἐκδιώκων ἐκ τοῦ κήπου . μὰ | ||
| ἀλλήλους ῥητέον : οὐ γὰρ μᾶλλον εὐδαίμονας | καὶ ἀδιαλύτους νοήσομεν , φησί , μὴ φωνοῦντας | μηδ ' |
. καὶ ὁσάκις μὲν ὁ Κ τὸν Μ μετρεῖ , τοσαυτάκις καὶ ἑκάτερος τῶν Θ , Η ἑκάτερον τῶν Ν | ||
συγκυρήματος : ὁσάκις γὰρ ἂν ἀστράψῃ Ζεὺς ἢ βροντήσῃ , τοσαυτάκις ἀπὸ τῆς ἀκρωρείας διὰ φόβον κυλίεται , καθὼς ἱστορεῖ |
οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
ἡ μονὰς ἢ τῇ τετράδι ἢ τῇ ἐξ ἀμφοτέρων ἀποτελουμένῃ πεντάδι . οὔτε δὲ ἑαυτῇ προστίθεται διὰ τὸ τὸ μὲν | ||
ἀπὸ μονάδος τετράδι διαφερόντων , καὶ ἑπταγωνικὸς ὁ ἐκ τῶν πεντάδι καὶ ἑξῆς ἀκολούθως , καὶ κατὰ δυάδος ὑπεροχὴν τῶν |
ἔσται ʂ α : ὁ δὲ πολλαπλασιαζόμενος ἀριθμὸς ἔστω ἀριθμοστῶν κυβικῶν ὁσωνδήποτε : ἔστω δὴ ʂא η . ἐπὶ μὲν | ||
αὐτῶν προσλαβὼν ἑκάτερον ποιῇ κύβον . Τάσσω τὸν αον ἐκ κυβικῶν ʂ : ἔστω δὴ η : τὸν βον ΔΥ |
αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν | ||
ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς |
τῆς γενέσεως πῆξιν ὁπόταν ἔχωσι τὰ χρονικὰ ἢ καὶ αἱ ἀναφοραὶ τῶν ζῳδίων κατὰ τὸν αὐτὸν χρόνον συμπληρούμενοι τύχοιεν . | ||
εἰσὶν αἱ τῶν ηζ ζε εδ δγ γβ βα περιφερειῶν ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλοις κείμενοι , ἀρχόμενοι |
τὸ εὑρεῖν δύο ἀριθμοὺς ὅπως ὁ ὑπ ' αὐτῶν μετὰ συναμφοτέρων ποιῇ τετράγωνον , καὶ ἔτι οἱ μονάδι μείζονες αὐτῶν | ||
ἐφ ' ἑκάτερα τῆς μέσης μεγίστας ἀποστάσεις μήτε ἐλάσσους εὑρίσκεσθαι συναμφοτέρων τῶν κατὰ τὸν Ταῦρον μήτε μείζους συναμφοτέρων τῶν κατὰ |
: ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
, κέχρηται δὲ ἤδη τὸ πρότερον εἶδος τῇ τοῦ πηλίκου ἀναλογίᾳ δὲ χρήσεται καὶ τοῦτο τῇ τοῦ ποσοῦ ὡς ἂν | ||
τοῦτον ὁ βασιλεὺς πρὸς τὸν λαόν καὶ χρήσασθαι οὕτω τῇ ἀναλογίᾳ , μὴ εἴποι οὕτως ἀλλὰ ποιμένα καλέσαι λαῶν τὸν |
αὐτῷ φύσεις , ἀθάνατοι δεύτεροι , οἱ καλούμενοι δεύτεροι ἐν μεθορίᾳ γῆς καὶ οὐρανοῦ τεταγμένοι : θεοῦ μὲν ἀσθενέστεροι , | ||
καὶ ὁ Ἐλίσων ἢ Ἔλισα ῥεῖ ποταμὸς ἐν τῇ λεχθείσῃ μεθορίᾳ . Μεταξὺ δὲ τοῦ Χελωνάτα καὶ τῆς Κυλλήνης ὅ |
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω , | ||
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς |
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
ὄνον ῥίψαι κελεύει ζῶντα τοῖς ὄνοις ὄνον . οἱ δὲ σταθέντες τῇ πλοκῇ τῶν σφιγμάτων πέμπουσι τὸν δύστηνον αἰθεροδρόμον . | ||
πέτροις ἐβάλλομεν . ἀλλ ' εἶργον ἡμᾶς τοξόται πρύμνης ἔπι σταθέντες ἰοῖς , ὥστ ' ἀναστεῖλαι πρόσω . κἀν τῶιδε |
ὑπεροχάς . . Ἐπεὶ ὁ τρίτος καὶ ὁ τέταρτος δὶς λαμβανόμενοι μετὰ τοῦ πρώτου καὶ δευτέρου ἅπαξ λαμβανομένων ὑπερέχουσι τοῦ | ||
τῶν προτάσεων τὸ Δίων ἀληθεύει . ὅσον δὴ οἱ οὕτως λαμβανόμενοι τῶν ἐκείνως διαφέρουσι , τοσοῦτον καὶ οἱ κατηγορικοὶ συλλογισμοὶ |
μετὰ τὰς μονάδας ὁ ἐφεξῆς ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ | ||
ἀπὸ μονάδος ἐπί τε πλάτος καὶ ἐπὶ βάθος γαμμοειδῶς οἱ δεύτεροι ἐφ ' ἑκάτερα καὶ αὐτοὶ γαμμοειδῶς ἀπὸ τετράδος ἀρχόμενοι |
οἱ Ἀθηναῖοι μὲν οὔπω † θέλοντες ἐξυφερουμένοις † ἐπὶ τῇ ἴσῃ καταλύεσθαι ” . μάλιστα δὲ οἱ τῶν δεδεμένων συγγενεῖς | ||
παραταξαμένων ἰσχυρὰ μάχη γίνεται καὶ ἱππέων καὶ πεζῶν καὶ ψιλῶν ἴσῃ πάντων χρωμένων προθυμίᾳ τε καὶ ἐμπειρίᾳ , καὶ τὸ |
αὐτῶν τρίγωνον πρὸς τῇ διὰ τῆς συμπτώσεως ἠγμένῃ διαμέτρῳ τοῦ ἀπολαμβανομένου τριγώνου πρὸς τῇ συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ | ||
ἡ μήτρα ποτὲ μὲν πνεύματος ἐν τῇ εὐρυχωρίᾳ τοῦ κύτους ἀπολαμβανομένου , ποτὲ δὲ καὶ ὅλον τὸ ὑπογάστριον οὐκ ἔλασσον |
καὶ οἱ λοιποί . λέγονται οὕτως ἐκεῖνοι μὲν πρῶτοι καὶ ἀσύνθετοι , ἐπειδὴ ὑπὸ μόνης τῆν μονάδος μετροῦνται , ἐπεὶ | ||
ὡσαύτως καὶ ὁ λθ καὶ ὅμως οὐκ εἰσὶ πρὸς ἀλλήλους ἀσύνθετοι , πρὸς δὲ ἑαυτοὺς σύνθετοι : ἀμφότεροι γὰρ ὑπὸ |
, ταύτης τὴν λαμπρότητα ἀφανῆ ποιήσει . πάντων γὰρ τῇ ὑπεροχῇ διαφέρει . ” καταπλαγεὶς δὲ Νεκτεναβὼ τὴν εὐστοχίαν τῶν | ||
τῶν ἐκκειμένων ὅρων . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , περισσοὶ τὸ πλῆθος , |
τεύχει , Ζῆνα δ ' ὁρῶν , καί τ ' ἀπταίστους ἐνὶ πάτρῃ . χρυσοφαὴς δ ' Ἑρμῆς καὶ παμφαίνους | ||
, τὰ μὲν ἐγρηγόρσει χρώμενα ἀκοιμήτῳ διὰ τὰς ἀπλανεῖς καὶ ἀπταίστους καὶ ἐν ἅπασι κατορθούσας ἐνεργείας , τὰ δ ' |
ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
: διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ | ||
δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος |
ἐκείνου καὶ ἐλάμβανον τὸν ἀστέρα κοινωνὸν τοῦ ζαμοκτὰρ ἤτοι τοῦ ἐπιμερίζοντος . ἐπεὶ δὲ ἀπ ' ἀρχῆς τοῦ ζῳδίου ἄχρις | ||
Περὶ ἀναγνώσεως ἐτῶν καὶ τοῦ τόπου τοῦ μερισμοῦ καὶ τοῦ ἐπιμερίζοντος καὶ τοῦ κοινωνοῦντος αὐτῷ βʹ Περὶ ὧν σημαίνουσιν οἵ |
, οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
τῆς γῆς κατὰ σύμπτωσιν τῶν εὐθειῶν , αἳ ἀπὸ τῶν ὡρολογίων ἤχθησαν ἐπὶ τὸ κέντρον τῆς γῆς , γινομένη , | ||
ἔχοντα παραλλαγὴν πρὸς τὰς χειμερινὰς τροπάς , καὶ αἱ τῶν ὡρολογίων καταγραφαὶ ἐκδήλους ποιοῦσι τὰς κατὰ ἀλήθειαν γινομένας τροπάς , |
ληψόμεθα τὰς δύο μέσας ἀνάλογον ἐν τῇ συνεχεῖ ἀναλογίᾳ . ἐκκείσθωσαν γὰρ ταῖς ΕΔ ΔΖ ΔΜ ἴσαι αἱ ΕΔ ΔΖ | ||
: ποδηγεῖ γὰρ πρὸς τὴν τοῦ ζητουμένου κατάληψιν . οἷον ἐκκείσθωσαν ταυταδὶ τὰ στοιχεῖα ἰσάριθμα ὄντα καὶ ἀναλογοῦντα τοῖς νοήμασι |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
μασχάλαις καὶ βουβῶσι τὰ πολλὰ γίνονται , ἔνθα καὶ οἱ στηρίζοντες τὰ ἀγγεῖα ἀδένες εἰσὶ τεταγμένοι : σπανίως δὲ γίγνονται | ||
ἔχωσιν οἷον στηριγμούς , ἀναποδισμούς , δύσεις : οἱ γὰρ στηρίζοντες ἢ ἀναποδίζοντες ἢ δύνοντες χρονίας καὶ ἀμαυρὰς καθόλου ποιοῦσι |
λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
ἰσημερινοῦ λέγονται , ὅταν αἵ τε ἀνατολαὶ καὶ δύσεις ἴσον ἀπέχωσι τοῦ ἰσημερινοῦ . Ἔστω ὁρίζων κύκλος ὁ ΑΒΓΔ , | ||
οἱ κριοὶ , πλάγιοι περιφερέσθωσαν ἐπὶ πλευρὰν , ἵνα πλεῖον ἀπέχωσι τοῦ τείχους καὶ μὴ εὐεπιχείρητοι ὦσιν ἐγγὺς προκείμενοι . |
αὐτῇ τῇ ἐκλείψει θάνατον ἀνθρώπων ἔσεσθαι πανταχοῦ . Καθόλου δὲ ἐσημειώσαντο ἐν Αἰγοκέρωτι , Ὑδρο - χόῳ , Ἰχθύσι καὶ | ||
ἀπεργάζεται . τὰ δὲ αὐτὰ καὶ ἐπὶ τῶν ἡλιακῶν ἐκλείψεων ἐσημειώσαντο . Ἐν Ζυγῷ δὲ ἤτοι Χηλαῖς τοῦ Σκορπίου Ἡλίου |
γιγνόμενος ποιεῖ τὸν ἡμιόλιον λόγον , ἐξ ὧν ἀμφοτέρων ὁ διπλάσιος σύγκειται λόγος , τοῦ δʹ φμηὶ πρὸς τὸν βʹ | ||
τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον ἤτοι διπλάσιος ἤτοι δὶς δίς , ὅπερ ἐδήλωσεν εἰπών : τὰ |
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
καὶ ὁ σοφώτατος Φιλόχορος τὰ αὐτὰ συνεγράψατο , ἐν ἧι ἐκθέσει εἶπε περὶ τοῦ αὐτοῦ Διονύσου ἔστιν ἰδεῖν τὴν ταφὴν | ||
ἀναπαιστικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικὰ καὶ μονόμετρα ιεʹ . ἐν ἐκθέσει δὲ στίχοι τροχαϊκοὶ τετράμετροι καταληκτικοὶ δʹ , ὅμοιοι τοῖς |
πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν | ||
σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ |
εἰσι ταῦτα τὰ στοιχεῖα , μεταξὺ δὲ δύο στερεῶν δύο μέσοι ἀνάλογοι γίνονται . ἐν δὲ ταῖς Πολιτείαις ζητεῖ εἰ | ||
παρ ' Αἰολεῦσι τὸ μέσοι , γαίας καὶ νιφόεντος ὠράνω μέσοι : τῇδε ἔχει καὶ ἀπὸ τοῦ τηλόθι τὸ τήλοι |
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
τὸν ἰσημερινὸν οἰκήσεως : αὕτη δέ ἐστιν ἐν μέσῃ τῇ διακεκαυμένῃ ζώνῃ . Καί φησιν οἰκεῖσθαι τοὺς τόπους καὶ εὐκρατοτέραν | ||
τε καὶ φωτισμῶν τοῦ ἀέρος . Ἐν μὲν γὰρ τῇ διακεκαυμένῃ ἴσαι διὰ παντὸς αἱ νύκτες ταῖς ἡμέραις , ἐν |
ἔστι δὲ ὅτε καὶ πλέον : οὐδὲ ὑπὸ γῆν δὲ μεσουρανήσει Σκορπίος , ἀλλὰ ζῴδιον ὅλον ἀφέξει ἀπὸ τοῦ μεσημβρινοῦ | ||
. Αἰγόκερω γὰρ τῆς πρώτης μοίρας δυνούσης Κριοῦ πρώτη μοῖρα μεσουρανήσει , Καρκίνου δὲ πρώτη μοῖρα ἀνατελεῖ , Ζυγοῦ δὲ |
χυλοῖσι καὶ ζωμοῖσιν ὑγιὴς ἐγένετο . Ξυνέβη δὲ τελευτῶντος τοῦ μετοπωρινοῦ καιροῦ . Ὁ παρὰ Ἁρπαλίδῃ ἀλείπτης , ἀκρατέστερος σκελέων | ||
ἤδη ταῦτα γίγνηται πάνταἡ τοῦ καύματος ἐλάττωσις , ἡ τοῦ μετοπωρινοῦ ὄμβρου φορά , ἡ τῶν σωμάτων τῶν ἀνθρωπίνων ἀνάψυξις |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν | ||
, ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω - |
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
δὴ τοσούτων εἶναι μονάδων τοὺς δύο πρώτους ἀριθμούς , οἵπερ διπλάσιοι ἔσονται τῶν λοιπῶν δύο , ὄντων δηλονότι καὶ αὐτῶν | ||
, ὀγδοήκοντα δὲ ἐκ Μυκηνῶν καὶ ἐκ Φλιοῦντος διακόσιοι , διπλάσιοι δὲ τούτων Κορίνθιοι : παρεγένοντο δὲ καὶ Βοιωτῶν ἑπτακόσιοι |
ἐξ ὕδατος Πηγάσῳ ἀναφερομένῳ τῇ κινήσει τοῦ οὐρανοῦ καὶ τῇ ἡλιακῇ ἀνιμήσει ἐποχουμένη συναναφέρεται ἡ Ἡμέρα : σφαιροειδὴς γάρ ἐστιν | ||
οἷόν ποτε μέρος ἢ θέσιν στῇ τὸ Γ σημεῖον τῇ ἡλιακῇ ἀκτῖνι , διὰ τοῦ ἐπιπέδου ἐσόπτρου ἡ ἀνάκλασις ἐπ |
φύσις τοῖσδε τοῖς ἀδελφοῖς : ἀλλήλοις αἴτιοι τῆς αὔξης ἄμφω γενήσονται . ὁρῶντες μὲν γὰρ ἀλλήλους ἴσα βλαστήσουσι , θατέρου | ||
ἄλλοθι τοιοῦτοι γεγόνασι μαρτυρεῖν , καὶ προσμαντεύεσθαί γε ὅτι καὶ γενήσονται . Ἴσως δ ' ἄν τις κἀκεῖνο θαυμάσειεν , |
. τῇ κϚʹ τοῦ Φευρουαρίου ἀρκτοῦρος ἑσπέριος ἐπιτέλλει . τῇ νεομηνίᾳ τοῦ Ἀπριλλίου , πλειάδες ἀκρόνυχοι κρύπτονται . τῇ ιϚʹ | ||
Ναβονασσάρου συστησώμεθα , τὴν ἀποδεδειγμένην ἐν τῷ ἔτει τούτῳ Θὼθ νεομηνίᾳ κατ ' Αἰγυπτίους τῆς μεσημβρίας ἐπουσίαν ἀποχῆς μοιρῶν οὖσαν |
Εἰ μὲν οὖν σύμμετρός ἐστιν ἡ ΒΖΕ περιφέρεια τῇ ΑΒΓ περιμέτρῳ τοῦ κύκλου , ἐπεὶ διαιρεθείσης τῆς ΑΒΓ περιμέτρου τοῦ | ||
τῶν περὶ Μαιῶτιν καὶ τὸν ὅλον Πόντον ᾠκισμένων ἐθνῶν ἐν περιμέτρῳ τρισμυρίων σταδίων . Ῥωμαίων δὲ στρατηγὸς μὲν Παμφυλίας Κόιντος |
, οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
παρὰ τὸν τότε δρόμον τῆς σελήνης , ἵνα ποιήσωμεν ὥρας ἰσημερινάς , ταῖς γινομέναις ὥραις ἕξομεν τὸν τῆς ἀκριβοῦς συζυγίας | ||
' ἀνατολικωτάτου τὰς τοῦ ἡμικυκλίου μοίρας ρπ καὶ ιβ ὥρας ἰσημερινάς : ὥστε συνάγεσθαι τὸ ἐγνωσμένον αὐτῆς μῆκος σταδίων , |
ὑπὲρ ἡμᾶς . μεσημβρινὸς δὲ καὶ ὁρίζων τῷ μὲν μεγέθει δεδομένοι , μέγιστοι γάρ , τῇ δὲ θέσει μεταπίπτοντες καθ | ||
. καὶ δῆλον , ὅτι καὶ οἱ λόγοι τῶν πλευρῶν δεδομένοι εἰσίν : ὁ γὰρ τῆς ΑΒ πρὸς ΒΓ λόγος |
τὸ φρουρεῖν τὴν ὁδόν : τὸ τῆς Ἑλένης : τὸν ἀνατολικόν φησιν : καὶ μὴν ἐγὼ τόνδ ' : ἡνιοχεῖ | ||
καὶ εἰς δύο τινὰ ἡμικύκλια διαιροῦντος , ὧν τὸ μὲν ἀνατολικόν , τὸ δὲ δυτικὸν ὀνομάζεται , συμβαίνει τὰς μεσημβρίας |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
ἐποιήσαμεν , οὐ τῆς μάχης χωρίσαντες , ἀλλὰ τὸ σχῆμα ἐναλλάξαντες καὶ πλέον αὐτὴν διὰ τῶν προλεχθέντων τρόπων ὀχυρώσαντες . | ||
τόπον , ἐπειδήπερ κατὰ μὲν τῶν αὐτῶν τυχόντες δωδεκατημορίων ἢ ἐναλλάξαντες τοὺς τόπους ἢ οἱ πάντες ἢ οἱ πλείους , |
, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί | ||
δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν , |
πάλιν ποίησον τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς | ||
μδ λδ , ἡ δ ' ἐπὶ τῆς ΓΘ μοιρῶν ρκε κϚ ι . ἀκολούθως δὲ καὶ ἡ μὲν ὑπὸ |
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
ἐκ δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω | ||
καὶ ὀκτάδος οὐκ ἔσται ῥυθμός : οὐ γὰρ ἔρρυθμος ὁ τετραπλασίων λόγος , ὥστ ' οὐδὲ ὁ δεκάσημος ἔσται ἐκ |
τῶν δ ' ἀμφισβητούντων πρὸς ταύτας τὰς ζημίας αἱ κρίσεις ἔστωσαν ἐπὶ τοῦ δήμου . τοῦτον τὸν νόμον ἐπιψηφίσαντες οἱ | ||
στερεὰ παραλληλεπίπεδα ἀνάλογον ᾖ , καὶ αὗται ἀνάλογον ἔσονται . ἔστωσαν ὁσαιδηποτοῦν εὐθεῖαι ἀνάλογον ἡ ΑΒ , ΓΔ , ΕΖ |
. ἐπεὶ δὲ βούλονταί τινες ὑπεναντίαν ἀμφοτέραις ἀριθμητικῇ τε καὶ γεωμετρικῇ ταύτην ἐκδέχεσθαι , ἔφαμεν δὲ ἡμεῖς τῇ ἀριθμητικῇ μόνῃ | ||
α˙ωιϚιγ˙τκα / . β . Εὑρεῖν τρεῖς ἀριθμοὺς ἐν τῇ γεωμετρικῇ ἀναλογίᾳ , ὅπως ἕκαστος αὐτῶν προσλαβὼν τὸν δοθέντα ποιῇ |
πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα | ||
Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ |
ἀπολέσαι τοὺς ἀπειθήσαντας ἔδει καὶ τὴν πολιτείαν : ἑπτακοσίοις πλείους εὑρέθησαν οἱ ἐν ἥβῃ Ῥωμαῖοι πεντεκαίδεκα μυριάδων . μετὰ τοῦτο | ||
Αἰγινῆται : ὡς καὶ ἐν τῷ Περσικῷ πολέμῳ δεύτεροι Ἀθηναίων εὑρέθησαν . ἐξένεπε κρατέων : ἐξηγόρευσεν . ἀνεκήρυξε τὴν ναυτικὴν |
ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ | ||
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ |
ἔσται μὲν μέση δίχα διαιρεθείσης τῆς ὅλης χορδῆς , καὶ ἀφέξει Ϛʹ ἑκατέρωθεν [ διαιρουμένη ] : ἡ δὲ ὑπάτη | ||
αὐτῶν δʹ . ἡ δὲ ὑπερυπάτη ἀπὸ τῆς ἀρχῆς τρία ἀφέξει μεγέθη , ἀπὸ δὲ τῆς ὑπάτης ἕν : ἡ |
. βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου | ||
βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς |
ἐκκείσθω τεταρτημόριον κύκλου θέσει δεδομένον τὸ ΖΗΕ , καὶ γεγράφθω τετραγωνίζουσα ἡ ΖΘΚ , καὶ τῇ βεβηκυίᾳ γωνίᾳ ἐπὶ τῆς | ||
ἐκπεσόντων , μάλισθ ' ὅταν καὶ ἡ σελήνη παροῦσα ἢ τετραγωνίζουσα ἢ διαμηκίζουσα τύχῃ τοὺς εἰρημένους τόπους . Ἐφωδευμένου δὲ |
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
τετάρτης ἴσον ἐστὶ τῷ ὑπὸ τῆς δευτέρας καὶ τρίτης , πολλαπλασιάζομεν τὴν τοῦ Ϛ πλευρὰν μετὰ τῆς εὑρεθείσης μέσης , | ||
παραδείγματα τὰ καὶ ἐν τῷ προλαβόντι κεʹ ληφθέντα θεωρήματι : πολλαπλασιάζομεν αὐτὰς πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
Κρόνου , νυκτὸς δὲ Ἑρμοῦ . κεῖται δὲ ἐν τῷ κλίματι τῷ τῆς Αἰγύπτου ἀπομεμερισμένον ἀνέμῳ Λιβί . κυριεύει δὲ | ||
πῆξιν τοῦ ἀναφορικοῦ : ὡς εἶναι ἐν μὲν τῷ πρώτῳ κλίματι ἀπὸ Καρκίνου ἕως Τοξότου ἀναφορὰς σιʹ , ἐν δὲ |
ἀλλήλαις , ἀχθῶσι δὲ διὰ τῶν ἁφῶν διάμετροι συμπίπτουσαι ταῖς ἐφαπτομέναις , ἴσα ἔσται τὰ πρὸς ταῖς ἐφαπτομέναις τρίγωνα . | ||
τι σημεῖον , καὶ ἀπ ' αὐτοῦ παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις συμπίπτουσαι ταῖς τε ἐφαπτομέναις καὶ ταῖς διαμέτροις , τὸ |
' αὐτῶν τετράγωνα τὰ κε καὶ σκε τῷ αὐτῷ χωρίῳ μετροῦνται . ἔχει δὲ καὶ ὁ σκε πρὸς τὸν κε | ||
τῶν σχημάτων συντομωτέρα ἐστὶν ἡ εὐθεῖα , ὑπὸ ταύτης οὖν μετροῦνται τὰ μεγέθη . οὐκοῦν μία μὲν εὐθεῖα κατὰ μῆκος |
ΗΘΓ καθέτους γίνεσθαι καὶ πρὸς αὐτήν . ἐφαρμόσαντες δὴ τῇ χορδῇ κανόνιον καὶ μεταλαβόντες ἐπ ' αὐτοῦ τὸ ΕΗ μῆκος | ||
ἐν μὲν τῷ αὐλῷ διὰ τρυπημάτων , ἐν δὲ τῇ χορδῇ δι ' ὑπαγωγέως , ἄλλον ἐξ ἄλλου τρόπον ἀποτελεῖσθαι |
ἐπιμερίζοντος : ὅτε δὲ μηδεὶς κακοῖ τὸν χρονοκράτορα ἐν τῇ καταρχῇ , ὑπάρχουσι δὲ ὅ τε χρονοκράτωρ καὶ ὁ ἐπιμερίζων | ||
ποῦ δὲ κατὰ πάροδον , καὶ πῶς ἦσαν ἐν τῇ καταρχῇ , πῶς δέ εἰσιν ἐν τῇ ἐναλλαγῇ . καὶ |
ὄντος πρὸς τῷ νʹ [ διὰ τὸ ἴσην εἶναι τὴν ζηʹ περιφέρειαν τῇ λνʹ περιφερείᾳ ] : καὶ ἔσται ὁ | ||
τῷ ηʹ ] : λέγω ὅτι τοῦ ἡλίου διαπορευομένου τὴν ζηʹ περιφέρειαν τὸ εʹ ἄστρον οὐ φαίνεται . Ἔστω γὰρ |
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
, τὸν στέφανον τοῖς στέρνοις προσαγαγοῦσα καινῷ μοιχῷ συμπλακῆναι . καʹ . Οὖσα ξανθὴ τί ῥόδα ζητεῖς ; καὶ μὴν | ||
' στιν ” μονόμετρον ἐξ ἀναπαίστου καὶ σπονδείου : τὸ καʹ “ παρὰ τοῖσι θεοῖς ” μονόμετρον ἐκ βʹ ἀναπαίστων |