| γάρου καὶ ἐλαίου κυάθοις τρισίν , αἱ μείζους δὲ τῷ διπλασίονι ἐγχείσθωσαν . Τινὲς κρόμυον , τοῦ λέπους ἀφαιρεθέντος , | ||
| διὰ πέντε ἐν ἡμιολίῳ , ἡ δὲ διὰ πασῶν ἐν διπλασίονι . ὅθεν ὁ μὲν τέσσαρα ἀριθμὸς τοῦ τρία ἐπίτριτος |
| ἐμπίπτουσιν ἀριθμοὶ ὅ τε ἓξ καὶ ὁ ιη ἐν λόγῳ τριπλασίονι . ἔστι δὲ καὶ ὁ νδ τοῦ δύο ἑπτακαιεικοσαπλάσιος | ||
| δὲ ϘϚ τοῦ ιβ ὀκταπλάσιος , ὃ ταὐτὸν δύναται τῷ τριπλασίονι . Διὰ τὸν ὅρον τοῦ εʹ τὸν λέγοντα : |
| ἐν ἐπιτρίτῳ λόγῳ κειμένη , ἡ δὲ διὰ πέντε ἐν ἡμιολίῳ , ἡ δὲ διὰ πασῶν ἐν διπλασίονι . ὅθεν | ||
| διὰ τεσσάρων ἐν ἐπιτρίτῳ , τοὺς δὲ διὰ πέντε ἐν ἡμιολίῳ , τοὺς δὲ διὰ πασῶν ἐν διπλασίῳ , καὶ |
| τρισὶ συμφωνίαις ὑφεστάναι , τῇ διὰ τεσσάρων , ἥτις ἐν ἐπιτρίτῳ κεῖται λόγῳ , τῇ διὰ πέντε ἐν ἡμιολίῳ , | ||
| μικρὰν ἡ ὀκτὼ πρὸς μὲν τὴν τὰ ἓξ ἔχουσαν ἐν ἐπιτρίτῳ ἦν , πρὸς δὲ τὴν τὰ δώδεκα ἐν ἡμιολίῳ |
| , ἀρτία καὶ περιττή , ἡ μὲν ἀρτία ἐν λόγῳ διπλασίῳ , πρῶτος γὰρ τῶν ἀρτίων ὁ βʹ καὶ αὐτὸς | ||
| διὰ πέντε ἐν ἡμιολίῳ , τοὺς δὲ διὰ πασῶν ἐν διπλασίῳ , καὶ τοὺς μὲν διὰ πασῶν καὶ διὰ τεσσάρων |
| μεγέθεσιν ἢ βάρεσιν ἢ χρόνοις ἤ τισιν ἄλλοις διπλασίοις ἢ τριπλασίοις ἤ τισι τοιούτοις πολλαπλασίοις ἢ ἐπιμορίοις ] . γεωμετρικὴ | ||
| : ἀεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος ἐν διπλασίοις ἢ τριπλασίοις ἢ συνόλως ἀναλογοῦσιν ἕβδομος ἀριθμὸς κύβος τε καὶ τετράγωνός |
| , κέχρηται δὲ ἤδη τὸ πρότερον εἶδος τῇ τοῦ πηλίκου ἀναλογίᾳ δὲ χρήσεται καὶ τοῦτο τῇ τοῦ ποσοῦ ὡς ἂν | ||
| τοῦτον ὁ βασιλεὺς πρὸς τὸν λαόν καὶ χρήσασθαι οὕτω τῇ ἀναλογίᾳ , μὴ εἴποι οὕτως ἀλλὰ ποιμένα καλέσαι λαῶν τὸν |
| ἀριθμοὶ πίστις : αὐτίκα ὁ ἀπὸ μονάδος ἐν διπλασίονι λόγῳ παραυξηθεὶς ἕβδομος , ὁ τέσσαρα καὶ ἑξήκοντα , τετράγωνος μέν | ||
| ἐπὶ τέσσαρα τετράκις : καὶ πάλιν ὁ ἐν τριπλασίονι λόγῳ παραυξηθεὶς ἀπὸ μονάδος ἕβδομος , ὁ ἑπτακόσια εἰκοσιεννέα , τετράγωνος |
| ἔχει προνομίαν : ἀεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος ἐν διπλασίοις ἢ τριπλασίοις ἢ συνόλως ἀναλογοῦσιν ἕβδομος ἀριθμὸς κύβος τε | ||
| καὶ τετράγωνοί εἰσι , δῆλον οὕτως . ἐν μὲν τοῖς διπλασίοις , κειμένων πλειόνων ἀριθμῶν οἷον αʹ βʹ γʹ δʹ |
| τε ὅλῳ καὶ ἀλλήλοις : ὅπερ ἔδει δεῖξαι . Τῷ δοθέντι εὐθυγράμμῳ ὅμοιον καὶ ἄλλῳ τῷ δοθέντι ἴσον τὸ αὐτὸ | ||
| δὴ τὸ πλῆθος τῶν ΑΖ ΖΗ ΗΘ ΘΒ ἴσον τῷ δοθέντι , καὶ ἡ ἐκ πασῶν συγκειμένη εὐθεῖα ἴση τῇ |
| διπλασίων γάρ ἐστιν ἡ ΔΖ τῆς ΔΕ . τῷ δὲ τετραπλασίῳ τοῦ ἀπὸ τῆς ΕΓ ἴσον ἐστὶ τὸ ἀπὸ τῆς | ||
| τῷ τετράκις ἀπὸ τῆς ΕΓ τετραγώνῳ . ἀλλὰ τῷ μέν τετραπλασίῳ τοῦ ὑπὸ τῶν ΒΔ , ΔΓ ἴσον ἐστὶ τὸ |
| οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ | ||
| ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους |
| ὡς εἴρηται , ὀνομάζεται . ἔστι δὲ κώλων χοριαμβικῶν ἐπιμεμιγμένων ἐπιτρίτοις καὶ βακχείοις καὶ παλιμβάκχοις ζʹ , ὧν τὸ αʹ | ||
| καὶ τριπλασίοις καὶ συνόλως πολυπλασίοις καὶ πάλιν ἐν ἡμιολίοις καὶ ἐπιτρίτοις καὶ τοῖς παραπλησίοις , ἔτι μέντοι καὶ τὴν ἁρμονικήν |
| πρὸς δὲ τὸν ἀπὸ τοῦ τετάρτου μέρους γενόμενος ἐν λόγῳ τριπλασίῳ συμφωνήσει διὰ πασῶν καὶ διὰ πέντε . ἐὰν δὲ | ||
| τὴν ταὐτῷ λόγῳ ὑπερέχουσαν καὶ ὑπερεχομένην , οἷον διπλασίῳ ἢ τριπλασίῳ , ὡς γʹ Ϛʹ ιβʹ : ἁρμονικὴν δὲ τὴν |
| ἐν πολλαπλασίῳ λόγῳ διὰ τὸ εὑρίσκεσθαι τὴν ἀναστροφὴν καὶ ἐν ἐπιμορίοις καὶ ἐν ἐπιμερέσιν ἀναλογίαις . Ἐάν , φησί , | ||
| πάλιν ἐπιμόριος μέσος ἀνάλογον διαιρεῖται , δέον δὲ ἐν λόγοις ἐπιμορίοις εἶναι τὰ ἐμμελῆ . Τοιαύτης δὴ τυγχανούσης τῆς περὶ |
| εἰκότως οὖν οὐ βραχέσι χρήσεται προοιμίοις , ἀλλὰ γραμματικῇ , γεωμετρίᾳ , ἀστρονομία , ῥητορικῇ , μουσικῇ , τῇ | | ||
| ἄρα ἀιδίων εἶναι καὶ μενόντων , οἷα καὶ τὰ ἐν γεωμετρίᾳ . Εἰ δὲ ἀιδίων καὶ μενόντων , οὐ σωμάτων |
| σιϚʹ σμγʹ , κείσθω καὶ ὁ τοῦ ρϞβʹ ἐπίτριτος ὁ σνϚʹ , ἔσται τοῦτο τὸ ἐπίτριτον συμπεπληρωμένον ὑπὸ δύο τόνων | ||
| ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος : καὶ μέχρις ἀπείρου ὁ |
| τε διπλασίοις καὶ τριπλασίοις καὶ συνόλως πολυπλασίοις καὶ πάλιν ἐν ἡμιολίοις καὶ ἐπιτρίτοις καὶ τοῖς παραπλησίοις , ἔτι μέντοι καὶ | ||
| ἐπιμερεῖ ἐγεννᾶτο , οἷον εἰδικῶς ἡ διπλασιεφήμισυς ἀπὸ τῆς ἐν ἡμιολίοις φύεται , οὐκέτι ἀναστρόφως τῶν ὅρων κειμένων , ἀλλὰ |
| τε γὰρ καὶ σὺν πολλῇ βασάνῳ τἀκείνων εἴρηται καὶ μόγις ἐλαχίστοις ἐν πολλῷ χρόνῳ τὸ παρ ' αὐτοῖς ἀληθὲς ἀναφαίνεται | ||
| ἰσημερινῷ , ἐν ἐλάσσοσι δὲ τὰ ἑξῆς τούτων , ἐν ἐλαχίστοις δὲ τὰ πρὸς τοῖς τροπικοῖς , ἐν ἴσοις δὲ |
| ἡ μονὰς ἢ τῇ τετράδι ἢ τῇ ἐξ ἀμφοτέρων ἀποτελουμένῃ πεντάδι . οὔτε δὲ ἑαυτῇ προστίθεται διὰ τὸ τὸ μὲν | ||
| ἀπὸ μονάδος τετράδι διαφερόντων , καὶ ἑπταγωνικὸς ὁ ἐκ τῶν πεντάδι καὶ ἑξῆς ἀκολούθως , καὶ κατὰ δυάδος ὑπεροχὴν τῶν |
| : λοιπὸν δὲ ὁ θ πρὸς τὸν η τονιαῖον ἐν ἐπογδόῳ , ὅπερ μέτρον κοινὸν πάντων τῶν ἐν μουσικῇ λόγων | ||
| καὶ δίεσιν οὐχ ἡγοῦντο . ὁ δὲ τόνος εὑρίσκετο ἐν ἐπογδόῳ λόγῳ ἔν τε δίσκων κατασκευαῖς καὶ ἀγγείων καὶ χορδῶν |
| με : οὐ γὰρ σφόδρα ἐν τῷ παρόντι μέμνημαι . Ἑνὶ μὲν λόγῳ , ἔφη ὁ Κέβης , καλλίστῳ , | ||
| Οὔκουν οὐδὲ ταῦτα ἔξεστι πράττειν ; Οὐ γὰρ οὖν . Ἑνὶ δὴ λόγῳ τὰ μὲν φαῦλα καὶ ἄτοπα καὶ ἀσύμφορα |
| καὶ αὗται ἐκ τῶν πρὸ ἑαυτῶν , ἡ μὲν ἐν πολλαπλασιεπιμορίῳ λόγῳ ἐκ τῆς ἐν ἐπιμορίῳ , ἀφ ' ἧς | ||
| . ἐν ἄλλ . τ . σχ . μικτῇ οἷον πολλαπλασιεπιμορίῳ . ἐπίσημον λέγει τὸν [ νϚʹ ] . ἐπιπ |
| δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
| ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
| βροτοὶ ἐμβαλόντες ἀνεφρυάξανθ ' : Ἱππαπαῖ , τίς ἐμβαλεῖ ; Ληπτέον μᾶλλον . Τί δρῶμεν ; Οὐκ ἐλᾷς , ὦ | ||
| ἡμέραν χρώμενος ἕως αὐξηθῶσι , καὶ θαυμάσεις τὴν ἐνέργειαν . Ληπτέον τὴν οἰνάνθην ἀπὸ τῆς ἡδὺν οἶνον φερούσης ἀμπέλου , |
| . ἐπεὶ δὲ βούλονταί τινες ὑπεναντίαν ἀμφοτέραις ἀριθμητικῇ τε καὶ γεωμετρικῇ ταύτην ἐκδέχεσθαι , ἔφαμεν δὲ ἡμεῖς τῇ ἀριθμητικῇ μόνῃ | ||
| α˙ωιϚιγ˙τκα / . β . Εὑρεῖν τρεῖς ἀριθμοὺς ἐν τῇ γεωμετρικῇ ἀναλογίᾳ , ὅπως ἕκαστος αὐτῶν προσλαβὼν τὸν δοθέντα ποιῇ |
| ὥστε οἷς τεθεῖσιν ἕπεται τὸ συμπέρασμα , ταῦτα οὐχ ἕπεται τεθέντι τῷ συμπεράσματι : μὴ ὄντος μέντοι γε ἀναγκαίου τοῦ | ||
| τοῦ ἑνὸς ἐξηρτημένα , καὶ ἡμεῖς οὕτω συμπρόϊμεν τῷ πρώτῳ τεθέντι , μᾶλλον δὲ ἀπὸ τῶν ῥητῶν πάντη καὶ τῇ |
| διεζευγμένων ἢ ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην μέσων . ἐν δὲ διατόνῳ πρῶτον μέν ἐστι σχῆμα , οὗ πρῶτον τὸ ἡμιτόνιον | ||
| τὴν ἐπὶ τὸ ὀξὺ τοῦ πυκνοῦ ἐκμελῆ εἶναι . Ἐν διατόνῳ δὲ τόνου ἐφ ' ἑκάτερα ἡμιτόνιον οὐ μελῳδεῖται . |
| σῴαν ἔχων τὴν φρόνησιν καὶ ταῖς ἀρεταῖς ἁπάσαις κοσμούμενος , εἰδικῶς δ ' ἂν λέγοιτο σώφρων ὁ τοῖς κατὰ γεῦσιν | ||
| ἐπὸς γάρ ἐστιν ἀπὸ τοῦ ἐπεῖναι κατὰ τὴν ἀποτομήν . εἰδικῶς μέντοι Ὅμηρος οἶδεν ὀπόν τινα λεγόμενον , ὡς ὅταν |
| ἀκριβοῦς σελήνης . δίδοται γὰρ διὰ τὸ ἀδιάφορον ὡς ἐν εὐθυγράμμοις τὰ ΑΔΒ , ΑΒΕ τρίπλευρα τῷ εἴδει καὶ τῷ | ||
| καὶ ἀνισότης τῶν πλευρῶν ἔστι δήπου καὶ ἐν τοῖς μὴ εὐθυγράμμοις . δοκεῖ δέ μοι καὶ πρὸς ἐκεῖνο ἀπιδὼν ὁ |
| ἀνάγκη ἑαυτοῦ ὁμοιότητα αὐτῷ εἶναι ; Πῶς ; Εἰ ἑνὸς ἀνομοιότης ἔστι τῷ ἑνί , οὐκ ἄν που περὶ τοῦ | ||
| οὐδ ' ἀπὸ τοῦ ἀνόμοιος ῥῆμα , πρᾶγμα δὲ ἡ ἀνομοιότης . καὶ ἐπίρρημα δὲ ἀπ ' ἀμφοῖν , ἀνομοίως |
| πλευραὶ ὑπάρχουσιν ἐν διπλασίονι λόγῳ , τὰ τρίγωνα εὑρεθήσονται ἐν τετραπλασίονι , εἰ δὲ ἐκεῖναι ἐν τριπλασίονι , ταῦτα ἐν | ||
| Ἀφρόνιτρον ὕδατι λύσας καὶ διηθήσας μῖξον οἴνῳ βραχεῖ καὶ ἐλαίῳ τετραπλασίονι καὶ ἐρίοις οἰσυπηροῖς ἀναταράξας ἱκανῶς θέρμαινέ τε καὶ σύγχριε |
| αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ | ||
| ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους . |
| ὀρθὰς ἔχει , ἀλλὰ ταὐτὸν ὑπόκειται τριγώνῳ τε εἶναι καὶ σκαληνῷ . εἰ δὲ μὴ ταὐτὸν ἀλλ ' ἕτερον , | ||
| ἡ ὑπὸ ΑΓΒ τῆς ὑπὸ ΓΔΒ . Ἐὰν ἐν κώνῳ σκαληνῷ τμηθέντι διὰ τῆς κορυφῆς ἐπιπέδοις τισὶν ἐπὶ παραλλήλων βάσεων |
| ἐπὶ τῇ Ἀσφαλτίτιδι λίμνῃ καταστραφεισῶν . ὁ πολίτης Σοδομίτης . Σολκοί , πόλις ἐν Σαρδοῖ , ὡς Ἀρτεμίδωρος ἐν ἐπιτομῇ | ||
| Γάδειρα τὴν νῆσον , ὥσπερ καὶ Ἀρτεμίδωρος ὁ γεωγράφος . Σολκοί , πόλις ἐν Σαρδοῖ , ὡς Ἀρτεμίδωρος ἐν Ἐπιτομῇ |
| ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
| ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
| , ὁ δὲ λύδιος πρὸς τὰ ὀξύτερα , ὁ δὲ φρύγιος πρὸς τὰ μέσα . οἱ δὲ λοιποὶ μᾶλλον ἐν | ||
| , ὡς ὑπατοειδὴς μεσοειδὴς νητοειδής : τόνῳ , ὡς δώριος φρύγιος : τρόπῳ νομικῷ διθυραμβικῷ : ἤθει , ὥς φαμεν |
| . ὅταν οὖν μάλιστα ἡ ☾ τῷ φωτὶ καὶ τοῖς ἀριθμοῖς ἀφαιρεῖ , ἔσονται διπλαῖ σημασίαι . καὶ οἱ πυρετοὶ | ||
| ☾ οὔσης ♑ κατακλιθῇ τις ἀφαιρούσης τῆς ☾ καὶ τοῖς ἀριθμοῖς καὶ τῷ φωτὶ ♄ συνόντος αὐτῇ , ἢ ☍ |
| . ἰδοὺ γεγόνασιν ἐπιδιμερεῖς : ὁ γὰρ κε τοῦ ιε ἐπιδιμερής : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ μέρη : | ||
| πάλιν ὡς ἐν ἐπιμερέσι κατὰ τὴν οἰκειότητα τῆς δυάδος ὁ ἐπιδιμερής . εἰ δὲ οἱ πρῶτοι ἐν τριπλασίῳ λόγῳ , |
| τό τε αγε καὶ τὸ εδβ ἴσα ὄντα ἐπὶ ἴσων βάσεων βεβήκασι καὶ ἐπ ' εὐθείας ἔχουσιν αὐτὰς καὶ ἐπὶ | ||
| σχῆμα ὡς σώματος πυραμὶς φερώνυμος διὰ τοῦτο ὑπὸ τεσσάρων τε βάσεων καὶ ὑπὸ τεσσάρων γωνιῶν μόνη περικλειομένη ἐστί : κἀκεῖθεν |
| ΖΔ , τὴν δὲ τῶν ΒΗ τῇ τῶν ΑΖ , τονιαία μὲν ἔσται καὶ ἑκατέρα τῶν ΔΒ καὶ ΖΔ , | ||
| λοιπῶν , ἕως ἂν περιτραπῶσιν ἐπὶ τὸ λέγειν οἵων ἡ τονιαία δύο . ἔπειτα οὐδ ' οὕτως τὰς ὑπεροχὰς ὁρίζουσι |
| ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
| σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
| καὶ ὁ σοφώτατος Φιλόχορος τὰ αὐτὰ συνεγράψατο , ἐν ἧι ἐκθέσει εἶπε περὶ τοῦ αὐτοῦ Διονύσου ἔστιν ἰδεῖν τὴν ταφὴν | ||
| ἀναπαιστικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικὰ καὶ μονόμετρα ιεʹ . ἐν ἐκθέσει δὲ στίχοι τροχαϊκοὶ τετράμετροι καταληκτικοὶ δʹ , ὅμοιοι τοῖς |
| ὁ δύο καὶ ἕνα διπλάσιος . ὁ ἐξ ἐπιτρίτου καὶ τετραπλασίου λαμβανόμενος ἐπίτριτος ὁ ιϚ τοῦ ιβ , καὶ ὁ | ||
| δὲ δωδεκαπλάσιος λόγος σύγκειται ἐκ β λόγων τριπλασίου τε καὶ τετραπλασίου ἢ διπλασίου καὶ ἑξαπλασίου , καὶ ἐπὶ πάντων τὸ |
| δὲ ἐν τῆι ἐννεακαιδεκαετηρίδι , οἱ δ ' ἐν τοῖς τετραπλασίοις ἔτεσιν , οἱ δὲ ἐν τοῖς ἑξήκοντα ἑνὸς δέουσιν | ||
| , τὸν δ , γίνονται β : διπλάσιος ἄρα ἐν τετραπλασίοις ὁ μέσος ἐστί : ζητεῖς γὰρ τὸν διπλάσιον , |
| δὲ τοῖς μεταξὺ διαστήμασιν ἀναλόγως , οἷον ἐν μὲν τῷ ἐννάτῳ ἐπὶ νότον δυτικώτερον , ἐν δὲ τῷ ηʹ πρὸς | ||
| δὲ τοῖς μεταξὺ διαστήμασιν ἀναλόγως , οἷον ἐν μὲν τῷ ἐννάτῳ ἐπὶ νότον δυτικώτερον , ἐν δὲ τῷ ηʹ πρὸς |
| κινήσεως τάξις τε καὶ ἀλόγων συμμετρία ἥ τε ἐν ἀριθμοῖς συμφώνοις ἢ συμφωνίαν περιέχουσιν εὐμετρία ἀπὸ τῆς κατ ' οὐσίαν | ||
| συγκε - χυμένη μὲν ἐγέννησεν ἁρμονίαν , λόγοις δὲ τοῖς συμφώνοις τεταγμένη ῥυθμόν . ἀλλ ' ἐπεὶ παθῶν ψυχικῶν ἡ |
| ἡ φίλησις γίνηται : καὶ τὸ δίκαιον δὲ ἐν τῇ ἰσότητι σώζεται . ἀλλ ' οὐχ ὁμοίως ἔχει τὸ ἴσον | ||
| πάθεσιν εἴκουσι . παυσάσθωσαν οἷοί εἰσι , καὶ ἀγαπήσουσι πάντας ἰσότητι ἀρετῆς . τί δὲ οἴεσθε , ὦ ἄνθρωποι , |
| οὕτω χρὴ κατανοεῖν τὴν τούτων ἀπόδειξιν . ἐν δ ' ἀστρονομίᾳ οἰκεῖος ὁ τῶν λεπτῶν ἐπιλογισμός , καθὸ καὶ ὁ | ||
| ἑτέρας τέχνης μέρος ἢ μόριον διὰ τὴν κυβερνητικὴν χρωμένην τῇ ἀστρονομίᾳ : οὐκ ἔστι γὰρ αὐτῆς μέρος ἢ μόριον , |
| ἐκείνων τῶν προβλημάτων ἆρα ἴσαι αἱ τέσσαρες μονάδες ταῖς δυσὶ δυάσιν ἢ οὔ ; καὶ ὁμώνυμον μὲν ἐν τούτοις οὐδέν | ||
| τί κωλύει τοῦτο παθεῖν ; ἆρα ἴσαι αἱ μονάδες ταῖς δυάσιν ἐν τοῖς τέτταρσιν ; εἰσὶ δὲ δυάδες αἱ μὲν |
| ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
| τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
| ἀναλογεῖ τῇ ἐπιστήμῃ , ἡ δὲ τῇ πίστει καὶ τῇ παρωνύμῳ δόξῃ . ἀβουλήτως οὖν οἱ ῥήτορες καὶ οἱ τύραννοι | ||
| τὴν γένεσιν αὐτὸς ἔσχε : διόπερ συμβαίνει αὐτῷ πρὸς τῷ παρωνύμῳ μέρει ἔτι καὶ ἑτερώνυμον ἢ ἑτερώνυμα κεκτῆσθαι , τὸ |
| ὁρᾶται : φανερὸν δέ , καθ ' ἃ ἠναντίωται τῇ ἁρμονικῇ : τῶν γὰρ αὐτῶν ἄκρων ἀμφοτέραις ὑπαρχόντων καὶ ἐν | ||
| Ζ ὑπεροχήν , ὅπερ ἐστὶ κατὰ τὴν μεσότητα τὴν τῇ ἁρμονικῇ ὑπεναντίαν . δῆλον δ ' ὅτι καί , μονάδων |
| , ταύτης τὴν λαμπρότητα ἀφανῆ ποιήσει . πάντων γὰρ τῇ ὑπεροχῇ διαφέρει . ” καταπλαγεὶς δὲ Νεκτεναβὼ τὴν εὐστοχίαν τῶν | ||
| τῶν ἐκκειμένων ὅρων . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , περισσοὶ τὸ πλῆθος , |
| Ἀλλὰ μέντοι πόλις γε ἔδοξεν εἶναι δικαία ὅτε ἐν αὐτῇ τριττὰ γένη φύσεων ἐνόντα τὸ αὑτῶν ἕκαστον ἔπραττεν , σώφρων | ||
| , πειραστικοί , ἐριστικοὶ οἳ καὶ σοφιστικοὶ καὶ φαινόμενοι . τριττὰ δὲ καὶ τὰ πράγματα ἐν οἷς οἱ λόγοι : |
| Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
| ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
| : εἶδος βοτάνης * λειήναιο : σύντριψον * ἰσορρεπές : ἰσόζυγον * ἀμφοῖν : ἐκ τῶν δυοῖν τοῖς δυσί κλώθοντος | ||
| ὁ ἔρινος . ἄλλως : ἀμφοῖν κλώθοντος : φέρε γὰρ ἰσόζυγον βάρος ἐξ ἠρύγγου καὶ ἀκάνθου ἐν τοῖς τοῦ ἐρίου |
| . εἰσὶν οὖν αἱ μὲν πολλαὶ στιγμαὶ ταῖς ὑλικαῖς ἀναλόγον μονάσιν , ὥστε ἔχουσιν αἰτίαν μὲν τὴν ὑλοποιόν , ἴνδαλμα | ||
| συντεθέντες ἀριθμοὺς ποιοῦσι δύο λείψει μονάδων ε . Ταῦτα ἴσα μονάσιν ξε . Ὁ γὰρ δεύτερος μονάδων ἐτάχθη κε : |
| ταῦτα λεῖα ξυμμίξας καὶ ξηρήνας , μέλιτι ἑφθῷ δεύσας ὡς ἐλαχίστῳ , τουτέων δὲ πάντων ξυμμεμιγμένων ἔστω ἡ θυμίησις , | ||
| σὲ , ὁ πανταχοῦ ὢν , καὶ οὐκ ἐν τόπῳ ἐλαχίστῳ , ὡς τὸ δαιμόνιον . Καθεζομένη δὲ τῷ σώματι |
| τρόπον ἀπὸ μὲν τοῦ μείζονος ἀρχομένων ὅρου συνίσταται ἀναλογία ἐν ἐπιμερέσι λόγοις δισεπιτρίτοις : οἷον θʹ Ϛʹ δʹ : ἐκ | ||
| γίνονται γεωμετρικαί , ἀλλὰ καὶ ἐν ἐπιμορίοις εἴδεσιν ἅπασι καὶ ἐπιμερέσι καὶ μικτοῖς , καὶ τὸ ἐξαίρετον ἰδίωμα τῆς μεσότητος |
| ποιήσας τὸ κῶλον ἐννεασύλλαβον . Ἐφ ' ἑκάστῃ στροφῇ καὶ ἀντιστροφῇ παράγραφος . Αἱ ἐπῳδοὶ κώλων θʹ . Τὸ αʹ | ||
| πολλοὶ δὲ καὶ τετράσιν , ἤγουν στροφῇ , ἐπῳδῷ , ἀντιστροφῇ καὶ πάλιν ἀνομοίῳ ἐπῳδῷ . πεντάσι δέ , ἤγουν |
| ὄντος πρὸς τῷ νʹ [ διὰ τὸ ἴσην εἶναι τὴν ζηʹ περιφέρειαν τῇ λνʹ περιφερείᾳ ] : καὶ ἔσται ὁ | ||
| τῷ ηʹ ] : λέγω ὅτι τοῦ ἡλίου διαπορευομένου τὴν ζηʹ περιφέρειαν τὸ εʹ ἄστρον οὐ φαίνεται . Ἔστω γὰρ |
| ὁμωνύμως καὶ ταῦτα λεγόμενα τοῖς ἑαυτῶν πρακτικοῖς , τῇ τε στροφῇ καὶ ἀντιστρόφῳ καὶ ἐπῳδῷ ἤτοι ἐξόδῳ καὶ ἐξελεύσει καὶ | ||
| καὶ ὁ ἐμπρόσθιος ἄξων : τῇ δὲ τῶν τριῶν ἀξόνων στροφῇ εἰσάγονται αἱ ἔκθετοι τῶν κάλων ἀρχαί , αἷς ἀποδέδενται |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
| θάλατταν καὶ τὴν νοτίαν τῆς Ἀτλαντικῆς . ἐν δὲ τῇ νοτίᾳ ταύτῃ θαλάττῃ πρόκειται τῆς Ἰνδικῆς νῆσος οὐκ ἐλάττων τῆς | ||
| προηγούμενος τοῦ μεσημβρινοῦ , καὶ ὁ ἑπόμενος τῶν ἐν τῇ νοτίᾳ σιαγόνι τοῦ Κήτους , μικρὸν ὑπολειπόμενος τοῦ μεσημβρινοῦ , |
| σημείῳ τότε τὴν σελήνην γινομένην ἐν τῷ δι ' Ἀλεξανδρείας παραλλήλῳ , καθ ' ὃν ἐποιούμεθα τὰς τηρήσεις , τὴν | ||
| οὕτως ἐστὶν τὸ ἀπὸ ΑΔ πρὸς τὸ ἀπὸ ΘΚ ἐν παραλλήλῳ : ὁ ἄρα μοναχὸς καὶ μέγιστος λόγος ἐστὶν ὁ |
| λόγου δύναμιν δείκνυσι τὴν ῥητορικήν , ὅτι πρᾶγμά ἐστιν ἐν μεσότητι θεωρούμενον , ᾧ ἔξεστι χρήσασθαι καὶ καλῶς καὶ κακῶς | ||
| τοῦ ἴσου καὶ τοῦ προσήκοντος , ἐμπεριεχομένη ἀριθμοῦ τετραγώνου περισσοῦ μεσότητι . πρῶτον δὴ ἐκθετέον στιχηδὸν τοὺς μέχρι τούτου ἀριθμοὺς |
| εἴ σε ἐγὼ ἐροίμην εἰ τῇ αὐτῇ τέχνῃ γιγνώσκομεν τῇ ἀριθμητικῇ τὰ αὐτὰ ἐγώ τε καὶ σὺ ἢ ἄλλῃ , | ||
| εὑρίσκονται , δείκνυσιν ὁ γεωμέτρης . ὅτι δὲ ἐν τῇ ἀριθμητικῇ οὐ δύναται εὑρεθῆναι , δῆλον ἐκεῖθεν : ἔστωσαν γὰρ |
| ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
| ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
| ἡ τῶν πλανήτων κίνησις ἡ ἀπὸ δύσεως εἰς ἀνατολάς : ἐπῳδῷ δέ , ὅτι ἵσταντο ἐν ἑνὶ τόπῳ καὶ ἔλεγον | ||
| [ ὁ ποιητής ] , ἤγουν στροφῇ , ἀντιστρόφῳ καὶ ἐπῳδῷ , ἢ στροφῇ μόνῃ καὶ ἀντιστρόφῳ : οἱ δ |
| δὲ καὶ ὁ διδασκαλικὸς τρόπος ζητεῖται , ἵνα γνῶμεν ποίῳ διδασκαλικῷ τρόπῳ κέχρηται : καὶ γάρ , ὡς ἐν τοῖς | ||
| τὰ ἄλλου ὅτου δὴ τῶν φιλοσόφων . πρὸς δὲ τῷ διδασκαλικῷ καὶ ἐπ ' ἄκρον ἀναβᾶσα τῆς πρακτικῆς ἀρετῆς , |
| , οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
| ' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
| οἰκεῖον τῇ τετράδι . ἡ γὰρ πρώτη πυραμὶς ἐν τῇ τετράδι θεωρεῖται , τριγώνου μὲν βάσεως ὑποτεθείσης τοῦ τρία , | ||
| τὸ ὑπὸ τῶν ἄκρων ἔλαττόν ἐστι τοῦ ἀπὸ τοῦ μέσου τετράδι . διὰ τί τετράδι ; ἐπειδὴ καὶ ἡ ὑπεροχὴ |
| Ἰνδικοῦ θηρίου . Καὶ δὴ τὸν ἱστοροῦντα Διονύσιον ἐν τῷ πέμπτῳ μέρει τοῦ Κύκλου παρίστημι . . . . . | ||
| ὑπὸ εὐσεβείας τῆς Ἠλείων καὶ ἀθληταῖς παρανομοῦσιν εἶναι δέος : πέμπτῳ δὲ καὶ ἕκτῳ , τῷ μέν ἐστιν ἡ τοῦ |
| πάλιν ὁ υϘϚ εἰς Ϛ , ὁ δὲ τέταρτος ὁ ͵ηρκη εἰς η . εὑρήσεις δὲ τοῦτο ἐφεξῆς φυλαττόμενον ἕνα | ||
| ἐν ἑκατοντάσι δὲ ὁ υϘϚ , ἐν χιλιάσι δὲ ὁ ͵ηρκη . εὑρίσκονται δὲ ἐν ἁπλαῖς ὅ τε σμθ καὶ |
| πέντε ὡς ἐν πλείοσιν ἐλάσσονα , καὶ ἐν τοῖς πέντε περισχεθήσεται τὰ τέσσαρα καὶ ἐν τοῖς τέτταρσι τὰ τρία καὶ | ||
| . εἰ δὲ ὅλα ὅλων ἅπτεται , σημεῖα ἐν σημείοις περισχεθήσεται καὶ τὸν αὐτὸν ἐφέξει τόπον . εἰ δὲ τὸν |
| πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν | ||
| σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ |
| μετ ' αὐτόν , ὥστε μεταξὺ ἀμφοῖν γενέσθαι τῇ τε ἑτερότητι τῆς πρὸς τὸ ἄνω ἀποτομῆς καὶ τῷ ἀνέχοντι ἀπὸ | ||
| , ὡς αἱ συμφωνίαι τῇ τῶν ἐν τοῖς φθόγγοις λόγων ἑτερότητι . τοῦτο δὲ οὐκ ἄλλο τι εὑρεθήσεται ὂν ἢ |
| δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
| ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
| μόνον πεῖσιν ἀφηγεῖται , καὶ ἔνθεν οὐκ ἐπικοινωνεῖ δευτέροις καὶ τρίτοις . ἔφαμεν δέ , ὅτι οὐδὲ ἐπὶ ῥῆμα φέρεται | ||
| πρώτου δὲ τὸ ῥῆμα : κατάλληλον δὲ τὸ ἐν δυσὶν τρίτοις Ἀπολλώνιος γράφει . . Ἀλλ ' οὐκ ἐν τῷ |
| . , ὁ τροχαῖος τροχαλὸν ποιεῖ τὸν λόγον , διὸ τροχαῖος καλεῖται ὁ τῶν τρεχόντων ῥυθμός , ὥς φησιν Λογγῖνος | ||
| ποὺς ἁπλοῦς . τὸ βʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : αʹ τροχαῖος τοῦ αʹ ποδὸς λελυμένου : εἶτα ἰωνικὸς ἀπὸ μείζονος |
| τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
| λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
| ἀφαιρουμένων ρκη ἑξηκοστοτετάρτων , ἤτοι μονάδων δύο , καταλειπόμενα Ϙζ ἑξηκοστοτέταρτα ἔσται ὁ προστιθέμενος . . Προστιθέμενα γὰρ τὰ Ϙζ | ||
| ποιοῦσι ιε ὄγδοα . Ταῦτα ἐφ ' ἑαυτὰ ποιεῖ σκε ἑξηκοστοτέταρτα : ταῦτα ἴσα τῷ ἐλάττονι . Τῆς δὲ συνθέσεως |
| ὅμοιον τὸ ΑΖ τῷ ΖΒ : ἐν δὲ τοῖς ὁμοίοις τμήμασι τοῦ κύκλου αἱ γωνίαι ἴσαι ἀλλήλαις εἰσίν : εἰ | ||
| θερινοῦ τροπικοῦ καὶ τοῦ ἰσημερινοῦ ἴσα ἐστὶν τοῖς ὑπὸ γῆν τμήμασι τοῖς μεταξὺ τοῦ τε ἰσημερινοῦ καὶ τοῦ χειμερινοῦ , |
| τὰ ἐν ἀρχῇ . καὶ πρὸς τούτοις εἴ τις ὑμένα προσφύσει περὶ τὸν δάκτυλον , οὐδὲν ἧττον ἅμα τῇ θίξει | ||
| ῥεύσεται : ἢν δὲ αὐτὴν ἀφέλῃς τὴν κονδύλωσιν ἐν τῇ προσφύσει , οὐ ῥεύσεται . Ἢν μὲν οὖν οὕτω καθίσταται |
| ἄγουσιν : Ἔκθεσις τῆς διπλῆς ἐκ κώλων ὁμοίων τροχαϊκῶν ἐπιμεμιγμένων ἀναπαίστοις καὶ χορείοις ιεʹ διμέτρων πλὴν τοῦ τελευταίου ἀκαταλήκτων , | ||
| δῆμον μεταπείθει περὶ τῶν σπονδῶν . Ἀλλ ' ἀποδύντες τοῖς ἀναπαίστοις ἐπίωμεν . Ἐξ οὗ γε χοροῖσιν ἐφέστηκεν τρυγικοῖς ὁ |
| , ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ | ||
| - ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν |
| ἑαυτῶν , ἡ μὲν ἐν πολλαπλασιεπιμορίῳ λόγῳ ἐκ τῆς ἐν ἐπιμορίῳ , ἀφ ' ἧς καὶ ἡ ἐν ἐπιμερεῖ ἐγεννᾶτο | ||
| ἔσονται : ἐὰν δὲ ἐν ἐπιμορίῳ , οὔτ ' ἐν ἐπιμορίῳ ἔσονται οἱ περιέχοντες οὔτ ' ἐν πολλαπλασίῳ , ἀλλ |
| ὡς οὗτος [ ὁ ποιητής ] , ἤγουν στροφῇ , ἀντιστρόφῳ καὶ ἐπῳδῷ , ἢ στροφῇ μόνῃ καὶ ἀντιστρόφῳ : | ||
| ὁ Ὅμηρος τὰ ἀνατολικά , ἀριστερὰ δὲ τὰ δυτικά : ἀντιστρόφῳ δὲ , ὅτι ἐκινοῦντο ἀπὸ τῶν ἀριστερῶν ἐπὶ τὰ |
| ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
| λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
| ναῦς λέγει . πύργους ] οἷον ὅπλα . καὶ ἐν εἰσθέσει ἴαμβοι ιʹ . ΓΓΘ Ἀντιλέων : οὗτος πονηρὸς κωμῳδεῖται | ||
| ἥττονας κέρδους . ΓΘ ὦ Δῆμε : διπλῆ καὶ ἐν εἰσθέσει μέλος μονοστροφικὸν ἀμοιβαῖον περιόδων τεσσάρων ἐναλλὰξ τοῦ χοροῦ καὶ |
| οἱ Ἀθηναῖοι μὲν οὔπω † θέλοντες ἐξυφερουμένοις † ἐπὶ τῇ ἴσῃ καταλύεσθαι ” . μάλιστα δὲ οἱ τῶν δεδεμένων συγγενεῖς | ||
| παραταξαμένων ἰσχυρὰ μάχη γίνεται καὶ ἱππέων καὶ πεζῶν καὶ ψιλῶν ἴσῃ πάντων χρωμένων προθυμίᾳ τε καὶ ἐμπειρίᾳ , καὶ τὸ |
| ἐπιμορίου λόγου , ἀφ ' οὗπερ ἡ γένεσίς ἐστι τῇ μικτῇ σχέσει . ἐπεὶ γὰρ ἡμιόλιος ἡ γεννῶσα σχέσις διπλασιεφήμισυς | ||
| ἐπεπλέκοντο , οὗτοι αἰολιστὶ διελέχθησαν , οἱ δ ' ἄλλοι μικτῇ τινι ἐχρήσαντο ἐξ ἀμφοῖν , οἱ μὲν μᾶλλον οἱ |
| συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
| ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
| Ἄντιφον ἐξεναρίξων υἷε δύω Πριάμοιο νόθον καὶ γνήσιον ἄμφω εἰν ἑνὶ δίφρῳ ἐόντας : ὃ μὲν νόθος ἡνιόχευεν , Ἄντιφος | ||
| τοιοῦτος ὤν . βάδιζε παρά τινα λημῶσαν ἄγροικον γραῦν ἐπὶ ἑνὶ γομφίῳ σαλεύουσαν , ἀληλιμμένην τῷ ἐκ τῆς πίττης ἐλαίῳ |
| υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
| τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
| τοῖς μαθήμασιν ἄλλον τρόπον ἢ ὁ πειραστικός . ὁ γὰρ ψευδογράφος εἰ μὲν ἐκ τῶν ἀρχῶν πρόεισι τῶν γεωμετρικῶν , | ||
| εἰ μὲν οὖν πάντῃ ὁμοίως εἶχον , καὶ ὥσπερ ὁ ψευδογράφος οὐκ ἄλλοθεν συλλογίζεται , ἀλλὰ ἐκ τῶν αὐτῶν ἀρχῶν |
| ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
| ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
| ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
| δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
| τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
| ٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
| κατὰ τέτταρα ἥμισυ καὶ δϲʹʹ καὶ κα , τὸ δὲ τονιαῖον χρῶμα κατὰ Ϛ καὶ Ϛ καὶ ιη , τὸ | ||
| , πλείω δ ' οὔ : ὁ γὰρ τὸ τέταρτον τονιαῖον ὁρίζων φθόγγος οὔτε τῷ τετάρτῳ διὰ τεσσάρων οὔτε τῷ |