θνητὴ τῶν Γοργόνων . Ὁ δὲ , πλησίον γενόμενος , ἀποτέμνει τῇ ἅρπῃ τὴν κεφαλὴν , καὶ ἐνθεὶς εἰς τὴν
αἴτιον εἶναι τοῦ κακῶς φέρεσθαι τὰ ἑαυτοῦ , Τιθραύστην καταπέμψας ἀποτέμνει αὐτοῦ τὴν κεφαλήν . τοῦτο δὲ ποιήσας ὁ Τιθραύστης
6848197 συμβαλει
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς
6769499 κατηγμενην
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ
6363740 ἐφαπτομενην
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν
6267392 ἐφαπτηται
ἦκται ἡ ΑΒ : ὅπερ ἔδει ποιῆσαι . Ἐὰν κύκλου ἐφάπτηταί τις εὐθεῖα , ἀπὸ δὲ τοῦ κέντρου ἐπὶ τὴν
ὀρθαὶ αἱ πρὸς τῷ Κ ; ἐπεὶ κύκλου τοῦ ΑΓΒΔ ἐφάπτηταί τις εὐθεῖα ἡ ΗΘ , ἀπὸ δὲ τοῦ κέντρου
6239347 ἠγμενῃ
τομῆς ἀγαγεῖν ἐφαπτομένην , ἥτις πρὸς τῇ διὰ τῆς ἁφῆς ἠγμένῃ διαμέτρῳ ἴσην περιέξει γωνίαν τῇ δοθείσῃ ὀξείᾳ . ἔστω
τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς
6147526 ὑπερεξει
καὶ οὐδέποτε ποιήσει ἐπιφάνειαν . πολλῷ δὲ μᾶλλον οὐδ ' ὑπερέξει . καὶ ἐπὶ ἐπιφανείας καὶ σώματος ὡσαύτως . Οὔτε
ὑπερέχει . οὐκέτι γὰρ καὶ τὸ Α τοῦ Γ πήχει ὑπερέξει : ψεῦδος γὰρ τοῦτο . ἡ δ ' αἰτία
6122951 λοξη
. ἡ μήτηρ πρὸς τὸν καρκίνον : ” τί δὴ λοξή , ἥν , ὦ παῖ , βαδίζεις ὁδόν ,
μὲν εὐθεῖα γένηται , καλὰ ἔσεσθαι μαντευόμενοι , εἰ δὲ λοξή , ἀποτρόπαια . * † μαντεῖον . μαντείου ἢ
6104982 καταχθῃ
. Ἐὰν ἐν ὑπερβολῇ ἢ ἐλλείψει ἢ κύκλου περιφερείᾳ εὐθεῖα καταχθῇ τεταγμένως ἐπὶ τὴν διάμετρον , καὶ ἀπό τε τῆς
τῇ πλαγίᾳ τοῦ εἴδους πλευρᾷ , καὶ ἀπὸ τῆς ἁφῆς καταχθῇ εὐθεῖα τεταγμένως ἐπὶ τὴν διάμετρον , ἔσται ὡς ἡ
6103689 περιτιθεσθω
εἰς τὴν μασχάλην . βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω τῷ βραχίονι , οὗ αἱ ἀρχαὶ ἀγέσθωσαν πρὸς τὰς
καὶ ἀποδεδέσθωσαν ἑνὶ κλιμακίῳ πρὸς κράτημα , τῷ δὲ βραχίονι περιτιθέσθω βρόχος ἰσότονος , οὗ αἱ ἀρχαὶ ἀναγέσθωσαν ὑπὲρ κεφαλῆς
6068560 βροχος
γὰρ τὸ πάθος , βαρυτόνως δὲ τὸ σχοινίον καὶ ὁ βρόχος . Γ ἀγχονὴ τὸ πάθος , ἀγχόνη τὸ σχοινίον
τοῖς τῆς τάσεως αἰτίοις . εὐθετεῖ δ ' οὗτος ὁ βρόχος πρὸς ἀπότασιν σφυροῦ καταρτιζομένου . Ὁ βρόχος ὁ καλούμενος
6037747 ἰσοτονος
ἐντεθῇ εἰς τὴν μασχάλην , βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω τῷ βραχίονι , καὶ αἱ τοῦ βρόχου ἀρχαὶ
[ καὶ ] πάλιν τοῦ πάσχοντος ὑπτίου ἐσχηματισμένου , βρόχος ἰσότονος περιτιθέσθω τῷ βραχίονι , οὗ αἱ ἀρχαὶ ἀναγέσθωσαν ὑπὲρ
6011602 προηγουμενος
ἀποσπᾶν , καὶ πολὺν ἐποίουν θόρυβον . ὁ δὲ ναύαρχος προηγούμενος τῆς τάξεως καὶ πρῶτος συνάψας μάχην διεφθάρη λαμπρῶς ἀγωνισάμενος
∠ ʹ δʹ τῶν ἐν τῷ σώματι γ λαμπρῶν ὁ προηγούμενος . . . . . . . Σκορπίου ι
6009002 πηχει
ὁ βραχίων ἀσφαλιζέσθω πρὸς τὸν ἄξονα , καὶ τότε τῷ πήχει βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω , οὗ
βραχίων ἀσφαλιζέσθω βρόχῳ πρὸς τὴν ὑπερκειμένην φλιάν , τῷ δὲ πήχει πάλιν κατὰ τὰ ἀπολήγοντα μέρη περιτιθέσθω βρόχος ἀνισότονος ,
5956249 κεφαλιον
ἄρθρον , εἶτα καθιέναι τὴν ἀριστερὰν χεῖρα καὶ ἀπευθύναι τὸ κεφάλιον καὶ οὕτω κομίσασθαι τὸ ἔμβρυον . Εἰ δὲ ἀμφότεραι
δάκτυλον , τῇ δεξιᾷ δὲ πιέζων τὸ ἐπιγάστριον πειρᾶται τὸ κεφάλιον κατάγειν , οὐχ ὁρῶν ὡς ἐν τῷ ἀπευθυσμένῳ ὁ
5948868 τομης
τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ
ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ
5921742 ἀσυμπτωτος
ἧς ἄξων ὁ ΑΒ , κέντρον δὲ τὸ Ε , ἀσύμπτωτος δὲ ἡ ΕΤ , ἡ δὲ δοθεῖσα γωνία ὀξεῖα
, ΓΕ . Τῶν αὐτῶν ὄντων δεικτέον , ὅτι ἑτέρα ἀσύμπτωτος οὐκ ἔστι τέμνουσα τὴν περιεχομένην γωνίαν ὑπὸ τῶν ΔΓΕ
5920674 μετωπιαιας
μεσοφρύου ταγῆναι , ἐπιπλέκομεν τὴν διμερῆ φορβεὰν δίχα γενειάδος καὶ μετωπιαίας , ἵνα ἁρμόσῃ ἐφ ' ὧν βρέγμα ἀνατρηθὲν δίχα
ἐπὶ βρέγμα , λοξαὶ ἐπὶ ἰνίον , εἶτα γενειὰς καὶ μετωπιαίας . Κεφ . κηʹ . Μεσότης κατ ' ἰνίου
5895841 ὁποτερασουν
τροπῶν θερινῶν ἐπὶ τροπὰς χειμερινὰς ἴσαι ἔσονται αἱ ἴσον ἀπέχουσαι ὁποτερασοῦν ἡμέρας . Ἔστω ὁρίζων ὁ ΑΒΓΕ , θερινὸς δὲ
, , ] διὰ τὸ ιεʹ : ἴσον γὰρ ἀπέχουσιν ὁποτερασοῦν τῶν συναφῶν ἀπὸ τοῦ σχολίου τοῦ ζ ∻ .
5880541 αγβʹ
: ποιήσει δὴ τομὴν κύκλον . Ἔστω αὐτοῦ ἡμικύκλιον τὸ αγβʹ : ἐὰν δὴ μενούσης τῆς αβʹ εὐθείας περιενεχθὲν τὸ
συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς , καὶ
5874667 αβʹ
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ
5866273 ἁρμοσῃ
βουβῶνος , ἐγκύκλιον δὲ κατὰ λαγόνων καὶ ἰσχίων , ἵνα ἁρμόσῃ ἐφ ' ὧν βουβῶνα ἐπιδῆσαι θέλομεν . μονομερὴς βουβωνιακός
δὲ πρώτην αὐτοῦ κρᾶσιν , ὡς ἂν μάλιστα τοῖς πλείστοις ἁρμόσῃ , κατὰ τάδε χρὴ ποιεῖσθαι : ὄξους ἑνὶ μέρει
5865866 ὑπολειπομενος
ἐν τῇ κεφαλῇ ὁ νοτιώτερος τῶν ἡγουμένων , ὡς ἡμιπήχιον ὑπολειπόμενος τοῦ μεσημβρινοῦ , καὶ τοῦ Ὕδρου ὁ μετὰ τὴν
μὲν οὐδεὶς ἀστήρ , τῷ δὲ δεκάτῳ μέρει ὥρας πλέον ὑπολειπόμενος ὅ τε Προτρυγητὴρ καὶ ὁ ἐπὶ τοῦ δεξιοῦ ὤμου
5864301 ΒΕΔ
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι
5859846 λοξην
τὸν τρόπον ἐκτάξας τὸ στρατόπεδον κατέβαινεν ἐπὶ τοὺς πολεμίους , λοξὴν ποιήσας τὴν τάξιν : τὸ μὲν γὰρ δεξιὸν κέρας
, ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος καὶ νώτου , λοξὴν δὲ κατὰ στέρνου καὶ κλειδός : εἶθ ' ὑπαγωγῇ
5858749 καρχησιος
μηροῦ κωλύῃ κατατείνεσθαι τὸ κῶλον . τούτου δὲ γενομένου , καρχήσιος βρόχος ἢ ἄλλος ἰσότονος περιτίθεται τῷ μηρῷ κατὰ τὰ
. τοῦ δὲ σφηνοειδοῦς ἐντεθέντος εἰς τὴν μασχάλην , ὁ καρχήσιος βρόχος τῷ βραχίονι περιτίθεται , οὗ αἱ ἀρχαὶ ἄγονται
5846994 ἐντεθῃ
τὴν χεῖρα , ἵνα πάλιν τὸ σφηνοειδὲς εἰς τὴν μασχάλην ἐντεθῇ , ἔπειτα βρόχος ὁ καρχήσιος ἢ ἄλλος τις ἰσότονος
ἔπειτα ἱμάντος μαλθακοῦ πλάτος ἔχοντος ἱκανὸν , ὅταν ἡ σφαίρη ἐντεθῇ ἐς τὴν μασχάλην , περὶ τὴν σφαίρην περιβεβλημένου τοῦ
5833962 ἐπικυκλος
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα
5814246 εὐθυγραμμῳ
κγʹ πρόβλημά ἐστι σύστασιν ἀπαιτοῦν γωνίας ἴσης ἄλλῃ δοθείσῃ γωνίᾳ εὐθυγράμμῳ πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ δοθέντι
τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ ,
5777641 ἐπιδεσμου
βουβῶνα καὶ τὸ ἦτρον . καὶ τότε ἐκ τοῦ εἰλητοῦ ἐπιδέσμου ἡ τοῦ ἁπλοῦ βουβωνίσκου γίνεται πλοκή , τῶν ἁμμάτων
τοῦ τελαμῶνος ἀνατεινομένου , ἀπὸ [ δὲ ] τοῦ εἰλητοῦ ἐπιδέσμου ἐπάγονται δύο ἢ τρεῖς κυκλοτερεῖς περιειλήσεις , καὶ τότε
5773333 ἐκφαινεται
ἐν αἰθάλῃ κεκρυμμένον ἐμπύρευμα , ὃ δὴ σκεδαννυμένης τῆς αἰθάλης ἐκφαίνεται καὶ δραττόμενον ὕλης εἰς πυρσὸν πολλάκις ἀνάπτεται . παράγει
. ἡ δὲ μεγίστη αὐτῶν ὄπισθεν τείνει τοῦ μηροῦ καὶ ἐκφαίνεται παχεῖα : ἑτέρα δὲ εἴσω τοῦ μηροῦ μικρὸν ἧττον
5754882 τμημα
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ
5740400 τομων
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ
5734748 κατηγορησῃ
. ἂν δὲ τὸ λυσιτελὲς ἢ τὸ ἔθος ἐπιφέρων σοῦ κατηγορήσῃ , ἀπολογοῦ μάλιστα μέν , ὡς οὐ λυσιτελές ἐστι
φαίη τῷ ἀντιθετικῷ ὀνόματι , τῇ λειότητι ἀποτυχίαν ἄν τινα κατηγορήσῃ τῆς πέψεως φύσεώς τινος ἑτεροειδοῦς οὐσίας ἀνακοψάσης τὴν τοῦ
5701619 ἀχθωσι
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ
5691215 ἀκρωμιου
σπονδύλων , χοιράδες , στεατώματα . περὶ δὲ ὤμους τοῦ ἀκρωμίου κάταγμα , διάστασις . περὶ δὲ ἀγκῶνα μελικηρὶς ,
καὶ πάλιν ἀπ ' ἀγκῶνος ἐπ ' ἀκρώμιον , ἀπὸ ἀκρωμίου ἐπὶ μασχάλην ἀπαθῆ , εἶτ ' ἐγκύκλιοι περὶ βραχίονα
5685711 γδʹ
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο
5672520 ἰνιον
ὠτὸς λοξὴν [ μὲν ] κατὰ βρέγματος καὶ μεσοφρύου ἐπὶ ἰνίον , ἵνα ἁρμόσῃ ἐφ ' ὧν τὸ μεσόφρυον καὶ
γὰρ οὕτως ἑλιχθήσεται καὶ τοῖς ὀπίσω μέρεσι περὶ τὸ καλούμενον ἰνίον , ὃ μεταξὺ τοῦ τραχήλου καὶ τῆς ὀπίσω κυρτότητός
5671295 καιριας
ἡ ] ἐπὶ τῶν λοιπῶν διαφορῶν ἥ τε μεσότης τῆς καιρίας τῷ περινέῳ περιτιθέσθω , παρατετηρημένως δὲ μᾶλλον ἐπὶ τῆς
πήχεις σφίγγονται , τὸ δὲ μέσον τῶν βρόχων διπλοῦν τῆς καιρίας χάλασμα ἀναφέρεται ἐπὶ τὸν τένοντα τοῦ πάσχοντος , καὶ
5666274 ΔΓ
ἡ ΕΓ ἄρα πρὸς ΓΒ μείζονα λόγον ἔχει ἤπερ ἡ ΔΓ πρὸς ΓΒ : πολλῷ ἄρα μείζων ἐστὶν ἡ ΕΓ
καὶ τὸ ΕΖ . , ] ὅμοιον γάρ ἐστι τῷ ΔΓ δεδομένῳ . Καί ἐστιν ἴσον τοῖς ΑΓ , ΚΘ
5665497 βασεως
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν :
5664667 τελαμωνος
τὸ ἕλκος ἔκκρισιν . συντελεῖται δὲ οὕτως : ἡ τοῦ τελαμῶνος ἀρχὴ διάκειται ἐκ πλαγίων τῆς κεφαλῆς , εἶτα ἄγεται
ἐργασάμενος κατὰ τὸ στῆθος ἁμματίζω τὰς ἀρχάς . Ἡ τοῦ τελαμῶνος ἀρχὴ τάσσεται ὑπὸ [ τὴν ἀντικειμένην ] τὴν ἀριστερὰν
5661861 ἀσυμπτωτων
, διὰ δὲ τῆς συμπτώσεως ἀχθῇ εὐθεῖα παρά τινα τῶν ἀσυμπτώτων τέμνουσα τήν τε τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν
ἀσύμπτωτόν ἐστι τῷ ΛΔΤΥ ἡμικυκλίῳ : αἱ ἄρα μεταξὺ τῶν ἀσυμπτώτων ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι
5654851 καταγῃ
κατάγομαι παρὰ σοί . Ποῖ δέ , ἔφη , καὶ κατάγῃ ; Παρὰ Ἱππάρχῳ . Τῷ φιλαργύρῳ ; ἔφη .
καμίνοις . Ὁππότε δ ' ἂν σκοπιὴν ὡροσκόπον ὠδίνεσσιν Ἑρμείας κατάγῃ , τῷ δ ' ᾖ Κυθέρη ἐπίφοιτος , δὴ
5654792 ὀπισθιος
τοῦ ἐκθέτου κάλου ἑλκομένου τῇ χειρὶ καὶ ἀνειλημένου στρέφεται ὁ ὀπίσθιος ἄξων : στρεφομένου δὲ τούτου , εἰσάγονται ἄλλαι ἀρχαὶ
πρόσθεν εἶπον , ἔχει τὴν ἔκφυσιν : ὁ δ ' ὀπίσθιος τοῦ τραχήλου μῦς οὗτος , ὑπὲρ οὗ πρόκειται νῦν
5651405 τραπεζιον
] τὸ τοιοῦτον τραπέζιον προσηγόρευσαν ἀπὸ τῶν ἐπιπέδων τραπεζίων : τραπέζιον γὰρ λέγεται , ὅταν τριγώνου ἡ κορυφὴ ὑπὸ παραλλήλου
τῆς ΔΕ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖΗ τραπέζιον . Καὶ ἐὰν ᾖ [ δὲ ] τρίγωνον τὸ
5648995 ῥομβοειδες
ἑτέρων ὄντα προπέπτωκεν εἰς τὸ Ἀτλαντικὸν πέλαγος , καὶ γίνεται ῥομβοειδὲς τὸ τῆς χώρας σχῆμα , τῶν μειζόνων πλευρῶν ἑκατέρου
ῥόμβος δὲ τὸ ἰσόπλευρον μέν , οὐκ ὀρθογώνιον δέ , ῥομβοειδὲς δὲ τὸ τὰς ἀπεναντίον πλευράς τε καὶ γωνίας ἴσας
5644342 κατηγμενη
τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον
Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ
5642761 μασχαλης
πλευρὰς καὶ βραχίονος ἐπεγκύκλιοι πάλιν ἐπὶ μασχάλην ἀπαθῆ : ἀπὸ μασχάλης λοξαὶ ἐπὶ ἀκρώμιον πεπονθός : ἀπὸ ἀκρωμίου ὄρθιοι παρὰ
: εἶτα λοξὴ κατὰ στέρνου ὑπὸ μασχάλην ἀπαθῆ , ἀπὸ μασχάλης λοξὴ κατὰ νώτου ἐπὶ κλεῖδα , ὡς μέρη τινὰ
5640771 πεσειται
δὲ ἡ γῆ καὶ ὑποδέξεται τὴν Λαοδίκην ἤτοι ἐν φάραγγι πεσεῖται καὶ ἀποθανεῖται ἡ Λαοδίκη πότε ; ὅταν πορθῆται ἡ
Α τῇ ΑΒ πρὸς ὀρθὰς ἀπ ' ἄκρας ἀγομένη ἐκτὸς πεσεῖται τοῦ κύκλου . Μὴ γάρ , ἀλλ ' εἰ
5635203 πενταγωνῳ
, ὅτι τὸ ὑπὸ ΑΖ , ΒΘ ἴσον ἐστὶ τῷ πενταγώνῳ . Ἀπὸ γὰρ τοῦ Β ἐπὶ τὸ Δ ἐπεζεύχθω
ἐπεὶ τὸ μὲν ὑπὸ ΑΗ , ΘΒ ἴσον ἐστὶ τῷ πενταγώνῳ , τὸ δὲ ὑπὸ ΑΗΔ τῷ ΑΔΜ τριγώνῳ ,
5635197 κλειδος
ὀδύνη ἑλκώδης περὶ τὸν τόπον γίνεται , διατείνουσα καὶ μέχρι κλειδός . πολλοῖς μετὰ τοῦ τὴν κοιλίαν ἐκδιδόναι καὶ οὖρα
ὧν ἑκατέρῳ τῶν ὀρθίων ἀνατείνεταί τις τένων πλατὺς ἄχρι τῆς κλειδός , ἔχων τι καὶ σαρκῶδες ἐνταῦθα : διὸ καὶ
5626617 τριπλασιαν
Λ διπλασίαν τῆς Δ οὖσαν ١٤ , τὴν δὲ Μ τριπλασίαν ٢١ , τὴν δὲ Ν ٢٨ καὶ τὴν Κ
οὖν γενομένης τῆς ναυμαχίας ὁ μὲν Δημήτριος ἄλλην μηχανὴν κατεσκεύασε τριπλασίαν τῷ ὕψει καὶ πλάτει τῆς πρότερον , προσάγοντος δ
5625992 εἰλημα
. Κεφ . ρεʹ . Ἀρχὴ κατὰ πλευρᾶς . τὸ εἴλημα λοξῶς κατὰ στέρνον ἐπὶ ἀκρώμιον , εἶτ ' ἐγκάρσιον
τῷ ἐπιδεσμένῳ τὴν ἀρχὴν τάξαντες κατὰ τῆς ἀπαθοῦς μασχάλης τὸ εἴλημα ἄγομεν λοξῶς κατὰ νώτου : ἔπειτα δὲ παρ '
5623342 ΑΒΓΔ
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ
5619501 εἰληφθω
τοῦ Ε πολλαπλάσιον τοῦ τοῦ Ζ πολλαπλασίου οὐχ ὑπερέχει , εἰλήφθω , καὶ ἔστω τῶν μὲν Γ , Ε ἰσάκις
μὲν δοθεῖσα γωνία ὀξεῖα ἡ ὑπὸ τῶν ΖΗΘ , καὶ εἰλήφθω ἐπὶ τῆς ΖΗ τὸ Ζ , καὶ κάθετος ἤχθω
5618733 σφαιριον
βρέγμα καὶ χιασθεῖσαι διακρατείσθωσαν , ἄλλη δὲ μεσότης ὑπὸ τὸ σφαίριον τῆς ῥινός . αἱ δ ' ἀρχαὶ καὶ ὑπὸ
, οὗπερ ἡλίου περιδινηθέντος εἰς τὸ ὑπὸ γῆν ἡμι - σφαίριον γίνεται νύξ , ἀπὸ δὲ τοῦ ὑπὸ θάλασσαν καὶ
5611698 ἀνισοτονος
ἀρχαί . ἔστι δ ' ὁ βρόχος οὗτος τῇ δυνάμει ἀνισότονος , καὶ εὔχρηστος οὐ μόνον πρὸς τὴν τάσιν ,
τῷ δὲ πήχει πάλιν κατὰ τὰ ἀπολήγοντα μέρη περιτιθέσθω βρόχος ἀνισότονος , ὡς ἐρτὸς ἢ ναυτικός , οὗ αἱ ἀρχαὶ
5609524 κορυφης
πολλάκις δυόμενος ἢ ἀνατέλλων φαντασίαν ἡμῖν ἀποπέμπει ὡς ψαύων τῆς κορυφῆς , τοσαύτας μυριάδας ἀφεστὼς ἀπὸ παντὸς μέρους τῆς γῆς
βάσεις ἴσας ἔχῃ , ἔχῃ δὲ καὶ τὰς ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἠγμένας εὐθείας ἴσας ,
5600172 προσεκβαλλομενη
διὰ τοῦ Δ ἡμικύκλια , ἵνα ἡ ἐφαπτομένη ἑκάστου αὐτῶν προσεκβαλλομένη ἐπὶ τὴν τοῦ μείζονος ἡμικυκλίου περιφέρειαν τὴν μεταξὺ τῆς
ἣν ἄγονται καὶ τῆς παρ ' ἣν δύνανται , καὶ προσεκβαλλομένη ἕως τοῦ ἑτέρου μέρους τῆς τομῆς δίχα τμηθήσεται ὑπὸ
5598461 κωνῳ
μέγιστον κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ
, ΒΕΖ τρίγωνα ἴσα ἀλλήλοις ἐστίν . ἔστω τῷ ΑΗΓΔ κώνῳ ἰσοϋψὴς ὁ ΚΘΕΖ κῶνος . ἐπεὶ οὖν , ὡς
5583511 τμηματος
Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας .
ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν
5582738 ٤١
ΕΔ οὐδέν ٤٣ ٢ ٣٣ ٢ ١٥ ἡ ΘΚ οὐδέν ٤١ ٥٣ ٢١ ٤ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤
ἡ ΓΚ ٢ ٤٧ ٥١ ٤٧ ٤٢ ἡ ΚΜ οὐδέν ٤١ ٥٣ ٢١ ٤ Ἡ ΑΒ ٢٠ ἡ ΓΔ ٢٥
5579089 ΑΔΓ
οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ
κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ
5574046 τυμπανον
! ! κροτάλων ? ἱέτω ? [ ] ! ˈ τύμπανον ἰάχει ? ? ? [ ˈ [ ⚕ ἐμβαίνει
ἐμπλώῃ καὶ ὑπὸ τῆϲ πρήϲιοϲ ἐν τοῖϲι πατάγοιϲι δονέῃ ὅκωϲ τύμπανον , τυμπανίηϲ κικλήϲκεται . ἢν δὲ ὕδωρ ἅλιϲ ἐϲ
5572283 τρηματος
⊂ , πλάτος δὲ τρήματος α ⊂ πάχος δὲ ἡμίσους τρήματος καὶ ἔτι ὀγδόου : τοὺς δὲ μεσοστάτας μῆκος ἔχοντας
τῷ μεταξὺ διαστήματι τῶν τροχῶν , κεχωρισμένων δὲ τοῦ μέσου τρήματος . οὗτοι οἱ κάλοι εἴρονται : εἶθ ' ὅταν
5569655 εὐωνυμῳ
Πυρρίας Ἀρκὰς ταύτης ἦρχε : τὴν δὲ μίαν ἐπὶ τῷ εὐωνύμῳ : Φρασίας Ἀθηναῖος ταύτῃ ἐφειστήκει . προϊόντες δέ ,
: καιρίαι προσλαμβάνονται διπλαῖ , καὶ αἱ μὲν ἀρχαὶ τῇ εὐωνύμῳ χειρὶ κρατοῦνται , ἡ δ ' ἀγκύλη παρειμένη ἐᾶται
5569336 σχηματιζεσθω
μασχάλην διαφορᾶς καταρτιζομένης καὶ τῆς ἔμπροσθεν , ὕπτιος ὁ πάσχων σχηματιζέσθω : τῆς δ ' ὀπίσω , πρηνής . τῆς
τριῶν διαφορῶν , ἐφ ' ὧν ἐκτέταται τὸ σκέλος , σχηματιζέσθω ὕπτιος ὁ πάσχων , καὶ τότε διπλῆς καιρίας μεσότης
5568874 χιασμα
λοξὴ πλη - σίον κλειδῶν συμβολῆς : ὡς καὶ ἐνταῦθα χίασμα γίγνεσθαι καὶ παρὰ τράχηλον ἐπ ' ὠμοπλάτην καὶ ἐπὶ
καὶ παρὰ τὸν τοῦ ἑτέρου μεγάλου κανθοῦ ἐπὶ μεσόφρυον ὡς χίασμα κατὰ μεσοφρύου γίνεσθαι ἐπ ' εὐθείας παρακειμένη τῇ πρώτῃ
5565541 ποδοστραβην
οἶόν ] μόνον τῶν ἄλλων συνωμοτῶν . ξύλῳ ] ὃ ποδοστράβην λέγουσι καὶ ποδοκάκκην . διώξομαί σε δειλίας ] κατηγορήσω
τὸ θηρίον φερόμενόν θ ' ὥσπερ † ἀναστρέψαι τε τὴν ποδοστράβην καὶ ἐνσχεθῆναι στερεῷ βρόχῳ κατὰ τέχνην ἐπ ' αὐτὸ
5562465 διχοτομιων
: τὸ μὲν γὰρ δὶς ἀπὸ ΑΒ , διὰ τῶν διχοτομιῶν , ἴσον ἐστὶν τῷ τε δὶς ὑπὸ ΑΔΓ καὶ
, τῶν δὲ ἄλλων οἱ μὲν ἴσον ἀπέχοντες ὁποτερασοῦν τῶν διχοτομιῶν ὁμοίως εἰσὶ κεκλιμένοι , αἰεὶ δὲ ὁ πορρώτερον τὴν
5553586 συναμφοτερῳ
ἡ ΗΔ τῇ ΕΖ ἐστὶν ἴση : ἡ ΗΚ ἄρα συναμφοτέρῳ τῇ ΓΔ ΕΖ ἐστὶν ἴση [ ἡ δὲ ΔΖ
τῇ ΑΕ , ἡ δὲ ΚΗ τῇ ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ
5552489 βορειοτερος
. Σκορπίου κε Ϛʹ νο λδ Ϛʹ δʹ με ὁ βορειότερος αὐτῶν . . . . . . . .
καὶ τοῦ ἐλαχίστου ἀποστήματος ε μοίραις ἑκάτερος αὐτῶν τὸ πλεῖστον βορειότερος καὶ νοτιώτερος γίνεται τῶν ἐναντίων κατὰ τὸν ἐπίκυκλον παρόδων
5551381 διαμετρου
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ
5533588 ἀξονος
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν .
5533320 ٥٤
πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ
ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ
5529241 σμικροτερον
τροφῆς κακῆς ἤ τινος ὁμιλίας κρατηθῇ ὑπὸ πλήθους τοῦ χείρονος σμικρότερον τὸ βέλτιον ὄν , τοῦτο δὲ ὡς ἐν ὀνείδει
: ᾧ δ ' ἂν προστεθῇ τὸ ἀφαιρεθέν , τοῦτο σμικρότερον ἔσται ἀλλ ' οὐ μεῖζον ἢ πρίν . Οὐκ
5528480 ἀκιας
λεγόμενον ἀρχισαγιττάτορα . Τὸ δὲ μένον δίμοιρον μέρος διανεῖμαι εἰς ἀκίας ἀπὸ ἀνδρῶν δεκαοκτὼ παλαιῶν καὶ νέων , ὥστε τοὺς
. Χρὴ ἀφορίζειν ἐκ τῶν περὶ τὸ βάνδον τασσομένων δύο ἀκίας , χρησίμους εἰς φυλακὴν τοῦ βάνδου ἐπὶ καιρῷ πολέμου
5525545 ἐκβληθῃ
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν εὐθεῖα ἐκβληθῇ , ἀπὸ δὲ τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθεῖσα εὐθεῖα
ΘΓ παράλληλον ἀγάγω τὴν ΕΞ , καὶ ἐπιζευχθεῖσα ἡ ΘΗ ἐκβληθῇ ἐπὶ τὸ Ξ , ὁ μὲν τῆς ΚΗ πρὸς
5521331 περιτιθεται
τῶν κάλων τοῦ ὀργάνου . βρόχος δ ' ὁ καρχήσιος περιτίθεται τῷ βραχίονι , οὗ αἱ ἀρχαὶ ἄγονται κάτω καὶ
πρὸς ἀπότασιν σφυροῦ καταρτιζομένου : ἡ μὲν γὰρ μία ἀγκύλη περιτίθεται τῷ πλατεῖ νεύρῳ ὄπισθεν τοῦ σφυροῦ , ἡ δ
5518548 ἐπειλησιν
. Θαΐς . Θέντες τὴν ἀρχὴν ἐπὶ ἰνίον ἄγομεν τὴν ἐπείλησιν λοξὴν κατὰ βρέγματος καὶ κροτάφου ὑπὸ λοβὸν ὠτὸς ἐπὶ
σφενδόνη χειρός . Θέντες τὴν ἀρχὴν ἐπὶ καρποῦ ἄγομεν τὴν ἐπείλησιν λοξὴν μὲν κατὰ μετακαρπίου , ἐπικάρσιον δὲ κατὰ τοῦ
5514618 δοθεντος
καί εἰσιν ὅμοιαι ἀλλήλαις : ὅπερ ἔδει δεῖξαι . Κυλίνδρου δοθέντος εὑρεῖν κῶνον καὶ τεμεῖν ἀμφοτέρους ἑνὶ ἐπιπέδῳ ποιοῦντι διὰ
τῶν ἀριθμῶν εἰσιν ὅμοια . . Ὁμοίως ἐπὶ τῆς προσθήκης δοθέντος μέρους τοῦ μεγίστου ᾧ ὑπερέχει ὁ μέσος τοῦ ἐλαχίστου
5511511 ἐπιδεσμος
ἅμμα γίνεται κατὰ τὰ ἀπολήγοντα τοῦ βρέγματος . οὗτος ὁ ἐπίδεσμος ἀναγέγραπται ἐπὶ τῶν κυνικῶς σπωμένων καθ ' ἓν μέρος
οὖν ἰσοπαχὲς ἦν ἕκαστον τῶν μορίων , ὁ πλατύτατος ἂν ἐπίδεσμος ἄριστος ὑπῆρχεν , ὅλον ὁμαλῶς τε καὶ συνεχῶς ἐκ
5508436 ٤٥
٤٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤
٢٢ ١٠ ٢٠ τὸ ὑπὸ ῥητῆς καὶ τῆς ΑΔ ١ ٤٥ ἡ ΔΗ ١٠ ١٨ ٥ ٤٠ ἡ ταύτης ἡμίσεια
5507817 μεσουρανουσι
Κυνὸς ὁ βορειότατος τῶν ἐν τῇ κεφαλῇ : ἔσχατον δὲ μεσουρανοῦσι τοῦ τε Δράκοντος ὁ ἐν ἄκρᾳ τῇ οὐρᾷ ,
ὦμος , ὡς ἡμιπήχιον προηγούμενος τοῦ μεσημβρινοῦ : ἔσχατον δὲ μεσουρανοῦσι τῆς τε Ἄρκτου ὁ βορειότερος τῶν ἐν τοῖς ἐμπροσθίοις
5500078 ΒΖΓ
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο
5499679 ΑΔΒ
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ
5497540 ἡμικυκλιων
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι
5491572 περιεχομενῳ
τοῦ ἀπὸ ΑΘ πρὸς τὸ ἀπὸ ΑΕ ἴση ἐστὶν τῷ περιεχομένῳ ὀρθογωνίῳ ὑπό τε τῆς ΕΘ καὶ τῆς ὑπεροχῆς ᾗ
ἀσυμπτώτων πρὸς τῷ κέντρῳ τῆς τομῆς εὐθείας ἴσον περιεχούσας τῷ περιεχομένῳ ὑπὸ τῶν ἀποτεμνομένων εὐθειῶν ὑπὸ τῆς ἐφαπτομένης κατὰ τὴν
5491193 κροταφου
λοβὸν ὠτὸς ἐπὶ ἰνίον , εἶτα λοξὴν κατὰ τοῦ ἑτέρου κροτάφου καὶ τοῦ βρέγματος ὑπὸ τὸν ἕτερον λοβὸν ἐπὶ ἰνίον
ἀναλύεται χωρὶϲ φανερᾶϲ αἰτίαϲ . νυγματώδειϲ δὲ διαδρομαὶ γίγνονται μέχρι κροτάφου καὶ παρέπεται αὐτοῖϲ ῥευματιϲμὸϲ ὑγροῦ ϲυμμέτρωϲ δριμέοϲ καὶ λεπτοῦ
5491116 παραλληλογραμμου
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν
5489413 ΜαΜβ
μὲν τοῦ ΕΖ ἄξονος βάρος ἐξάψωμεν , ἐκ δὲ τοῦ ΜαΜβ τυμπάνου τὴν ἕλκουσαν δύναμιν τὰ δʹ τάλαντα , οὐδοπότερον
ΜαΜβ πρὸς τὸ ἀπὸ ϘΩ , τουτέστιν τὸ πεντεκαιδεκάκις ἀπὸ ΜαΜβ πρὸς τὸ πεντεκαιδεκάκις ἀπὸ ϘΩ . καὶ ἐπεὶ ἔχομεν
5478178 ٥٣
οὐδέν ٤٣ ٢ ٣٣ ٢ ١٥ ἡ ΘΚ οὐδέν ٤١ ٥٣ ٢١ ٤ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦
ΒΕ ἢ ΕΒ ١ ٣٩ ٩ ἡ ΑΕ ٤ ٣٧ ٥٣ ἡ ΔΖ ٣ ١٨ ١٨ ἡ ΓΖ ٩ ١٥
5475411 τετραγωνῳ
τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ
ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ
5467676 λοξως
ἐπὶ μεσόφρυον κατ ' αὐτοῦ χίασμα γίγνεσθαι καὶ τὰς ἀρχὰς λοξῶς ἐπὶ κορυφῆς ἐπὶ ἰνίον ἀφάψαντές τε πρὸς τὸ αὐτὸ
τὸ δὲ ” δυσκρίτως εἰρημένους “ ἀντὶ τοῦ αἰνιγματωδῶς καὶ λοξῶς λεχθέντας . ὕστερον δὲ ἦλθε τῷ Ἰνάχῳ μαντεία φανερὰ
5464224 ἀγεσθωσαν
τοῦ βρόχου ] περίθεσιν τῆς καιρίας αἱ τοῦ βρόχου ἀρχαὶ ἀγέσθωσαν κάτω καὶ ἀποδιδόσθωσαν κατ ' εὐθὺ τῷ τύλῳ τοῦ
ἀγκύλαι ἢ διπλῶν καιριῶν μεσότητες περιτιθέσθωσαν , ὧν αἱ ἀρχαὶ ἀγέσθωσαν ἔμπροσθεν ὡς ἐπὶ τὸ τόνιον . τῷ δὲ πήχει
5455326 διαστηματι
κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ
γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ
5446134 ἐφαπτομεναι
ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς
τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ
5438959 ἐφαπτομενων
τὸ ἐγγράφεσθαι : τὸ μὲν γὰρ λέγεται ἐπὶ τῶν μὴ ἐφαπτομένων ἀλλήλων ὡς ἐπὶ τοῦδε # : τὸ δὲ ὅταν
ἀκτίνων ἀπὸ τοῦ κ τοῦ ΛΜΝ ἐπικύκλου ἡ μεταξὺ τῶν ἐφαπτομένων περιφέρεια ἔχουσα τὸ περίγειον ὅλη προσθετική ἐστιν , ἡ
5428975 μηνοειδους
τε καὶ τοξεύουσαι θαμινὰ ἀνέκοπτον . καὶ κατήρειψέ τι τοῦ μηνοειδοῦς , ὑγροτέρου καὶ ἀσθενεστέρου ἔτι ὄντος ἅτε νεοδμήτου .
- σιν ἀνακαμπτούσης : αὔξεται μὲν γὰρ ἀπὸ τῆς πρώτης μηνοειδοῦς ἐπιλάμψεως ἄχρι διχοτόμου ἡμέραις ἑπτά , εἶθ ' ἑτέραις
5427857 ληφθῃ
εἰλῆφθαι ταῖς προτάσεσιν ἢ τῇ λέξει μόνον , οἷον ἂν ληφθῇ τὸ χρῶμα κατὰ παντὸς λευκοῦ , τὸ λευκὸν κατὰ
δεῖξαι . Ἐὰν δύο κύκλοι ἐφάπτωνται ἀλλήλων ἐντός , καὶ ληφθῇ αὐτῶν τὰ κέντρα , ἡ ἐπὶ τὰ κέντρα αὐτῶν

Back