γίνεται ῥομβοειδὲς τὸ τῆς χώρας σχῆμα τῶν μειζόνων πλευρῶν ἑκατέρου πλεονεκτοῦντος παρὰ τὸ ἀπεναντίον πλευρὸν καὶ τρισχιλίοις σταδίοις , ὅσων | ||
ῥομβοειδὲς τὸ τῆς χώρας σχῆμα , τῶν μειζόνων πλευρῶν ἑκατέρου πλεονεκτοῦντος παρὰ τὸ ἀπεναντίον πλευρὸν τρισχιλίοις σταδίοις , ὅσον ἐστὶ |
. ὁ κόρυς τοῦ κόρεος , ὡς ὁ πῆχυς τοῦ πήχεος . τήμερον ] σήμερον . . τὸ παρὸν σύστημα | ||
: τοῦ γὰρ βραχίονος τὸ γιγγλυμοειδὲς , ἐν τῇ τοῦ πήχεος βαθμίδι ἐν τουτέῳ τῷ σχήματι ἐρεῖδον , ἰθυωρίην ποιέει |
ιβʹ καὶ ηʹ ιγʹ καὶ ζʹ ιδʹ καὶ Ϛʹ ἐξ ἄκρων ἐάν . τετραγωνιζομένη ἀεὶ περιέχει καὶ λήγει εἰς ἑαυτήν | ||
: ἁρμονικὴ γάρ ἐστιν ἡ μεσότης ἡ ταὐτῷ μέρει τῶν ἄκρων αὐτῶν ὑπερέχουσά τε καὶ ὑπερεχομένη , ὅπερ ἄλλῃ οὐ |
. ἐμφύεται δ ' ὁ μῦς οὗτος εἰς τὸ τοῦ πήχεως ὀστοῦν , ὥσπερ ὁ προειρημένος ὁ μείζων εἰς τὸ | ||
ὁ ἀριστερὸς ὦμος , ὑπολειπόμενος τοῦ μεσημβρινοῦ ὡς δύο μέρη πήχεως καὶ τοῦ Κήτους ὁ ἐπὶ τῆς λοφίας . Δύνει |
καὶ τῶν περὶ τὴν ὄψιν ἀγγείων τὰ μὲν ἐξόφθαλμα κομιδῇ προπέπτωκεν ὑπὸ κυρτότητος , τὰ δὲ κοιλότερά ἐστι , τὰ | ||
[ ἢ ὅτε ] μᾶλλον ἢ ἐν ἐπιθέσει , ὅτε προπέπτωκεν ἡ μήτρα . μελανθείσης δὲ αὐτῆς ἀπὸ μέρους διὰ |
ἑτέρων ὄντα προπέπτωκεν εἰς τὸ Ἀτλαντικὸν πέλαγος , καὶ γίνεται ῥομβοειδὲς τὸ τῆς χώρας σχῆμα , τῶν μειζόνων πλευρῶν ἑκατέρου | ||
ῥόμβος δὲ τὸ ἰσόπλευρον μέν , οὐκ ὀρθογώνιον δέ , ῥομβοειδὲς δὲ τὸ τὰς ἀπεναντίον πλευράς τε καὶ γωνίας ἴσας |
περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ | ||
ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ |
δὲ ὁ Φαρνάκεος αὐτίκα τε οὐκ ἠρέσκετο κατ ' ἀρχὰς λειπομένου Μαρδονίου ἀπὸ βασιλέος , καὶ τότε πολλὰ ἀπαγορεύων οὐδὲν | ||
στίχου μέρος ἐστὶ τὸ μῆνιν . καὶ μὴν οὐδὲ τοῦ λειπομένου , φημὶ δὲ τοῦ ἄειδε θεὰ Πηληιάδεω Ἀχιλῆος . |
Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
ἱμάτια αὐτοῦ καὶ ἀναιδῶς ἔδειξε τὴν αἰδῶ αὐτοῦ . τοῦ δακτύλου ] τῆς πόσθης . καὶ γεγηρακότος δηλονότι πάλιν ὁ | ||
αὐτοὶ τῷ μέτρῳ : καὶ τὸ ηʹ γὰρ κῶλον ἀντὶ δακτύλου καὶ ἀναπαίστου προκελευσματικὸν ἔχει καὶ ἀνάπαιστον . ἐπὶ τῷ |
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
τῶν τεσσάρων , ΔΥ τοσούτων ὅσων ἐστὶ δπλ . τοῦ ἐμβαδοῦ , τὸν μὲν αον ΔΥ ͵δνϚ , τὸν δὲ | ||
μεῖζον , τῶν δὲ μετ ' αὐτὴν ἡ περίμετρος τοῦ ἐμβαδοῦ ἐλάσσων . πρῶτος τετράγωνος καὶ ἐν ἀρτίοις πρώτη τετρακτύς |
αη ηβ : καὶ ἐπεὶ τὸ γδ τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ | ||
, πρῶτον διπλάσιον ἐν ἑνὶ στίχῳ , εἶτα ἐν δευτέρῳ τριπλάσιον , εἶτα τετραπλάσιον ἐν τρίτῳ καὶ μέχρι δεκαπλασίων , |
διέσεως καὶ διέσεως καὶ διτόνου καὶ τόνου καὶ διέσεως καὶ διέσεως καὶ διτόνου , τὸ δὲ φρύγιον ἐκ τόνου καὶ | ||
ᾧ κινεῖται , τονιαῖος , ὁ δὲ τῆς παρυπάτης τόπος διέσεως ἐλαχίστης . Διαστημάτων εἰσὶ διαφοραὶ πέντε , πρώτη μέν |
' ἐπὶ Πάχυνον πεντήκοντα . ἔνθεν πάλιν κατὰ τὸ τρίτον πλευρὸν εἰς μὲν Συρακούσσας τριάκοντα ἕξ , εἰς δὲ Κατάνην | ||
: ὧν ὁ μὲν Ἀσταβόρας καλεῖται κατὰ τὸ πρὸς ἕω πλευρὸν ῥέων , ἅτερος δ ' Ἀστάπους : οἱ δ |
ἐν τόνῳ δέ , καθὸ οὐδεμία λέξις εἰς ο λήγουσα τόνου ἔχεται τοῦ ὀξέος , καὶ ἕνεκά γε τούτου τὸ | ||
λοιπὸν ἐκ τοῦ τεθὲν ἐπὶ γῆς εὐθέως αὐτὸ κλαυθμυρίσαι μετὰ τόνου τοῦ προσήκοντος : τὸ γὰρ ἕως πλείονος ἀκλαυστὶ διάγον |
πολὺ καὶ ὀλίγον , ἔστι δὲ ὅτε εἰς ὑπερέχον καὶ ὑπερεχόμενον , ὅταν ἐπὶ τῆς πρώτης δυάδος παραλαμβάνηται , συμβολικῶς | ||
: τινὰ γὰρ καὶ διχῶς ἀποδίδοται , οἷον τὸ ὑπερέχον ὑπερεχόμενον ὑπερέχει καὶ τὸ ὑπερέχον ὑπεροχῇ ὑπερέχει . τέταρτον ἵνα |
μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ | ||
ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ |
τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ | ||
διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ |
ἐπιπλεούσης δὲ τῆς ἀσφάλτου πελαγίας ὁ τόπος φαίνεται τοῖς ἐξ ἀποστήματος θεωροῦσιν οἱονεί τις νῆσος . τὴν δ ' ἔκπτωσιν | ||
ἡ γῆ σημείου καὶ κέντρου λόγον ἔχει , οὐδὲ τοῦ ἀποστήματος λόγος δίδοται . Ἐπὶ δὲ σελήνης παραλλάξεώς τινος ληφθείσης |
ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς | ||
ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς |
καὶ οὐδέποτε ποιήσει ἐπιφάνειαν . πολλῷ δὲ μᾶλλον οὐδ ' ὑπερέξει . καὶ ἐπὶ ἐπιφανείας καὶ σώματος ὡσαύτως . Οὔτε | ||
ὑπερέχει . οὐκέτι γὰρ καὶ τὸ Α τοῦ Γ πήχει ὑπερέξει : ψεῦδος γὰρ τοῦτο . ἡ δ ' αἰτία |
καὶ τρίτον γένος μελῳδίας ἐναρμόνιον , ἐπειδὰν ἀπὸ τοῦ βαρυτάτου φθόγγου κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον ἡ φωνὴ προελθοῦσα | ||
οἷον σφραγῖδα σφραγῖδι ἐπιβάλλων ἐναργῆ μᾶλλον καὶ εὔδηλον , οὐδενὸς φθόγγου ἀπεχόμενος , ἀλλὰ ἔμβραχυ ποταμῶν τε μιμούμενος φωνὰς καὶ |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
ἔσχατος δὲ ὁ βορειότερος τῶν ἐν τῇ ἑπομένῃ πλευρᾷ τοῦ ῥόμβου . Μεσουρανοῦσι δὲ τῶν λοιπῶν ἀστέρων πρῶτοι μὲν ὅ | ||
καὶ τούτῳ , καθόσον ἐστὶ παραλληλόγραμμον . ἐπὶ δὲ τοῦ ῥόμβου ἄνισοι μὲν αἱ διάμετροι , διχοτομοῦνται δὲ ὑπὸ τούτων |
τὸ ὂν ἀγένητον ἀπολείπει : λέγει δὲ τὴν γῆν τοῦ πυκνοῦ καταρρυέντος [ ἀέρος ] γεγονέναι . . . καὶ | ||
ἄστρα καὶ τὸν ἥλιον ἐκ πυρός φησι καὶ τοῦ πρώτου πυκνοῦ συγκεῖσθαι , τὴν δὲ σελήνην ἐκ τοῦ δευτέρου πυκνοῦ |
περιεχόμενον ὑπὸ δύο φθόγγων ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις | ||
οἱ τοῦ διὰ τεσσάρων ὅροι σύμφωνοι : ἀπὸ δὲ τοῦ ὀξυτέρου αὐτῶν λαμβάνεται φθόγγος σύμφωνος ἐπὶ τὸ ὀξὺ διὰ τεσσάρων |
τὴν εὕρεσιν τὴν παρὰ τοῦ θεοῦ Ἑρμοῦ εἰς ἀνθρώπους διὰ μεσότητός τινος ἔρχεσθαι , ἡ δὲ δαιμονία φύσις ἐστὶν ἡ | ||
φανεῖεν χείρους καὶ ἦσαν οὐκ ἀδύνατοι : τὸ οὐκ ἀδύνατοι μεσότητός ἐστι ῥῆμα , οἷον οὔτε τελείως δυνατοὶ οὔτε ἀσθενεῖς |
. τὴν περὶ τὰς Αἰόλου νήσους ἀναζεῖν οὕτως ἐπὶ δύο πλέθρων τὸ μῆκος ὥστε μὴ δυνατὸν εἶναι διὰ τὴν θερμασίαν | ||
δὲ τὴν περὶ τὰς Αἰόλου νήσους ἀναζεῖν οὕτως ἐπὶ δύο πλέθρων τὸ μῆκος , ὥστε μὴ δυνατὸν εἶναι διὰ τὴν |
τοῦ διπλασίονος τοῦ τρίτου ὑπερέχουσι μο κ . Ὁ ἄρα διπλασίων τοῦ τρίτου ἔσται Ϟ β ↑ μο κ : | ||
διπλασίου καὶ τοῦ τριπλασίου τῶν κατὰ τὸ ἑξῆς συντιθεμένων , διπλασίων μὲν αʹ βʹ δʹ ηʹ : δ ' ἐστὶ |
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
. Τὸ μὲν ὕψος λαμβάνει πήχεις Ϙ , τὸ δὲ πλάτος πήχεις μη . Γίνεται δὲ τῷ σχήματι πυργοειδής : | ||
. Ἀλλ ' ὁ λόγος νῦν οὐ περὶ τῆς κατὰ πλάτος ἐπινοουμένης ὑγείας διέξεισιν , ἀλλὰ τῆς οἷον ἀμέμπτου πάντῃ |
ἡ γῆ διόλου κυκλοτερής , ἀλλὰ κατά τι μέρος , ὀξυτέρα δὲ πρὸς ἑκατέραν ὁδόν , δυτικήν τε καὶ ἀνατολικήν | ||
δύναται ὁ δυνάμενος δέξασθαι τὴν ἐπεισροὴν τῆς νοητῆς λαμπηδόνος : ὀξυτέρα μὲν γάρ ἐστιν εἰς τὸ καθικνεῖσθαι , ἀβλαβὴς δὲ |
οὔτε δίτονον πρὸς διτόνῳ τεθήσεται οὔτε τόνος ἐπὶ τὸ βαρὺ διτόνου , ὥστε λείπεται τὸ πυκνόν . φανερὸν δὴ ὅτι | ||
πρὸς αὐτῷ κατ ' οὐδέτερον τῶν τόπων οὔτε τόνος . διτόνου γὰρ οὕτω τιθεμένου ἤτοι βαρύτατος πυκνοῦ ἢ ὀξύτατος πεσεῖται |
: τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη | ||
τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν |
παντὸς ἐκκρίνεται , καὶ ἀπὸ τοῦ ἐλαχίστου δοκοῦντος ἐκκριθήσεταί τι ἔλασσον ἐκείνου , καὶ τὸ μέγιστον δοκοῦν ἀπό τινος ἐξεκρίθη | ||
, ἢ τὸ λευκὸν μέζον γίνεσθαι , τὸ δὲ μέλαν ἔλασσον , ἢ κρύπτεσθαι τὸ μέλαν ὑπὸ τὸ ἄνω βλέφαρον |
ἀναγεγράφθω κύκλος οὗ ἡ περίμετρος λγ : γίνεται αὐτοῦ τὸ ἐμβαδὸν πϚ ∠ ʹ ηʹ . καὶ ὁμοίως ἀφαιρῶ τὰ | ||
το - μέως δοθέντος , ἀφέλωμεν τὸ τοῦ ΑΓΘ τριγώνου ἐμβαδὸν δοθέν , ἕξομεν λοιπὸν τὸ περιεχόμενον τμῆμα ὑπό τε |
ὢν πολλαπλάσιός ἐστιν ἁπλῶς , ὁ δὲ ι τοῦ δ διπλασιεφήμισυς ὢν ἐπιδιμερής ἐστιν αὐτοῦ , τὸ δὲ ἐπιδιμερὲς τοῦ | ||
τῇ μικτῇ σχέσει . ἐπεὶ γὰρ ἡμιόλιος ἡ γεννῶσα σχέσις διπλασιεφήμισυς ἡ γεννωμένη , ἐπεὶ δὲ ἐπίτριτος διπλασιεπίτριτος , καὶ |
ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
ἐκ τῶν πέντε συγκείμενον κινεῖται , πάντως καὶ ἕκτου προσελθόντος ἀμεροῦς κινήσεται , ἰσχυροτέρων ὄντων τῶν πέντε παρὰ τὸ ἕν | ||
ὁ χρόνος εἴη διαιρετός , ἐν ᾧ κινεῖταί τι κατὰ ἀμεροῦς καὶ ἐλαχίστου , δῆλον ὡς ἐν τῷ μέρει τοῦ |
αὔξονται : καὶ μειοῦνται ἀπὸ τοῦ μέσου ὁμοίως ἄχρι τοῦ ἐλαχίστου ἀποστήματος , ὅπερ ἐστὶν κατὰ τὸ περίγειον τοῦ ἐπικύκλου | ||
ἐλαχίστου γῳ μέρει , ἐὰν προσθῶ τῷ μέσῳ τὸ τοῦ ἐλαχίστου γου μέρος , ἕξω τὸν μέγιστον ʂ γ γא |
, ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον | ||
εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ |
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ | ||
τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά |
ὕστερον δὲ γλαφυρώτατα δείξει ὅτι καὶ ἡ ἰσότης προτέρα τῆς ἀνισότητος . δείκνυσιν οὖν ὅτι τὸ πολλαπλάσιον πρῶτόν ἐστι τῶν | ||
πόλοι ἐπὶ τοῦ ὁρίζοντος πίπτουσιν , ἀναιρουμένου τοῦ αἰτίου τῆς ἀνισότητος τῶν ἡμερῶν , τοῦτο δὲ ἦν τὸ ἔγκλιμα , |
; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
καὶ τὰ τούτοις ἀντικείμενα , τὸ ἕτερον τὸ ἀνόμοιον τὸ ἄνισον , ἅπερ ὑπὸ τὸ πλῆθος ἀνάγεται , καὶ οὐ | ||
, ἐπειδὰν αὐτῶν κατηγορῆται , καὶ τὸ ἴσον καὶ τὸ ἄνισον καὶ τὰ ἄλλα : ταὐτὸν μὲν γὰρ κυρίως ἐπὶ |
, καὶ ἡ μὲν τοῦ ἡμικυκλίου γωνία ἁπάσης γωνίας ὀξείας εὐθυγράμμου μείζων ἐστίν , ἡ δὲ λοιπὴ ἐλάττων . Ἔστω | ||
θεωρημάτων , ἐν δὲ τῷ παρόντι στοιχείῳ ἐγγραφῆς ἢ περιγραφῆς εὐθυγράμμου εἰς εὐθύγραμμον ἐπί τινι τῶν ἐν αὐτῷ θεωρημάτων ὅλως |
τοῦ Ἑρμοῦ ἡ τῶν ἐκ τῆς λοξώσεως κατὰ πλάτος παρόδων παράθεσις , τῶν μέντοι παρ ' αὐτὴν μόνην τὴν λόξωσιν | ||
πρώτην θέσιν ἐπαγγελλομένη τῶν προσώπων , ἡ δὲ τῶν ἄρθρων παράθεσις ἐν δευτέρᾳ τάξει παραλαμβάνεται ὑποταγέντων ταῖς ἀντωνυμίαις , ἐγὼ |
' ἧς θέσει τὰ μέτρα τό τε πηχυαῖον καὶ τὸ παλαιστιαῖον καὶ τὸ δακτυλιαῖον ἢ τὸ ποδιαῖον λαμβάνεται , ὑπάρχουσιν | ||
μέγεθος , ὥς φασι , καὶ τὸ πλάτος μεῖζον ὡς παλαιστιαῖον . φέρεται δὲ τοῦτο εἰς τὴν ἔσω θάλατταν ἅμα |
θυρεῷ περιέχεται γωνία τις ὑπὸ τοῦ ἄξονος καὶ τῆς τοῦ θυρεοῦ γραμμῆς , καὶ τούτων ἡ μέν ἐστιν ἁπλῆ , | ||
ὅ θ ' ὕπατος ὁ τῶν Ῥωμαίων σαυνίῳ διὰ τοῦ θυρεοῦ διαπερονηθεὶς τιτρώσκεται τὸν μηρόν , καὶ ἄλλοι συχνοὶ τῶν |
μδʹ ἡ κατὰ Οἶσκον ἐπιστροφή ναʹ μδʹ ἡ κατὰ Ἀξιούπολιν ἐπιστροφή νδʹ γʹʹ μεʹ ∠ ʹʹδʹʹ ἀφ ' ἧς καὶ | ||
' ἀσπίδα : τὸ δὲ μεταβολή , τὸ δέ τι ἐπιστροφή , καὶ ἀναστροφὴ ἄλλο . καὶ περισπασμὸς δέ τι |
εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ | ||
ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ |
δρ . ξʹ . ἕψε , ἕως ἂν γένηται γλοιοῦ πάχος , καὶ χρῶ . τούτου τοῦ χυλοῦ ἐὰν νῆστις | ||
κδʹ , τὸ δὲ πλάτος δακτύλων ιβʹ , τὸ δὲ πάχος δακτύλων ιʹ . εὑρεῖν αὐτοῦ τὸ στερεόν : ποίει |
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
αὐτοῦ τὴν ἐπιστροφήν . περισπασμὸς δέ ἐστιν ἡ ἐκ δυεῖν ἐπιστροφῶν τοῦ τάγματος κίνησις , ὥστε μεταλαμβάνειν τὸν ὀπίσω τόπον | ||
τὸν ὀπίσω τόπον . ἐκπερισπασμὸς δέ ἐστιν ἡ ἐκ τριῶν ἐπιστροφῶν συνεχῶν τοῦ τάγματος κίνησις , ὥστε μεταλαμβάνειν , ἐὰν |
: τοιαύτην πέμπε φωνὴν οἷός ἐστιν ὁ ἦχος σύριγγος καλάμων λεπτῶν ἐν τοῖς ἕλεσιν ἀποτελούμενος . οὐ γὰρ τὸ ὄργανον | ||
κἂν γεγόνασιν αἱ λ μοῖραι ἐκ τοῦ μερισμοῦ τῶν τρίτων λεπτῶν παρ ' ἑαυτά , παραβολῆς γινομένης τῶν ξ τρίτων |
θυμιωμένῳ , βδέλλαις καπνιζομέναις : ἐπὶ δὲ προπεπτωκυίας ὑστέρας ὀσφραντέον στάχυϊ , κασίᾳ , κόστῳ , ἴριδι , φύλλῳ , | ||
, σφαγῆς , κλειδός , μασχάλης . Ἐπὶ τετελειωμένῳ τῷ στάχυϊ ἐπιδέσμῳ χωρὶς τῆς κατὰ τοῦ νώτου καὶ τοῦ στήθους |
τῆς μοναδικῆς . οὔτε οὖν διάστημα χρὴ καλεῖν τὴν τοῦ διαστήματος γεννητικὴν ἀρχὴν οὔτε μόρια τοῦ διαστήματος ἐπινοεῖν , ἀφ | ||
καὶ τῆς εὐθείας μέρος τὸ κατὰ τούτου μὲν φερόμενον τοῦ διαστήματος , μὴ κυκλογραφοῦν δέ . ὅπερ ἐστὶν ἄτοπον . |
# β # ἔχοι , καὶ ἔτι μᾶλλον , εἰ ἑξαπλάσιον , ὡς εἶναι τῶν μεταλλικῶν # β , κηροῦ | ||
γὰρ τοῦ ρ πρὸς τὸν κ λόγον πενταπλάσιον ἔχοντος , ἑξαπλάσιον ἔχειν τοὺς γινομένους προστιθεμένου τοῦ ἀριθμοῦ ἀπαιτήσομεν , τῆς |
δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β | ||
ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ |
ἔχει , καὶ τῶν μορίων τὰ μὲν ὑπερέχει τὰ δὲ εἰσέχει , καὶ ποιεῖ τὴν τραχύτητα . διττὸν δὲ τὸ | ||
. . . . . . . . τὴν ἑσπέραν εἰσέχει ἀπὸ τοῦ καλουμένου Ἀτλαντικοῦ πελάγους τὴν εἰσροὴν ἔχουσα , |
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
ιϚ , ὅπερ ἴσον ἐστὶ τῷ δʹ τοῦ ἀπὸ τῆς ἐλάσσονος κατὰ μῆκος . καὶ τὰ λοιπὰ τὰ ἐκ τῆς | ||
διποδίας : τὸ δεύτερον ἐκ διιάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάσσονος δίμετρον ἀκατάληκτον ἢ ἰαμβικὸν ἑφθημιμερές : τὸ τρίτον ἰαμβικὸν |
ἥμισυ τρήματος τὸ διὰ πασῶν σύμφωνον ἀποτελεῖται . τριχῆ δὲ διαιρεθέντος καὶ τῶν μὲν δυεῖν μερῶν ὄντων πρὸς τῇ γλωσσίδι | ||
τῆς τοῦ κανονίου προσαγωγῆς εἰς ἓξ τοὺς ἐφεξῆς ἐπογδόους λόγους διαιρεθέντος παραφέρωμεν καθ ' ἕκαστον φθόγγον τὸ παραπλήσιον ὑπαγώγιον ἐπὶ |
ὑπαρχόντων οὐδ ' ἀφορῶσιν κάτω , ἀλλὰ ἀεὶ πρὸς τὸ ἄναντες βιάζονται . τοιγαροῦν ὥσπερ ὁ Ἴκαρος , τακέντος αὐτοῖς | ||
φρουρίου τὸ σχῆμα τὴν μὲν ὀρθὴν γωνίαν ἄνω πρὸς τὸ ἄναντες ἔχον καὶ τῇ κορυφῇ ὥσπερ τινὰ πρόβολον μετὰ πύργου |
ἢ διὰ τὸ ἐπιστύλιον τὸν στῦλον : τοῦ ἑτέρου γοῦν ἀρθέντος καὶ τὸ ἕτερον καταφέρεται . ὥστε τὸ μὲν μένον | ||
βεβουλευμένος : ἡ γὰρ ναῦς φοροῦ πνεύματος ἐπιλαβομένη τοῦ δόλωνος ἀρθέντος ἐξέφυγε τὸν κίνδυνον . Ἀγαθοκλῆς μὲν οὖν οὐδ ' |
οὐ τὰ λεγόμενα ὑπὸ τοῦ Ἐρατοσθένους προφέρεται περὶ τῆς τρίτης σφραγῖδος , ἀλλ ' ἑαυτῷ κεχαρισμένως πλάττει τὴν ἀπόφασιν πρὸς | ||
συμφύτου ⋖ δʹ . μαστίχης κιῤῥᾶς ⋖ δʹ . λημνίας σφραγῖδος ⋖ βʹ . βαλαυστίων ⋖ βʹ . κόψας καὶ |
πάλιν πρός τινα ὑπερέχοντα τόρμον χαλκοῦν , τἀναντία προσκόψαν τὸ ὑπερέχον τῆς σχαστηρίας ἀπέσχασεν τὴν χεῖρα : ἡ μὲν οὖν | ||
καὶ μεταβολᾶς : καὶ τὸ μὲν πρᾶτόν τε δυνάμει καὶ ὑπερέχον , τὸ δ ' ὕστερον καὶ καθυπερεχόμενον : τὸ |
ἐστιν ἄρτιον , τὸ δὲ περισσόν . ἄρτιον μὲν τὸ μερῶν ἴσων ἀφ ' ἑαυτοῦ παρεκτικόν , μεγίστων τε καὶ | ||
, ὡς εἴ τι ζῶον τῶν κατὰ φύσιν μελῶν ἢ μερῶν ἐλαττοῦται , ἢ εἴ τις μονόφθαλμος εἴη , ὡς |
καρπὸν ἐπείγεται , τὸ δ ' ὄρυγμα αὐτὴν θραυσθεισῶν τῶν δοκίδων ὑπεδέξατο . τὴν δὲ πάρδαλιν τρόποις τε τοῖς προειρημένοις | ||
δέ τις στερεῶν ἑτερογενῶν εὐταξία ἐστὶ τῶν λεγομένων κύβων , δοκίδων , πλινθίδων , σφηνίσκων , σφαιρικῶν , παραλληλεπιπέδων , |
ὁπλίτας καὶ τότε τὰς ἁμάξας . Ὅτι ἀναγκαία ἡ τῶν τριβόλων χρῆσις . Ἐὰν γὰρ ἢ πετρώδης ὁ τόπος εὑρεθῇ | ||
' ἑκάστην ἡμέραν γινομένης [ τῶν λίθων ] προσαγωγῆς τῶν τριβόλων [ προσφερομένων ] τριπλῆ ἢ καὶ τετραπλῆ ἡ τούτων |
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε | ||
πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ |
ὑπόπυῤῥόν τε ἅμα καὶ ὑπόξανθον , εὐθὺς δὲ λεπτοῦ καὶ πάχους συμμέτρως ἔχον . οὔσης δὲ τριττῆς τῆς τῶν θολερῶν | ||
συστᾶσα ἡ σύριγξ φθείρειε τὸ ὀστοῦν , εἰ μὲν διὰ πάχους , ἐκ τῶν ἔξωθεν μερῶν καὶ τὰ μῆλα χιάσαντες |
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ | ||
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν : |
, ι : εἰ δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς | ||
, ἀφελόμενον ἀπὸ τοῦ κέρδους τοῦ ἠδικηκότος , ὅπερ ὡς ὑπεροχή ἐστιν αὐτοῦ πρὸς τὸν ἠδικημένον , καὶ προστεθὲν τῷ |
βοτάνης φύλλων ξηρῶν ⋖ α . οὕτω δὲ καὶ ἐλαφείου κέρατος ⋖ α ποτίζεται καὶ σκίλλινον ὄξος # εἷς μετὰ | ||
# νο δʹ δʹ ὁ ἐπ ' ἄκρου τοῦ βορείου κέρατος ὁ αὐτὸς τῷ ἐπὶ τοῦ δεξιοῦ ποδὸς τοῦ Ἡνιόχου |
τῶν μεγίστων σχεδὸν εἴρηται : λέγω δ ' οἷον ῥίζης καυλοῦ τῶν ἄλλων : αἱ γὰρ δυνάμεις καὶ ὧν χάριν | ||
σμύρνιον . λοβοὺς δέ τινας ἀνίησιν ἐπ ' ἄκρου τοῦ καυλοῦ ἀμυγδάλοις ὁμοίους , ὧν ἀνοιχθέντων εὑρίσκονται ἐρυθροὶ κόκκοι πολλοί |
διπλασία τῆς ὑπάτης ἐπιτέταται καὶ ὅλως ὁ δ τοῦ ὀκτὼ ἥμισυς καὶ τοῦ τρία ἐπίτριτος , ὡς ἂν ἀδιαφόρων οὐσῶν | ||
μὲν οὖν ἀρτιάκις περισσός ἐστιν , φανερόν : ὁ γὰρ ἥμισυς αὐτοῦ περισσὸς ὢν μετρεῖ αὐτὸν ἀρτιάκις . λέγω δή |
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
εὐδαίμονα , ὅταν ποταμὸν ἢ ὅθεν ῥεῖ , ὅσον τὸ εὖρος , ἀεὶ τὰ τοιαῦτα κάλλος προστίθησι τῷ λόγῳ . | ||
εἰσι τοῦ ναοῦ πόδες ἐννέα καὶ ἑξήκοντα καὶ ἑκατόν , εὖρος δὲ τρεῖς καὶ ἑξήκοντα , τὸ δὲ ὕψος τῶν |
, οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ | ||
μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ |
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
ἑνὶ ἑκάστῳ , τὴν τοῦ μείζονος ὁμοιότητα ἐν τῇ τοῦ ἐλάττονος ἰδέᾳ ἐπισκοποῦντες . Ἀλλά μοι δοκεῖς , ἔφη , | ||
ἥ τε ἐκ τῆς μείζονος μερικῆς ἀποφατικῆς ὑπαρχούσης καὶ τῆς ἐλάττονος καθόλου καταφατικῆς ἀναγκαίας καὶ ἡ ἐκ τῆς μείζονος καθόλου |
τοῦ ποσοῦ , δύο μὲν τοῦ διωρισμένου καὶ πέντε τοῦ συνεχοῦς , ὅτι τὰ δύο τοῦ διωρισμένου καὶ τὰ πέντε | ||
ποίας διαφορὰς κρίνεται . ἀρξώμεθα δὲ ἐντεῦθεν . Ἡ τοῦ συνεχοῦς καὶ ἡ τοῦ διῃρημένου φύσις πᾶσα τοῖς οὖσιν , |
δὲ τοιαύτη τῶν ἐνεργειῶν ποικιλία καὶ τῶν πολλῶν ὑλικῶν δυνάμεων σύνθεσις οὐχ ὅπως θείας δημιουργίας τῷ παντὶ κεχώρισται , ἀλλὰ | ||
καὶ ἐπὶ τοῦ ἀριθμοῦ ἕξει , εἴπερ ἐστὶν ὁ ἀριθμὸς σύνθεσις μονάδων , ὥσπερ λέγουσί τινες : οὕτως γὰρ ἔσται |
, ἐλαίου # α , ἴρεως , ἰοῦ , ἀριστολοχίας στρογγύλης ἀνὰ # β , μελιλώτου , μάννης , ἁλὸς | ||
. ἡ μακρὰ δ ' ἧττον μὲν λεπτομερής ἐστι τῆς στρογγύλης , οὐ μὴν οὐδὲ αὐτή γε ἄπρακτος , ἀλλ |
ὑπάρχειν ὁ πᾶς χρόνος λέγεται οὐδενὸς αὐτοῦ τῶν μερῶν ὑπάρχοντος ἀπαρτιζόντως . Ποσειδώνιος : τὰ μέν ἐστι κατὰ πᾶν ἄπειρα | ||
ὁ η ἀριθμός . ὁ μὲν οὖν τρία τὸν θ ἀπαρτιζόντως μετρεῖ : τρὶς γὰρ συντεθεὶς αὐτὸν μεμέτρηκεν . ὑπερβαίνει |
δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον | ||
, ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ |
προσαγορεύουσι καὶ μετροῦσι τὰ νάματα , καὶ πανήγυρις αὐτοῖς ὁ πῆχυς γίνεται . . . Δεινὸς χρηματιστὴς ἐκ τῆς κατὰ | ||
γενικῆς στάχυος , βότρυος , κέγχρυος πλὴν τῶν δύο τούτων πῆχυς πήχεως , καὶ πέλεκυς πελέκεως . ταῦτα γὰρ μόνα |
Α . Ε καὶ τοῦ ΖΗ : ὥστε καὶ τοῦ συγκει - μένου ἐκ τῶν Α , Β , Γ | ||
ἴση κείσθω ἡ ΔΕ : ὅτι ἡ ΑΕ ἐστὶν ἡ συγκει - μένη ἔκ τε συναμφοτέρου τῆς ΑΒΓ καὶ τῆς |
δὲ διαλύεται ὁ ἀντίσπαστος κατὰ τὴν βʹ μακρὰν καὶ γίνεται πεντασύλλαβος , Τὸ ζʹ Ἰωνικὸν ἀπ ' ἐλάσσονος δίμετρον καταληκτικὸν | ||
χορίαμβος πεντασύλλαβος ⌈ καὶ ἑξασύλλαβος , καὶ ἀντίσπαστος καὶ ἐπίτριτος πεντασύλλαβος καὶ διίαμβος καὶ διτρόχαιος καὶ ἰωνικὸς καὶ παίων ⌈ |
. διὰ τοῦτο γραμμὴ μὲν ἄνευ ἐπιπέδου καὶ τοῦτο χωρὶς στερεοῦ θεωρεῖται , ἐν δὲ τῷ τελείῳ μεγέθει πάντα χρὴ | ||
οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλ ' ὡς ἡ ΒΜ βάσις πρὸς |
συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα | ||
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ |
τινὰς ] τινὲς καλοῦσι , καὶ τοσαῦται αἱ ἁπλαῖ τοῦ ἀνίσου σχέσεις . αἷς πάντ ' ἐφαρμόζεται τὰ συμμετρίαν καὶ | ||
μέν ἐστιν ἴσον τὸ δὲ ἄνισον , καὶ ὅτι τοῦ ἀνίσου πολλαὶ αἱ σχέσεις . ἐν μὲν οὖν τῷ τέλει |
καὶ περὶ τὰς τέτταρας περιεχομένας λόγοις τοῖς ἐφεξῆς ἀπὸ τοῦ ἐπογδόου μέχρι τοῦ ἐπὶ ιαʹ . ποιοῦσι μὲν οὖν τὸ | ||
τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν , τῷ τοῦ ἐπογδόου διαστήματι τὰ ἐπίτριτα πάντα συνεπληροῦτο , λείπων αὐτῶν ἑκάστου |
ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις πλειόνων φθόγγων ἐν τῷ | ||
Ἀγωγὴ προσεχὴς ἀπὸ τῶν βαρυτέρων ὁδὸς ἢ κίνησις φθόγγων ἐκ βαρυτέρου τόπου ἐπὶ ὀξύτερον , ἀνάλυσις δὲ τοὐναντίον . τὰς |
καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη | ||
τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ |
ιδ , γίνονται χις : τούτων λάβε δʹ , γίνονται ρνδ : τοσοῦτον τὸ ἐμβαδόν . Ἔτι κύκλου περίμετρος μδ | ||
τε καὶ ἡ κατὰ κορυφὴν αὐτῆς ἡ ὑπὸ ΔΖΗ γωνία ρνδ λ , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς |
τε καὶ τοξεύουσαι θαμινὰ ἀνέκοπτον . καὶ κατήρειψέ τι τοῦ μηνοειδοῦς , ὑγροτέρου καὶ ἀσθενεστέρου ἔτι ὄντος ἅτε νεοδμήτου . | ||
- σιν ἀνακαμπτούσης : αὔξεται μὲν γὰρ ἀπὸ τῆς πρώτης μηνοειδοῦς ἐπιλάμψεως ἄχρι διχοτόμου ἡμέραις ἑπτά , εἶθ ' ἑτέραις |