τὸ ΑΒΓΔ , καὶ ἐν αὐτῷ τρίγωνα ὀρθογώνια ἴσα τὰ ΑΕΘ ΜΖΚ ΝΗΛ , ὀρθὰς ἔχοντα τὰς πρὸς τοῖς Ε | ||
σχῆμα γίνεσθαι παραλληλόγραμμον ὀρθογώνιον . ἐπεὶ τοίνυν ἡ μὲν ὑπὸ ΑΕΘ τῆς ἀπὸ τοῦ ἀπογείου φαινομένης τοῦ ἀστέρος παρόδου τοιούτων |
ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ μθʹ πρὸς κεʹ . πάλιν εἰ | ||
, ἢ ἕως τῆς Τενέδου , ἔχων ἐκ τῆς ἑτέρας πλευρᾶς τὴν Ἴμβρον νῆσον ὑπὸ τῆς Θρᾴκης . Ὅπου στενὸς |
γωνία τῇ πρὸς τῷ Δ . Ἐν ἄρα τοῖς ἴσοις κύκλοις αἱ ἐπὶ ἴσων περιφερειῶν βεβηκυῖαι γωνίαι ἴσαι ἀλλήλαις εἰσίν | ||
ὦ παῖ : δεῖ γὰρ κλέπτεσθαι τοὺς ὀφθαλμοὺς τοῖς ἐπιτηδείοις κύκλοις συναπιόντας . οὐδὲ αἱ Θῆβαι ἀμάντευτοι : λόγιον γάρ |
ἀντιλέγειν φήσαντι ἐν τοῖς νοτίοις μέρεσι τῆς Ἰνδικῆς τάς τε ἄρκτους ἀποκρύπτεσθαι καὶ τὰς σκιὰς ἀντιπίπτειν : μηδέτερον γὰρ τούτων | ||
ἐπὶ τοῦ τῶν ζῳδίων κύκλου , τὸ δὲ αʹ πρὸς ἄρκτους , τὸ δὲ γʹ πρὸς μεσημβρίαν : λέγω ὅτι |
: λευρὸν οἱ μὲν τὸ πλατύ : βέλτιον δὲ τὸ πλάγιον ἀκούειν , ἵνα νοήσωμεν οὐχὶ τὸ καθ ' ἑαυτὸ | ||
ἐπὶ τῶν τιμωριῶν προσέταξεν ἐκδεῖραι ζῶντα καὶ τὸ μὲν σῶμα πλάγιον διὰ τριῶν σταυρῶν ἀναπῆξαι , τὸ δὲ δέρμα χωρὶς |
δοθεὶς κύκλος ὁ ΑΒΓΔ : δεῖ δὴ εἰς τὸν ΑΒΓΔ κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἐγγεγράφθω εἰς | ||
τὴν σελήνην ἑξακοσιάκις μὲν καὶ πεντηκοντάκις ἔγγιστα καταμετρεῖν τὸν ἴδιον κύκλον , δὶς δὲ καὶ ἡμισάκις τὸν τῆς σκιᾶς καταμετρεῖν |
' ἐπίνοιαν στήσαντες τὸν κόσμον νοήσωμεν τὰ πλανώμενα ὑπὸ τὸν ζῳδιακόν , ἀκίνητον ὄντα καθ ' ὑπόθεσιν , κινούμενα : | ||
ἀνταρκτικόν , θερινὸν τροπικόν , χειμερινὸν τροπικόν , ἰσημερινόν , ζῳδιακόν , καὶ προσέτι γαλαξίαν . ὁ γὰρ ὁρίζων πάθος |
ἐτέτακτο μὲν ἐπὶ τοῦ λαιοῦ κέρως , ἰδὼν δὲ ἐπὶ θάτερα Πολυξενίδαν πολὺ προύχοντα Ῥωμαίων ἔδεισέ τε , μὴ κυκλωθεῖεν | ||
. ἄρτι γὰρ αὐτοῦ πλησιάζοντος ἐρήμῳ τῇ πόλει κατήντησαν ἐπὶ θάτερα τῆς Μαντινείας οἱ πεμφθέντες ὑπὸ τῶν Ἀθηναίων στρατιῶται πρὸς |
διαλείμματι τοῦ τε κατὰ τὸν ἰσημερινὸν καὶ τοῦ κατὰ τὸν θερινὸν τροπικὸν ὅλον διαφαίνεσθαι τὸ ἐγνωσμένον μέρος τῆς γῆς , | ||
τέσσαρα , Ἄρκτοι δύο Κηφεὺς ἀπὸ τῶν στηθῶν Δράκων , θερινὸν τροπικὸν πλεῖον ἔχοντα τὸ ὑπὲρ γῆν , ἧσσον δὲ |
τῆς Ἀρμενίας ἡ Μηδία : ὑπὸ δὲ ταύτην ὡς πρὸς ἀνατολὰς τοῦ Τίγριδος ἡ Ἀσσυρία , εἰς ἣν ἡ Κτησιφῶν | ||
τὰ δὲ μέσα Γαδανώπυδρες : ἡ δὲ πρὸς ἄρκτους καὶ ἀνατολὰς πλευρὰ καλεῖται Μοδομαστική . Ἡ Εὐδαίμων Ἀραβία περιορίζεται ἀπὸ |
τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ | ||
ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν |
. Τὸ μὲν ὕψος λαμβάνει πήχεις Ϙ , τὸ δὲ πλάτος πήχεις μη . Γίνεται δὲ τῷ σχήματι πυργοειδής : | ||
. Ἀλλ ' ὁ λόγος νῦν οὐ περὶ τῆς κατὰ πλάτος ἐπινοουμένης ὑγείας διέξεισιν , ἀλλὰ τῆς οἷον ἀμέμπτου πάντῃ |
μέλανες τὰς χρόας Αἰθίοπες , καὶ μάλιστα οἱ ὑπὸ τὸν ἰσημερινὸν κύκλον οἰκοῦντες , κατακόρως εἰσὶ μέλανες . Οἱ δ | ||
καὶ αἱ ἀπεναντίον περιφέρειαι . Ἔστω γὰρ τοῖς ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν ὁρίζων ὁ ΑΒΓΔ : ὁ ΑΒΓΔ ἄρα διὰ |
ὁ Ἀγαθίων „ αὔριον „ ἔφη ” ἀφίξομαί σοι κατὰ μεσημβρίαν ἐς τὸ τοῦ Κανώβου ἱερόν , ἔστω δέ σοι | ||
ἐργαζόμενον τὸ φθινόπωρον : πολὺ γὰρ θερμότερόν ἐστι κατὰ τὴν μεσημβρίαν ἢ κατὰ τὴν ἕω τε καὶ τὴν ἑσπέραν , |
ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ | ||
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς |
, καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις αἱ ΑΗ , ΔΘ | ||
ὑπάρξαι τῆς Λιβύης ἐν τοῖς πρὸς ἑσπέραν μέρεσιν ἐπὶ τοῖς πέρασι τῆς οἰκουμένης ἔθνος γυναικοκρατούμενον καὶ βίον ἐζηλωκὸς οὐχ ὅμοιον |
λόγον , ἐνταῦθα δὲ ἀνάπαλιν : φησὶ γάρ : εἰσὶν ὁμόλογα τὰ Α , Β καὶ Γ , Δ , | ||
τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις , καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον |
λεγόμενον βωσαρὴ , καὶ μετ ' αὐτὴν , εἰς τὸν βορέαν ἤδη ἀπονεύοντος τοῦ πλοὸς , βάρβαρα πολλὰ ἔθνη , | ||
] παραθαλάσσια μέρη τῆς Σκυθίας παρ ' αὐτὸν κειμένης τὸν βορέαν , ταπεινὰ λίαν , ἐξ ὧν ποταμὸς Σίνθος , |
ὅμοιον τὸ ΑΖ τῷ ΖΒ : ἐν δὲ τοῖς ὁμοίοις τμήμασι τοῦ κύκλου αἱ γωνίαι ἴσαι ἀλλήλαις εἰσίν : εἰ | ||
θερινοῦ τροπικοῦ καὶ τοῦ ἰσημερινοῦ ἴσα ἐστὶν τοῖς ὑπὸ γῆν τμήμασι τοῖς μεταξὺ τοῦ τε ἰσημερινοῦ καὶ τοῦ χειμερινοῦ , |
εἰ μὴ τὴν ἀλεξίκακον τῷ κρυμῷ θάλψιν ἐκ ῥιζῶν τοῖς πέρασιν ἐσπᾶτο καὶ ἠρύετο ; πόθεν δὲ καὶ τὰ φυλλορροοῦντα | ||
ἐπιζευχθείσης ὁμοίως τῆς ὑπὸ δύο πλευρὰς ὑποτεινούσης εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς |
πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο πολύγωνα ἰσόπλευρά τε καὶ ἰσογώνια τὰ ΑΒΓ ΔΕΖ , καὶ | ||
κύκλοι οἱ ΑΒΓ , ΖΗΘ , καὶ ἐν αὐτοῖς ὅμοια πολύγωνα ἔστω τὰ ΑΒΓΔΕ , ΖΗΘΚΛ , διάμετροι δὲ τῶν |
τριακοντάδα καὶ κατὰ τὴν τοῦ ἰσημερινοῦ πρόσθεσιν ἢ ἀφαίρεσιν σεληνιακὸν γνώμονα , ὃν ἐπισυνθέντας τῷ ἡλιακῷ καὶ τὴν ἡμίσειαν τῶν | ||
αὐτὸ πρὸς ἀστρολογίαν οἰόμενος , ὀνομάζει δὲ τὴν κάθετον ἀρχαϊκῶς γνώμονα , διότι καὶ ὁ γνώμων πρὸς ὀρθάς ἐστι τῷ |
χειρὶ δ ' ἔνθες ὀξύην , λαιόν τ ' ἔπαιρε πῆχυν , εὐθύνων πόδα . ἦ παιδαγωγεῖν γὰρ τὸν ὁπλίτην | ||
παλαιστὴν αʹ , ὅ ἐστι πήχεως Ϛʹʹ . Ἐὰν δὲ πῆχυν ἐπὶ δάκτυλον , ποίει χυδαῖον δάκτυλον αʹ , ὅ |
καθάπερ τὰς λύπας οὐκ ἔφευγεν , ἀλλ ' ἄγοντα εἰς μέσας , ἠνάγκαζε καὶ ἔπειθεν τιμαῖς ὥστε κρατεῖν αὐτῶν ; | ||
ἐπιστένων καὶ κατακλαίων δαίμονα . λέγεται δέ ποτε καὶ περὶ μέσας νύκτας ὥσπερ οἱ | κορυβαντιῶντες ἔνθους γενόμενος , ἐκ |
. Ἡ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ ὀκτάεδρον ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου κάθετος δυνάμει τρίτον μέρος | ||
ἀριθμητικὴν συνεπιφέρεσθαι : ἅμα γὰρ ταύτῃ τρίγωνον ἢ τετράγωνον ἢ ὀκτάεδρον ἢ εἰκοσάεδρον ἢ διπλάσιον ἢ ὀκταπλάσιον ἢ ἡμιόλιον ἢ |
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ , | ||
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ |
Καλαύρια . Ἐπὶ δὲ τὸ ἕτερον μέρος ἐξ ἀνατολῶν πρὸς δυσμὰς ἡ Κάρπαθός ἐστιν . Ἐγγὺς δὲ αὐτῆς ἡ τιμία | ||
Κἀκεῖθεν ἐφώδευσα εἰς ἄλλον τόπον , καὶ ἔδειξέν μοι πρὸς δυσμὰς ἄλλο ὄρος μέγα καὶ ὑψηλόν , πέτρας στερεάς . |
τῶν Ἑλλήνων συνέδριον . Παππῴα δόξα . Ἡ ἀπὸ πάππων καταγομένη . Ὅτι πρῶτον μὲν οἱ προεδρεύοντες τῆς βουλῆς . | ||
διῆλθε ] διηγήσατο , εἶπεν Τιτανὶς ] ἡ ἐκ Τιτάνων καταγομένη ἡμέτερα † ἐν τοῖς ἀρίστοις τῶν ἀντιγράφων οὕτως εὕρηται |
τούτου γινομένου : τοῖς δ ' ὑπ ' αὐτῶι τῶι πόλωι ὁ ἰσημερινὸς τὰς τρεῖς λαμβάνει σχέσεις , ἀρκτικὸς μὲν | ||
δὲ ὁ τῶι ἀρκτικῶι ἴσος ὑπάρχων πρὸς τῶι νοτίωι τεθεμάτισται πόλωι , οἱ δὲ διὰ τῶν πόλων καὶ λοξοὶ παρὰ |
μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
ὑπὸ ΒΗΚ : αἱ δὲ ἴσαι γωνίαι ἐπὶ ἴσων περιφερειῶν βεβήκασιν , ὅταν πρὸς τοῖς κέντροις ὦσιν : ἴση ἄρα | ||
ἴση ἐστίν . αἱ δὲ ἴσαι γωνίαι ἐπὶ ἴσων περιφερειῶν βεβήκασιν , ὅταν πρὸς τοῖς κέντροις ὦσιν : ἴση ἄρα |
βόρειον γένηται , τὸ δὲ φθινό - πωρον ἔπομβρον καὶ νότιον , κεφαλαλγίαι ἐς τὸν χειμῶνα γίνονται , καὶ βῆχες | ||
ἤτοι τὸ ἀνατολικώτερον , ὁ Ἰνδικὸς ὠκεανός : τὸ δὲ νότιον ἡ Ἐρυθρὰ θάλασσα ἢ τὸ κῦμα τῆς Ἐρυθρᾶς θαλάσσης |
ἡ δὲ ΑΓ τὴν τρίγωνον , ἡ δὲ ΓΒ τὴν ἑξάγωνον . καὶ περιέξουσιν οἱ λόγοι τῶν ἀπὸ τοῦ αὐτοῦ | ||
Σελήνης καλοσχηματίστου οὔσης πρὸς τοὺς ἀστέρας κατά τε τρίγωνον καὶ ἑξάγωνον , προσθετικῆς οὔσης τοῖς ἀριθμοῖς . Ἔαρ . Ἀπὸ |
καὶ ἐν τῷ τετραπλασίονι ἄρα χρόνῳ , τουτέστιν ἐν ὁμαλοῖς νυχθημέροις ͵βσξδ , κινηθήσεται τὸ βόρειον πέρας καὶ οἱ σύνδεσμοι | ||
τῆς ἰσοχρονίου τῶν ἀπλανῶν παρόδου , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις λζ πρὸς Αἰγυπτιακοῖς ἔτεσιν ρμδ ἀποκαταστάσεις ποιεῖσθαι ρμδ ἔγγιστα |
τὰ ἀπὸ ΓΕ καὶ τρία τὰ ἀπὸ ΖΕ ἴσα ἐστὶν δεκαπέντε τοῖς ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ κύκλου τοῦ | ||
χαραγμάτων : πέντε καὶ πέντε δέκα γὰρ , καὶ πέντε δεκαπέντε , ὅπως ἀναβιβάζονται ταῦτα τὰ γραμματίτζια μέχρι τῶν ἐνενήκοντα |
. Κεῖται δὲ ὁ τόπος ὑπ ' αὐτὴν τὴν μικρὰν ἄρκτον , λέγεται δὲ συνορίζειν τοῖς ἀπεστραμμένοις μέρεσι τοῦ Πόντου | ||
καὶ καταρρὼξ τῆς Παφλαγονίας καὶ εἰς τὸ πέλαγος τείνει πρὸς ἄρκτον , μνημονεύει καὶ Ἔφορος ἐν δʹ . ὁ δὲ |
νευρώδης φανήσεται , ἅτε τοῦ μὲν αἵματος ἐκθλιβομένου εἰς τὰ ἑκατέρωθεν , μόνου δὲ τοῦ χιτῶνος ἐν τῇ περιτάσει καταλειπομένου | ||
αὐτοῦ ἰσημερινοῦ σημείου , τάς τε τοῦ ὁρίζοντος περιφερείας ἴσας ἑκατέρωθεν τοῦ ἰσημερινοῦ ποιεῖν καὶ τῶν νυχθημέρων ἐναλλὰξ ἴσα τὰ |
φρείατος εὐρὺ κύτος τῇδ ' ἀναμετρήσαιο , μέσας ὅτε τέρμασιν ἄκροις συνδρομάδας δισσῶν ἐντὸς ἕλῃς κανόνων . Μηδὲ σύ γ | ||
. τοῦ ἁρμονικοῦ τοῦ κατὰ τὸν διπλάσιον λόγον ἐν τοῖς ἄκροις λαμβανομένου , ἐν γὰρ τούτῳ αἱ διαφοραὶ καὶ αὐταὶ |
πυραμίδες τριγώνους ἔχουσαι βάσεις πρὸς τὰς ἐν τῇ ἑτέρᾳ πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν | ||
Β σημεῖον . διῄρηται ἄρα τὸ ΑΒΓΔΕΖ πρίσμα εἰς τρεῖς πυραμίδας ἴσας ἀλλήλαις , ὧν βάσεις μέν εἰσιν ΑΒΓΔ , |
δὲ ιθʹ τοῦ Ζυγοῦ ἕως ιθʹ τοῦ Αἰγόκερω ἀναβαίνει τὸν νότον . Ἐὰν δὲ καὶ τὸν βαθμὸν τοῦ ἀνέμου ζητῶμεν | ||
ἐειδόμενος περιτέλλῃ , οὐδ ' ὁπότ ' ἀκτίνων αἱ μὲν νότον αἱ δὲ βορῆα σχιζόμεναι βάλλωσι , τὰ δ ' |
καὶ ἠρέμα τῷ τοῦ Διός : οἱ δὲ ἐν τοῖς σπονδύλοις τῷ τε τοῦ Κρόνου καὶ ἠρέμα τῷ τῆς Ἀφροδίτης | ||
Οἱ γὰρ γεγονότες αὐτόθι κίονες ἀνήγοντο στρογγύλοι , διαλλάττοντες τοῖς σπονδύλοις , τοῦ μὲν μέλανος , τοῦ δὲ λευκοῦ , |
διὰ τῶν ΕΘ , ΝΠ ἐπίπεδα κάθετοι καὶ συμβαλλέτωσαν τοῖς ἐπιπέδοις κατὰ τὰ Σ , Τ , Υ , Φ | ||
ὑπάρχειν ὥσπερ τοῖς ὑπὸ τὸ αὐτὸ γένος οἷον τοῖς τισὶν ἐπιπέδοις τὸ γενικὸν ἐπίπεδον . Περὶ τοῦ χρησίμου τῶν ἰδεῶν |
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ | ||
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν , |
πολλάκις δυόμενος ἢ ἀνατέλλων φαντασίαν ἡμῖν ἀποπέμπει ὡς ψαύων τῆς κορυφῆς , τοσαύτας μυριάδας ἀφεστὼς ἀπὸ παντὸς μέρους τῆς γῆς | ||
βάσεις ἴσας ἔχῃ , ἔχῃ δὲ καὶ τὰς ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἠγμένας εὐθείας ἴσας , |
ἐφ ' ἑαυτόν , οὑτωσὶ καὶ τὸ τρίγωνον , ἀλλαχόθεν ἐπιζεύξαντες ἐπὶ τὰ πέρατα τῆς εὐθείας συγκροτοῦμεν ἐκ τούτων ἓν | ||
ὑφ ' ἣν ὑποτείνει ἡ τοῦ τετραγώνου πλευρά , καὶ ἐπιζεύξαντες καὶ τὰ αὐτὰ τοῖς πρότερον κατασκευάσαντες δείξομεν τὸν διὰ |
. . . . . μζ κε : ἡ δὲ μεσημβρινὴ τῇ ἐπιζευγνυούσῃ τὰ ἐκτεθειμένα δύο πέρατα γραμμῇ παρὰ τὴν | ||
παραλλήλου λαμβάνεται , οὔθ ' ἡ διορίζουσα εὐθεῖα τὰς σφραγῖδας μεσημβρινὴ εἴρηται : ὥστ ' οὐδὲν εἴρηται πρὸς αὐτόν . |
δακτύλων πλατυνόμενον , ἀφ ' οὗ εἰς ἐκείνους ἡ χεὶρ σχίζεται . καὶ τὸ μὲν ἔνδοθεν τῆς χειρὸς σαρκῶδες , | ||
ἢ Πεύκῃ ἐπέχοντι θέσιν νϚʹ μϚʹ δʹʹ τὸ δὲ ἀρκτικώτατον σχίζεται καὶ αὐτὸ κατὰ θέσιν νεʹ μϚʹ ∠ ʹʹδʹʹ καὶ |
ἀνεγερθείη τρόπον κίονος ἑνός , μυρίοις τῆς αἰθερίου σφαίρας ἀπολειφθήσεται διαστήμασι , καὶ μάλιστα κατὰ τοὺς ζητητικοὺς τῶν φιλοσόφων , | ||
τοῦ μονοχόρδου κανόνος . Ὅτι οὐ δεόντως οἱ Ἀριστοξένειοι τοῖς διαστήμασι καὶ οὐ τοῖς φθόγγοις παραμετροῦσι τὰς συμφωνίας . Ὅτι |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
' ἐπὶ Πάχυνον πεντήκοντα . ἔνθεν πάλιν κατὰ τὸ τρίτον πλευρὸν εἰς μὲν Συρακούσσας τριάκοντα ἕξ , εἰς δὲ Κατάνην | ||
: ὧν ὁ μὲν Ἀσταβόρας καλεῖται κατὰ τὸ πρὸς ἕω πλευρὸν ῥέων , ἅτερος δ ' Ἀστάπους : οἱ δ |
, τὸ ἀλλοιοῦν , τὸ ἀναδιδόναι , τὸ προστιθέναι τοῖς μέρεσι , τὸ προσφύειν ταύτην αὐτοῖς , τὸ ἐξομοιοῦν πρὸς | ||
εἰπεῖν οὗτοι . Πλὴν εἴ τις * ἐν τούτοις τοῖς μέρεσι λέγοι τὴν σύντηξιν ὑπάρχειν : ἐπεὶ ὅταν γε ἁπλῶς |
αὐτὰ παραθήσομεν ἐν τῷ βʹ κανονίῳ τῶν ἡλιακῶν τοῖς γ δακτύλοις κατὰ τοῦ δʹ σελιδίου . πάλιν ὑποκείσθω τὸ Α | ||
οὐχ ὁμοῦ δοκοῦσιν εἶναι : οἷον εἴ τις πολλοῖς τοῖς δακτύλοις ἐφαπτόμενος τοῦ αὐτοῦ ἄλλου καὶ ἄλλου ἐφάπτεσθαι νομίζοι , |
ἀδύνατον . οὐκ ἄρα τὸ Γ σημεῖον κέντρον ἐστὶ τῆς σφαίρας . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλο πλὴν | ||
ΑΒΓΔ κύκλον καὶ διὰ τοῦ κέντρου αὐτοῦ τε καὶ τῆς σφαίρας . Ἐν σφαίρᾳ οἱ μέγιστοι κύκλοι δίχα τέμνουσιν ἀλλήλους |
ἐϲ τὸ πρόϲωπον ϲκληροί , ὀξέεϲ : ἄλλοτε μὲν ἐϲ κορυφὴν λευκοί , ποιωδέϲτεροι δὲ τὴν βάϲιν . ϲφυγμοὶ ϲμικροί | ||
αὐτῶν ἴσαι εἰσὶν διὰ τὸ ιεʹ , αἱ δὲ κατὰ κορυφὴν αὐτῶν εἰσιν ἐναλλάξ : ὀρθαὶ ἄρα : ὅπερ ἔδει |
τῆς ἐν ἡμῖν σοφῆς δημιουργίας οὐδέτερον , τοῖς αἰσθητοῖς ἀεὶ ἀνάλογα προβαλλομένης τὰ αἰσθητήρια : τῷ μὲν γὰρ ῥᾳδίως αἰσθάνεσθαι | ||
' ὕπνον φαντάσματα τῶν ἐν ταῖς ἐγρηγόρσεσι παθῶν ἢ ἐνεργειῶν ἀνάλογα . δόξειε δ ' ἂν Ἀριστοτέλης τῇ φυτικῇ τὸν |
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
κύκλον ἐν τοῖς αὐτοῖς δώδεκα ζωδίοις πληροῦσθαι ἐν ἰσαρίθμοις μοίραις τξʹ . Ὅθεν συνέβη τὰς βασιλείας τῶν παρ ' αὐτοῖς | ||
τι παντάπασιν ὁρᾶται , τὸ πᾶν περὶ μίαν μοῖραν τῶν τξʹ : ἡ δὲ σελήνη , καθὰ οἱ ἀρχαῖοί φασι |
δὲ τελευταῖον δι ' ἑνός . Ἐὰν δὲ καὶ τρεῖς τριάδας ποιήσωμεν τὴν μὲν πρώτην δίιον εὑρήσομεν : φιλόσοφος γὰρ | ||
γὰρ ἦσαν παρ ' αὐτοῖς ἅπαντες πλὴν τοῦ μαθηματικοῦ : τριάδας δὲ καὶ πεμπάδας καὶ δεκάδας ἐν αὐτοῖς ἐθεώρουν κατὰ |
, ἤτοι λῆψιν ἢ ἄνεσιν , τὸ δὲ λοιπὸν ἓν δωδεκάωρον εἰς τοὐναντίον , παρὰ μέντοι τὸ θᾶττον ἢ βράδιον | ||
ἄκρας ὀξύγωνον , στενούτζικον , ὧν τοῦ ἑνὸς ἡ κλῆσις δωδεκάωρον λέγεται τῶν κατηστερισμένων . Τὰ δὲ δώδεκα ζῴδια δεκανοὺς |
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |
Ἰβηρία τε πᾶσα καὶ Κελτίβηρες , ἐπὶ τὸν ἑσπέριον καὶ βόρειον ὠκεανὸν καὶ τὰς Ἡρακλέους στήλας τελευτῶντες . καὶ τούτων | ||
μὴ ἁλμυρὸν τοῖς γευομένοις . Καὶ ὅλως ἔτος βέλτιον νοτίου βόρειον καὶ ὑγιεινότερον . Καὶ ὅταν ὀχεύωνται πρόβατα ἢ αἶγες |
. πάλιν τὸ ὀρθογώνιον τρίγωνον παρατιθέμενον τοῖς ἀνεγειρομένοις εἰς ὕψος κίοσιν αἴτιον γίνεται τῇ στάσει αὐτῶν τῆς ὀρθότητος , διότι | ||
, ὡς ὁ κομψὸς Ἀρίστων ἔλεγε , τοῖς ἐν γυμνασίῳ κίοσιν ὁμοίως λιπαροὺς πεποιήκασι καὶ λιθίνους . . . ὅταν |
τὸ ἀνατολικὸν αὐτοῦ ἡμικύκλιον Καρκίνου ἀνατολικόν , κατὰ δὲ τὸ δυτικὸν Καρκίνου δυτικόν . τουτέστι , σημειωσώμεθα ἐπὶ τῶν ἡμικυκλίων | ||
περὶ τοῦ γάμου νόει : πάντοτε δ ' Ἀφρογενὴς κέντρον δυτικὸν κατέχουσα . . . . ἐὰν δὲ ᾖ Ἀφροδίτη |
τρόπον γένοιτο ἂν τετραγωνισμός . ἀπεδίδου δὲ τοῦτο περὶ τρίγωνον ὀρθογώνιόν τε καὶ ἰσοσκελὲς ἡμικύκλιον περιγράψας καὶ περὶ τὴν βάσιν | ||
θ : ὥστε τὸ δὶς ὑπὸ τῶν ΓΒ , ΒΔ ὀρθογώνιόν ἐστιν ρμ : πεντάκις γὰρ ιδ ο , καὶ |
ἀρχῆς τοῦ Καρκίνου , ὁμοταγῆ δὲ καὶ ἐν τῶι αὐτῶι ἐπιπέδωι γινόμενον πάντοτε τῶι ὁρίζοντι κατὰ τὴν τοῦ εἰρημένου δωδεκατημορίου | ||
δὲ γραμμαὶ λέγονται παρ ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας |
πᾶσιν ἐπίσης ἰσημερινός ἐστιν , οὐκέτι δὲ οὔτε ὁρίζων οὔτε ἀρκτικός . Καὶ τὰ μὲν κατὰ τὰς διαφορὰς τῶν κατὰ | ||
ἐφ ' ἑκατέρωθεν τὸ ἔξαρμα καὶ τὸ ἀντέξαρμα ὁρίζοντες , ἀρκτικός τε καὶ ἀνταρκτικός , μικρότατοι μὲν τῷ μεγέθει , |
τῶν ὅλων μέση , περὶ τὸν διὰ παντὸς τεταμένον σφιγγομένη πόλον , ἡμέρας φύλαξ καὶ νυκτός , πρεσβυτάτη τῶν ἐντὸς | ||
τὴν ἐνέργειαν , τὰ δὲ ἐπέκεινα πρὸς αὐτὸν τὸν βόρειον πόλον ἔτι λύει καὶ θάλπει καὶ ἀνορθοῖ πρὸς ἀναθυμίασιν , |
τριήρεσι πολλαῖς ὁρῶν πεφραγμένον τὸν ἔσπλουν , τρεῖς δὲ τὰς ἐξωτάτω ἐφορμούσας τῷ στόματι τριήρεις προσπεσόντες οἱ Φοίνικες καὶ ἀντίπρωροι | ||
κατὰ τὸν χειμερινόν . Ἀναξιμένης καὶ Παρμενίδης τὴν περιφορὰν τὴν ἐξωτάτω τῆς γῆς εἶναι τὸν οὐρανόν . Ἐμπεδοκλῆς στερέμνιον εἶναι |
ἐλπίδος πεποίηται . ὁ δὲ ἐν τοῖς δημιουργικοῖς μέτροις ἕκαστα ἀφορίζων καὶ γινώσκων τὰ ὄντα , ᾗ γέγονε , καὶ | ||
μεσημβρινὸν ἐπιπέδου νοείσθω ὁ μέγιστος κύκλος ὁ τὸ φαινόμενον ἡμισφαίριον ἀφορίζων ὁ ΑΒΓΔ , καὶ τοῦ μὲν διχοτομοῦντος τὸ ἡμισφαίριον |
ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς | ||
Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ |
δεύτερον τετραγώνοις Ϛʹ καὶ ἑξαγώνοις ηʹ , τὸ δὲ τρίτον τριγώνοις ηʹ καὶ ὀκταγώνοις Ϛʹ . μετὰ δὲ ταῦτα ἑκκαιεικοσάεδρά | ||
ἔσται τὸ καὶ τριγώνοις εἶναι πᾶσιν , οὐκέτι μὴν τοῖς τριγώνοις πᾶσι τὸ καὶ ἑξαγώνοις εἶναι συμβήσεται , ἀλλ ' |
Οἰκίς , καὶ τροπῇ τοῦ α εἰς υ , ὡς βάθος βύθος , . . , . Βύνη : ἡ | ||
ὑπὸ τῇ ἄκρᾳ , καὶ μετὰ τοῦτον ἐγκολπίζουσα ᾐὼν εἰς βάθος , ἐν ᾗ αἱ Βαῖαι καὶ τὰ θερμὰ ὕδατα |
ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ | ||
δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον |
ἄτμητον φυλαχθῆναι , τὴν δ ' ἐντὸς ἑξαχῆ τμηθεῖσαν ἑπτὰ κύκλους τῶν λεγομένων πλανήτων ἀποτελέσαι : ὃ γάρ , οἶμαι | ||
λόγων κεκαθαρμένων καὶ πρὸς εὐθύτητα ἀπεξεσμένων , ἐμβεβλημένων δὲ ξύλοις κύκλους ἀποτελοῦσιν : οἱ δὲ κύκλοι ἐκ τοῦ ἐδάφους ἀρχόμενοι |
καὶ τῶν περὶ τὴν ὄψιν ἀγγείων τὰ μὲν ἐξόφθαλμα κομιδῇ προπέπτωκεν ὑπὸ κυρτότητος , τὰ δὲ κοιλότερά ἐστι , τὰ | ||
[ ἢ ὅτε ] μᾶλλον ἢ ἐν ἐπιθέσει , ὅτε προπέπτωκεν ἡ μήτρα . μελανθείσης δὲ αὐτῆς ἀπὸ μέρους διὰ |
ζώνας , δύο μὲν ἴσας ἀλλήλαις , αἳ πρὸς τοῖς πόλοις εἰσὶ κατεψυγμέναι καὶ διὰ τοῦτ ' ἀοίκητοι , δύο | ||
τῶν γραφομένων δηλονότι τοῖς ταύτης τῆς πάντα ὁμαλῶς περιαγούσης σφαίρας πόλοις , ὧν ὁ μέγιστος κύκλος ἰσημερινὸς καλεῖται διὰ τὸ |
δέδεικται , ὅτι , ἐὰν δύο πρίσματα ὑπὸ τὸ αὐτὸ ὕψος , καὶ τὸ μὲν ἔχει βάσιν παραλληλόγραμμον , τὸ | ||
τὸ δὲ εὖρος ᾗ πλατύτατον λʹ πηχῶν : τὸ δὲ ὕψος σὺν τῷ τῆς σκηνῆς ἀναστήματι μικρὸν ἀπέδει τεσσαράκοντα πηχῶν |
. Λοιπὸν δὲ ἐροῦμεν τῶν καθ ' ἡμᾶς νήσων τὰς περιμέτρους , λαβόντες παρὰ Ἀρτεμιδώρου καὶ Μενίππου καὶ ἑτέρων ἀξιοπίστων | ||
: οἱ μὲν γὰρ πρὸ αὐτοῦ τετράγωνοι πλείονας ἔχουσι τὰς περιμέτρους τῶν ἐμβαδῶν , οἱ δὲ μετ ' αὐτὸν ἀντικειμένως |
πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα . | ||
ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν |
αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον | ||
ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ , |
μεσημβρίαν νότον : εἶτα ἀπηλιώτου μὲν ἑκατέρωθεν ὡς πρὸς μεσημβρίαν εὖρον , πρὸς δὲ ἄρκτους καικίαν : πάλιν δὲ ἀπαρκτίου | ||
μὴ ἔχειν ὅπου προσκαθίζηται τὰ νέφη . Νότον δὲ καὶ εὖρον καὶ ὅσα ἀπὸ μεσημβρίας ἄρχεσθαι μὲν ἀπὸ ἀνατολῶν συμπαραχωρεῖν |
: νίτρον καὶ πήγανον ἴσα σὺν ὄξει λεάνας εἰς ῥάκος ἔμπλασσε . ἢ σίλφιον μετὰ νίτρου καὶ πηγάνου καὶ μέλιτος | ||
ἴσχαιμος καλή , καὶ μάλιστα ἐφ ' αἷμα ἀναγόντων . ἔμπλασσε δ ' εἰς ὀθόνια δύο , ἓν μὲν ἐπὶ |
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον | ||
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου |
μένοντι ὡς οἱ κινούμενοι κῶνοι καὶ σφαῖραι περὶ τὸν ἴδιον ἄξονα . τῆς δ ' εἰς εὐθὺ φορᾶς πλείονά ἐστιν | ||
. καὶ ὡς ἄρα ὁ ΗΘ ἄξων πρὸς τὸν ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ |
ποίησιν γινομένην , ἀλλὰ καὶ τῶν ἔξω ταύτης κατὰ τρεῖς διεστώσας τῶν ὄντων οὐσίας ἀνακρῖναι , οὗτος πρῶτος γενόμενος συγγραφεὺς | ||
πλατέα , μὴ ἄσαρκα ἀπὸ τῶν ὤμων , τὰς ὠμοπλάτας διεστώσας μικρόν , σκέλη τὰ πρόσθια μικρά , ὀρθά , |
τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε | ||
ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται . |
διάμετρον τμημάτων τοῦ ἐλάσσονος κύκλου κατὰ τῆς ἑτέρας τῶν πλευρῶν πρισμάτια μικρὰ ἴσα νεύοντα πρὸς ἄλληλά τε καὶ τὸ κέντρον | ||
αὐτόθεν καὶ προχείρως δύναται λαμβάνεσθαι . παραφέροντες οὖν τὸν τὰ πρισμάτια ἔχοντα κανόνα πρὸς τὴν σελήνην κατ ' αὐτὰς τὰς |
σπαίρουσι καὶ ἐκδῦναι μεμάασι , νήπιοι , οὐδ ' ἔτι κύρτον ὁμῶς εὔοικον ἔχουσιν . Ἄδμωσιν δ ' ἐπὶ κύρτον | ||
αὐτὰρ ἔπειτα ἐς μυχὸν ἠΐχθησαν : ὁ δ ' αὐτίκα κύρτον ἀνέλκει ῥίμφα μεταπλώσας : σιγῇ δέ οἱ ἄνυται ἔργον |
κατὰ τὴν ὁμοίαν ἀνάκρισίν τε καὶ θέσιν . ἐὰν γὰρ ἰσοτόνους ἁρμοσώμεθα τοὺς ὀκτὼ φθόγγους ἐν ἴσοις τοῖς τῶν χορδῶν | ||
αὐτῆς τομῶν τείνωμεν τὰς χορδὰς παραλλήλους τε τῇ ΑΓ καὶ ἰσοτόνους ἀλλήλαις , καὶ τούτου γενομένου τὸν κοινὸν ἐσόμενον ὑπαγωγέα |
τὸ αὐτὸ συμβήσεται συμπροκοπτόντων τοῖς ἑξῆς ἐπὶ τὸ πλάτος λαμβανομένοις πολυγώνοις καὶ τῶν γνωμονικῶν τριγώνων . ὁ μὲν γὰρ ἐφεξῆς | ||
τούτων ἀδύνατόν ἐστιν εὑρεῖν ἄλλα σχήματα ἴσοις καὶ ὁμοίοις ἰσοπλεύροις πολυγώνοις περιεχόμενα μάθοι τις ἂν καὶ οὕτως . Πᾶσαν στερεὰν |
τὸν δὲ μεσημβρινὸν ὀρθὸν προσαρμόσομεν τῷ κατὰ τὴν βάσιν ὁρίζοντι διχοτομούμενον μὲν ὑπὸ τῆς φαινομένης ἐπιφανείας αὐτοῦ , δυνάμενον δὲ | ||
Σάμῳ ξόανον συμφώνως τῇ τῶν Αἰγυπτίων φιλοτεχνίᾳ κατὰ τὴν κορυφὴν διχοτομούμενον διορίζειν τοῦ ζῴου τὸ μέσον μέχρι τῶν αἰδοίων , |
τὴν τούτων ἀποτροφήν . Τάσσεται δὲ ἐπὶ μάχην ἐν τρισὶν ἴσοις μέρεσι , τουτέστι ἐν μέσῳ , δεξιῷ , ἀριστερῷ | ||
τῶν ὁμογενῶν τάχα ἄν τις ἀπορήσειε τίποτ ' οὐκ ἐν ἴσοις χρόνοις ἅπαντα τελειοῦται ἀλλ ' οἱ μὲν τρίμηνοι τῶν |
ἀνερχομένης δεῖ θεμελίους πήσσειν , βορρᾶν δὲ τοίχους ἐποικοδομεῖν , βορρᾶν δὲ κατερχομένης τοίχους καθαιρεῖν , νότον δὲ θεμελίους ἀνορύττειν | ||
βουλόμενος ἐνταῦθα παύσασθαι τὴν Σκυθίαν καθόλου , ἀλλὰ τὴν πρὸς βορρᾶν τοῦ Ἴστρου . Οἱ δὲ Βαστάρναι καὶ Γερμανοὶ καὶ |
ἄλλος μῦς ἐπιζεύγνυσιν ἀμφοτέρους , ἀπὸ τῆς τοῦ πρώτου σπονδύλου πλαγίας ἀποφύσεως ἐπὶ τὴν ὄπισθεν ἀφικνούμενος τοῦ δευτέρου . καταφύεται | ||
τὰ κάτω . οὗτος ὁ ἐπίδεσμος εὐθετεῖ ἐφ ' ὧν πλαγίας οὔσης κατὰ τὸ βρέγμα διαιρέσεως , πρόκειται τὰ χείλη |
χώρας . Ὁ δὲ μέγιστος αὐτῷ πύργος τὸ μῆκος εἶχε πήχεις ρκ , τὸ δὲ πλάτος εἶχε πήχεις κγ ⊂ | ||
ἐν κύκλῳ ξύλα ἱστᾶσιν ἔτι χλωρὰ καὶ ἐς ἑκκαίδεκα ἕκαστον πήχεις : ἐντὸς δὲ ἐπὶ τοῦ βωμοῦ τὰ αὐότατά σφισι |
. οὕτω φαίνεται [ τὸ ] πρὸς λόγον τὸ μέν ἐμβεβλημένον καὶ τὸ ἀλαθέως ὀρθῶς ἐπ ' ἐσχάτῳ κείμενον : | ||
σῦριγξ καὶ χνόη τὸ εἰς τὴν ὀπὴν ἔνθα ὁ τροχὸς ἐμβεβλημένον ξύλον . τὸ δὲ χνόαι βαρύτονον : τὰ εἰς |
λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ | ||
τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει , |