αἱ βάσεις τοῖς ὕψεσι . καὶ ὧν πυραμίδων τριγώνους βάσεις ἐχουσῶν ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν , ἴσαι εἰσὶν ἐκεῖναι | ||
τῇ εἰς Ἅιδην φερούσῃ νηὶ ὡς τῶν ἐν βίῳ ἐναντίως ἐχουσῶν . θεωρίδα δὲ λέγει τὴν τοῦ Χάροντος ναῦν ἐκ |
εἴγε ἕκαστον αὐτῶν ὁμοίως κατὰ περιωρισμένους τόπους τὰς μεταβάσεις τῶν κινήσεων ποιεῖται . εἰ δὲ φήσουσιν , ὅτι μικρὸν μέν | ||
κινήσεως . ἀναμνησθῶμεν πρῶτον ἐπὶ τοῦ παντὸς σώματος δυοῖν τούτων κινήσεων ἀλλήλαις μὲν παρακειμένων , οὐχ ὁμοίως δὲ γινομένων : |
ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν | ||
ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς |
στερητικά . Τὸ προκείμενον ἡμῖν ἐστι διακρῖναι τὰ εἴδη τῶν ἀντικειμένων ἀπ ' ἀλλήλων , καὶ τέως τὰ πρός τι | ||
ἐπεὶ συνεθέμεθα καὶ ὡμολογήσαμεν ὡς ἂν ἐφ ' ἑνὸς τῶν ἀντικειμένων δειχθῇ , οὕτως ἐπὶ πάντων ἕξειν . οὐκ ἐδεήθημεν |
τῶν ἀγαυῶν ἡρώων ἀνατείνεται . τοιαύτη δὲ ἡ τάξις τῶν λογικῶν γενῶν καὶ ἐν προοιμίοις παραδέδοται , ὥστ ' εἶεν | ||
ἢ ἀλόγων ; ” “ λογικῶν . ” “ τίνων λογικῶν ; ὑγιῶν ἢ φαύλων ; ” “ ὑγιῶν . |
ἀσιτίαις : εἰ δὲ μηδέτερον εἴη τούτων , ἐπὶ τῶν τοπικῶν ἴασιν εὐθὺς ἀφικνούμεθα , κατ ' ἀρχὰς μὲν ἀναστέλλοντες | ||
κωνικῶν γραμμῶν . λέγομεν , ὅτι καὶ τῶν πρὸς γραμμαῖς τοπικῶν τὰ μὲν ἐπίπεδον ἔχει τόπον , τὰ δὲ στερεόν |
γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν | ||
τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον |
μετάληψις . πᾶσα γὰρ ἀντίληψις μεταλήψει λύεται : δύο δὲ οὐσῶν , ἀντιλήψεώς τε καὶ ἀντιθέσεως , ἀναγκαίως καὶ δύο | ||
τούτοις τῆς μετεωριζούσης ταῦτα δυνάμεως , ἰσοπαλῶν δ ' οἷον οὐσῶν τῶν ἀπομαχομένων τε καὶ ἀντιβαινουσῶν δυνάμεων , ὁ τρόμος |
. ὅτι πᾶς σύνθετος κατηγορικὸς ὑφ ' ἓν τῶν τριῶν σχημάτων ἀνάγεται : δύο γὰρ αὐτοῦ αἱ κύριαι προτάσεις : | ||
αὐτοῖς οὐκ ἀπὸ τιμημάτων ποιεῖσθαι τὴν ἐγγραφὴν οὐδ ' ἀπὸ σχημάτων ἢ μεγέθους ἢ κάλλους οὐδ ' ἀπὸ γένους τοῦ |
μέσον τῇ συστάσει . Αἰγιάλειος ἰχθύς ἐστι τῶν μικρῶν ἀεὶ διαμενόντων εἷς τις ὢν καὶ αὐτός : ἄριστος δ ' | ||
ἔμπροσθεν , ἐπιφάνειαν δὲ τὴν ἐκ δεξιῶν ἢ εὐωνύμων , διαμενόντων ἑκάστῳ τῶν τε ἐπιστατῶν καὶ παραστατῶν . ἀναστροφὴ δέ |
ἰσόρροπόν τι εἶναι χρῆμα ἐν μέσῳ κείμενον , ὁμοίων τῶν περιεχόντων . Ὁ δὲ αἰθὴρ ἐξωτάτω διῃρημένος εἴς τε τὴν | ||
' ἐμοῦ : οὐδὲν παθέων ἀποκουφίζους ' : οὐδὲν τῶν περιεχόντων σε κακῶν θεραπεύουσα καὶ ἀποκουφίζουσα , ἀλλὰ τοὐναντίον ἐπιτιθεῖσα |
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
ἀκοὴν πρὸς τὰ ἐξαρτήματα καὶ βεβαιώσας πρὸς αὐτὰ τὸν τῶν σχέσεων λόγον , μετέθηκεν εὐμηχάνως τὴν μὲν τῶν χορδῶν κοινὴν | ||
ιεʹ , καὶ ἀεὶ ὁμοίως . Ἐπιδειχθείσης ἡμῖν τῆς τῶν σχέσεων πλάσεως ἀπλατῶν καὶ μικτῶν ἀπὸ ἰσότητος τὴν ἀρχὴν ἐσχηκυίας |
. 〚 Καὶ 〛 Ἀναξίμανδρος ὑπὸ τῶν κύκλων καὶ τῶν σφαιρῶν , ἐφ ' ὧν ἕκαστος βέβηκε , φέρεσθαι . | ||
τῶν τοῦ εἰκοσαέδρου , καὶ ἤχθωσαν ἀπὸ τῶν κέντρων τῶν σφαιρῶν τῶν περιεχουσῶν τὰ στερεὰ σχήματα ἐπὶ τὰ ΔΕΖ ΑΒΓ |
Ἢ ὅτι μὴ οἷόν τί ἐστι δηλοῦσιν οὐδὲ ἐναλλαγὴν τῶν ὑποκειμένων οὐδὲ χαρακτῆρα , ἀλλ ' ὅσον μόνον τὴν λεγομένην | ||
τούτων διαλέγεται ὡς μερῶν προτάσεων καὶ ὡς περὶ κατηγορουμένων καὶ ὑποκειμένων , ἐν δὲ τοῖς Ἀναλυτικοῖς ὡς περὶ μερῶν συλλογισμοῦ |
τῆς ἀντιφάσεως , ὡς οὐ κατὰ τὸ ποσὸν μόνον τῶν περιεχομένων ὑπ ' αὐτῆς πραγμάτων ἀλλὰ καὶ κατὰ τὸ σφοδρὸν | ||
ὅπερ ὠνόμασται μὲν οὕτως ἀπὸ τοῦ δύο τινῶν ἐν αὐτῷ περιεχομένων ζητημάτων ἀπὸ τῶν πρός τι τοῦ πρώτου ζητήματος ἀνακύπτειν |
γὰρ τὰς τῆς ἀνδρείας πράξεις πρώτας παραλαμβάνειν ἐπὶ τῶν τοιούτων ὑποθέσεων εἰς ἐξέτασιν : γνωρίζει γὰρ βασιλέα πλέον ἡ ἀνδρεία | ||
γίνεται , ἐὰν ἀληθὴς ᾖ καὶ διὰ τῶν ἐξ ἀρχῆς ὑποθέσεων εἰλημμένη . ἐνταῦθα ἀπὸ τῆς ὕλης λαμβάνει τὴν διαφορὰν |
ὅλης φύσεως ποιεῖσθαι : ὅσοι δὲ μὴ παντελῶς αὐτῶν τῶν ἀποτελουμένων εἰσίν , ἐκ τούτων καὶ κατὰ τὸν ἄνευ φθόγγων | ||
τῶν θανατικῶν συμπτωμάτων ἢ κατὰ τὸ ποῖον ἢ τὸ πόσον ἀποτελουμένων ὅταν ἀμφότεροι λόγον ἔχωσι πρὸς τοὺς ἀναιρετικοὺς τόπους . |
, μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό | ||
δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα |
διαιρέσεων τὰς τῶν ἡλικιῶν διαφορὰς καὶ ἐπιτηδειότητας πρὸς ἕκαστα τῶν ἀποτελεσμάτων ἀναγκαῖον προϋποτίθεσθαι καὶ σκοπεῖν δεόντως ὅπως μὴ λάθωμέν ποτε | ||
, παρὰ τὴν τάξιν τῶν συμπτωμάτων , ὡς ἐκ τῶν ἀποτελεσμάτων ἐστὶ δῆλον , ἀναγκαῖον ὁμολογεῖν , καὶ τὴν θεραπείαν |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
κατὰ μῆκος καὶ κατὰ πλάτος πρὸς τοὺς τῶν ἐν αὐταῖς φαινομένων ἐπιλογισμοὺς τὴν μὲν τοιαύτην ἔκθεσιν ἐξαιρέτου καὶ γεωγραφικῆς ἐχομένην | ||
τοίνυν τὴν ἰατρικὴν κατὰ τὴν αὐτῶν δόξαν γνῶσιν εἶναι τῶν φαινομένων κοινοτήτων , τὸ δὲ φαινόμενον οὐχ ὡς δι ' |
τὸ ἐγγράφεσθαι : τὸ μὲν γὰρ λέγεται ἐπὶ τῶν μὴ ἐφαπτομένων ἀλλήλων ὡς ἐπὶ τοῦδε # : τὸ δὲ ὅταν | ||
ἀκτίνων ἀπὸ τοῦ κ τοῦ ΛΜΝ ἐπικύκλου ἡ μεταξὺ τῶν ἐφαπτομένων περιφέρεια ἔχουσα τὸ περίγειον ὅλη προσθετική ἐστιν , ἡ |
ἐξ ἀτόμων αὐτὴν συγκεῖσθαι λειοτάτων καὶ στρογγυλωτάτων , πολλῷ τινι διαφερουσῶν τῶν τοῦ πυρός : καὶ τὸ μέν τι ἄλογον | ||
ὁπότε οὐσῶν , ὡς ἂν φαίη , δυοῖν καὶ τοσοῦτον διαφερουσῶν τοσαύτην φαίνεται σπουδὴν πεποιημένος τοῦ καθάπαξ κακῶς εἰπεῖν . |
σχήματι συνάγοιτ ' ἄν , ποτὲ μὲν ἀμφοῖν τοῖν δυοῖν προτάσεων ψευδῶν λαμβανομένων , ποτὲ δὲ τῆς ἑτέρας . πῶς | ||
Ἀριστοτέλης . Τῶν ἐκ τῆς διαιρέσεως τοῦ ὑποκειμένου γινομένων ὀκτὼ προτάσεων τίνες μέν εἰσιν αἱ ἀντιφατικῶς ἀντικείμεναι πρὸς ἀλλήλας τίνες |
τις ἀκριβῶς ταῦτα γνοίη , ῥᾳδίως καὶ τὰ διαπεπτωκότα τῶν ὡρισμένων τούτων χρωμάτων δι ' οἱονδήτινα καταγνοίη λόγον . Οὐκοῦν | ||
εἴς τε μετοχὴν ἀναλυομένου καὶ θάτερον τούτων , τῶν μὲν ὡρισμένων εἰς τὸ ἔστι , τῶν δὲ ἀορίστων εἰς τὸ |
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
λέξις [ πτωτική , προτακτικὴ ] ἢ ὑποτακτικὴ [ τῶν ἐπιδεχομένων ] ? πτώσεις καὶ τὴν [ γενῶν διαφοράν ] | ||
ἀριθμοὺς ἐφ ' ἑκάστου τῶν ἑπτὰ τόνων , καὶ τῶν ἐπιδεχομένων τὸ σύνηθες τῆς μελῳδίας γενῶν , καὶ ἔτι ὡς |
ἑπτακαιεικοσαπλασίας : ἐν γὰρ ταύταις ταῖς ποσότησιν ἡ τῶν δύο μεσοτήτων ἐνορᾶται φύσις πρώταις ἐλαχίσταις ἥ τε τοῦ ἀνὰ μέσον | ||
τῇ ἀριθμητικῇ μεσότης οὐκ ἀλόγως προηγήσεται τῶν ἐν ἐκείναις ὁμωνύμων μεσοτήτων , γεωμετρικῆς τε καὶ ἁρμονικῆς : τῶν γὰρ ὑπεναντίων |
δὲ δυὰς μήκους ἐστὶν ἀπεργαστική . καθάπερ γὰρ ἐπὶ τῶν γεωμετρικῶν ἀρχῶν ὑπεδείξαμεν πρῶτον , τίς ἐστιν ἡ στιγμή , | ||
' εὐθείας ἔσονται ἀλλήλαις αἱ εὐθεῖαι . Ἕν τι τῶν γεωμετρικῶν ἐστιν ὀνομάτων τὸ πόρισμα . καλοῦσι δὲ πορίσματα καὶ |
λογικῶν περὶ τὰς τεχνικὰς καλουμένας ἀποδείξεις , αἱ γὰρ τῶν νομικῶν πίστεις ἤτοι ἀποδείξεις ἄτεχνοί εἰσι : τοῦ τὸν μοιχὸν | ||
μὲν πρώτη ζήτησις ἡ περὶ τῆς παραγραφῆς κατὰ μίαν τῶν νομικῶν ἔχει τὴν ζήτησιν : ἡ δὲ ἑτέρα εὐθυδικία οὐ |
παροῦσα θεωρία δύο κεφάλαια ἡμῖν παραδίδωσι , διάκρισιν τῶν παθητικῶν ποιοτήτων ἀπ ' ἀλλήλων ἐν πρώτῳ κεφαλαίῳ , καὶ διάκρισιν | ||
ἄτοπον ἂν εἴη τὸ λεγόμενον : οὐ γὰρ κεχωρισμένων τῶν ποιοτήτων τῶν ἐν ταῖς κράσεσιν ἀντιλαμβανόμεθα , ἀλλ ' ὡς |
[ τοῦτο ] δυνατόν ἐστιν : δειχθήσεται γὰρ ἐπί τινων ὁριζόντων παρθένος μὲν λέοντος ὀρθοτέρα ἀναφερομένη , ἀνάπαλιν δὲ ὁ | ||
αὐτοῦ ὑπὲρ γῆς ὁρᾶται , τῶν μὲν ἐκ τῶν χθαμαλῶν ὁριζόντων ἐπιπέδων ὄντων , τῶν δὲ ἐξ ὕψους ὁρωμένων κωνοειδῶν |
ὁ σώφρων γίνεται . ἐπὶ μὲν γὰρ τῶν ἐπιστημῶν καὶ δυνάμεων τὸ δύνασθαι μὲν ἀναγκαῖον , τὸ βούλεσθαι δὲ οὐκ | ||
ποικιλίαν τῶν τροφῶν ἄμεινον , μᾶλλον ἐὰν ἐξ ἐναντίων ὦσι δυνάμεων : οὐ γὰρ πέττεται τὰ ληφθέντα προσηκόντως . Σκόροδα |
ἡμῖν καὶ τοῦτο τὸ γένος διά τε τὸ πρόχειρον τῶν μεταβολῶν τῶν ἀπὸ τοῦ τονιαίου γένους ἐπὶ τὸ δι ' | ||
τε καὶ διαχωρουμένη φαίνεται . τῇ μὲν οὖν τάξει τῶν μεταβολῶν καὶ ἡ τάξις πρόεισι τῆς ἐπικρατήσεως , τοὐναντίον δὲ |
πράγματι , οὗ ἐστιν ἰδέα : ὥστε οὐκ ἔσται ἔτι ἀτόμων ὁρισμός . Ταῦτα εἰρηκὼς ζητεῖ ἐφεξῆς καὶ ἐπιλύεται τὴν | ||
, σῴζουσα τὴν ἐπὶ τοῦ στερεμνίου θέσιν καὶ τάξιν τῶν ἀτόμων ἐπὶ πολὺν χρόνον , εἰ καὶ ἐνίοτε συγχεομένη ὑπάρχει |
πρεπωδέστερον ὄνομα . καὶ πότερον μοναχῶς ἢ πλείονα γένη τῶν οὐσιῶν , οἷον οἱ ποιοῦντες τά τε εἴδη καὶ τὰ | ||
λέγων κατ ' ἀριθμὸν εἶναι τὴν ψυχὴν οὐσίαν , ἐξ οὐσιῶν μίαν πολλῶν αὐτὴν ὑπάρχειν δηλῶν κατ ' οὐσίαν οὖσαν |
, τριχῶς δὲ τὸ ἄλογον : τὸ γὰρ ὑπὸ δύο ῥητῶν εὐθειῶν μήκει συμμέτρων περιεχόμενον ῥητόν ἐστι , καὶ τὸ | ||
ῥητὸν ἄρα ἐστὶ καὶ τὸ ΑΓ . Τὸ ἄρα ὑπὸ ῥητῶν μήκει συμμέτρων , καὶ τὰ ἑξῆς . Ἐὰν ῥητὸν |
δὲ κατὰ τὴν ὕλην : τῶν γὰρ γινομένων ἐκ δυεῖν ἀνομοίων τοὐλάχιστον γεννωμένων τὸν μὲν ῥυθμὸν ἐν ἄρσει καὶ θέσει | ||
βίος συντέτακται , οὐ μόνον ἀπῳδὰ φθεγγομένων , ἀλλὰ καὶ ἀνομοίων τὰ σχήματα καὶ τἀναντία κινουμένων καὶ ταὐτὸν οὐδὲν ἐπινοούντων |
τῆς πρακτικῆς θέσεως τοσαῦτα , φέρε δὲ πειραθῶμεν καὶ τῶν θεωρητικῶν τινα διελεῖν ἐκ τῶν αὐτῶν τόπων ὁρμώμενοι , οὐ | ||
παραδοὺς πρότερον καὶ ὥσπερ προκαταβαλὼν τὸν θεμέλιον ἐπὶ τὴν τῶν θεωρητικῶν παράδοσιν μέτεισιν , ὡσανεὶ τὴν στέγην τῷ θεμελίῳ ἐπιτιθέμενος |
ὑπὸ ΔΑΜ γωνίας καὶ πασῶν δηλονότι τῶν τὸν αὐτὸν τρόπον συνισταμένων . φανερὸν δ ' αὐτόθεν , ὅτι καὶ τῶν | ||
. λέγω , ὅτι τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς τῶν συνισταμένων ἰσοσκελῶν τὰς βάσεις ἐχόντων μεταξὺ τῶν Γ , Β |
ἔξωθεν , ὧν ἓν μέν τι γένος αἱ ὑπὸ τῶν ὁμογενῶν , ἃς ὀλίγῳ πρότερον εἴπομεν , ἄλλαι δὲ ὑπὸ | ||
τὰ δὲ ἄλλα διαφοραὶ χωρίζουσαι αὐτὴν τῶν τε ἑτερογενῶν καὶ ὁμογενῶν , ἑτερογενῶν μὲν πολιτικοῦ πράγματος τῶν ἐπὶ μέρους : |
νοητῆς ἐν ἀριθμοῖς . μετὰ δὲ τὸν περὶ πάντων τῶν μαθηματικῶν λόγον τελευταῖον ἐπάξομεν καὶ τὸν περὶ τῆς ἐν κόσμῳ | ||
ὡς μὲν αὐτόθεν ἀκοῦσαι τὴν συμβολικὴν καὶ ἀπεξενωμένην χρῆσιν τῶν μαθηματικῶν λέξεων : τῶν γὰρ ὄντων στοχαζόμενος καὶ τῶν ἀληθῶν |
ἡ διάκρισις τῶν ἀορίστων ὀνομάτων τε καὶ ῥημάτων ἀπὸ τῶν ἀποφάσεων , πρὸ ἐκείνου δὲ ἡ διδασκαλία τοῦ πῶς τῶν | ||
καὶ ἐξ ἀμφοτέρων ψευδῶν συνάγεται . Ὅτι εἰπὼν ἐκ δύο ἀποφάσεων ἢ μερικῶν μὴ γίνεσθαι συλλογισμὸν μόνον τὸ δεύτερον ἐπεξεργάζεται |
τειχῶν ἑστῶτες τὸ μὲν πρῶτον ὤκνουν τοῖς βέλεσι χρήσασθαι , προκειμένων αὐτοῖς σκοπῶν πολιτικῶν ἀνδρῶν , ὧν ἦσάν τινες καὶ | ||
τῶν κυβερνητῶν τῶν ἐχομένων ἄλλων ἀκρωτηρίων ἀλλ ' οὐ τῶν προκειμένων , δέον εὐθυπλοεῖν κατὰ λιμένα . τουτέστι , μὴ |
δὲ αὐτὸς δηλονότι λόγος ἁρμόσει καὶ ἐπὶ τῆς ἑτέρας τῶν διαγωνίων ἀντιθέσεων , τῆς πᾶς καὶ οὐ πᾶς : καὶ | ||
μικρὸν σαλευομένης τῆς σκάφης ἢ τῆς βαυκάλης κρεμαμένης ἢ ἐπὶ διαγωνίων λίθων ἐπηρεισμένης , εἰς ὕστερον δὲ καὶ διὰ φορείου |
δευτέρων , οὐκ ἔστι ῥητή . ἔστι δὲ ἴδιον τῶν συμμέτρων τὸ τὸ ἔλασσον τοῦ μείζονος ἤτοι μέρος εἶναι ἢ | ||
τὸ δὲ ΖΓ μέσον ὡς ὑπὸ δύο ῥητῶν δυνάμει μόνον συμμέτρων περιεχόμενον . ὡς οὖν ἡ ΛΞ πρὸς ΞΟ : |
τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |
, ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
, ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
ἐξ ἀρχῆς μετρούντων . Ἐλάχιστος γὰρ ἀριθμὸς ὁ Α ὑπὸ πρώτων ἀριθμῶν τῶν Β , Γ , Δ μετρείσθω : | ||
στρατιωτικῇ πέφυκε γίνεσθαι . ὅταν δὲ ὑπάρξηται ἡ ἐκ τῶν πρώτων κίνησις , ἐνταῦθα οἱ λοιποὶ ἕπονται . λέγουσι δὲ |
τάσεων ἐπὶ τάσεις διαστήματα . τὰ δὲ ποιοῦντα τὴν τῶν τάσεων διαφορὰν ἐπίτασίς ἐστι καὶ ἄνεσις , ἀποτέλεσμα δὲ τούτων | ||
τάσεων , βαρυτέρων δὲ τῆς ὀξυτέρας : διαφορὰ δὲ ἐστὶ τάσεων τὸ μᾶλλον ἢ ἧττον τετάσθαι . περὶ μὲν οὖν |
. Δεῖ γὰρ ὀξέως ἀπὸ τῶν ὁρατῶν καὶ ἀπὸ τῶν ἀκουστῶν μεταβαίνειν ἐπ ' ἐκεῖνα , ἃ ἔστιν ἰδεῖν μόνῳ | ||
ἄλλων φωνῶν ἀποστὰς τὸ οὖς ἐγείροι πρὸς τὸ ἄμεινον τῶν ἀκουστῶν , ὁπότε ἐκεῖνο προσέλθοι , οὕτω τοι καὶ ἐνταῦθα |
τὴν στροφήν . ἐπεὶ οὖν οὐκ ἔνι ἔξω τόπων καὶ θέσεων ταῦτα κατανοῆσαι , ἀγνοεῖται ἡ φύσις αὐτῶν . Ὄγδοος | ||
, οὐ θέσις ἔσται ἀλλ ' ὑπόθεσις . Τῶν δὲ θέσεων αἳ μὲν πολιτικαί , αἳ δὲ οὔ : καὶ |
Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ | ||
: λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ |
ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ | ||
τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά |
τινα λογικὰ θεωρήματα ζητεῖ : πρῶτον μὲν ὅτι τεσσάρων ὄντων γενικωτάτων ὑπαλλήλων εἰδικωτάτων καὶ ἀτόμων καὶ δύο ἄκρων ἐν τούτοις | ||
οὐκ εἰδικωτάτων οὐκ ἀτόμων οὐ μερικῶν οὐχ ὑπαλλήλων , ἀλλὰ γενικωτάτων . ἐν οἷς σὺν θεῷ καὶ ἡ παροῦσα πρᾶξις |
ψυχή , ἀλλ ' ὥσπερ τὸν κιθαρῳδὸν καὶ τῆς τῶν χορδῶν ἁρμονίας χαλασθείσης ἔτι παρεῖναι τῇ κιθάρᾳ οὐδὲν κωλύει , | ||
κιθάρᾳ τὸ τοιόνδε συμβαῖνον θεωρεῖται ; εἰ γάρ τις δύο χορδῶν ὁμοφώνων ἐς μὲν τὴν ἑτέραν σμικρὰν ἐνθείη καὶ κούφην |
συνιεὶς τῆς καθολικῆς τῶν σφαιρῶν καὶ τῶν κατ ' αὐτὰς κινουμένων ἀστέρων ἁρμονίας τε καὶ συνῳδίας , πληρέστερόν τι τῶν | ||
δὲ ἤγαγον τοὺς ἵππους πλησίον αὐτῶν , τῶν ἵππων δὲ κινουμένων , ἤχει ἡ γῆ , κοπτομένη τοῖς ποσὶν αὐτῶν |
αὐξανομένη . πάλιν γὰρ μεταξὺ τοῦ Ϛ καὶ τοῦ ιβ ἑτερομηκῶν ὄντων ἀπόθου τὸν θ τετράγωνον : καὶ ἡ ὑπεροχὴ | ||
ἡ διαγώνιος ἔσται μόνων τετραγώνων , ἑκάστου παρασπιζομένου ὑπὸ δύο ἑτερομηκῶν κατά τε μῆκος καὶ πλάτος , ὡς κἀνταῦθα σῴζεσθαι |
μείζονες ἡγεμονίαι πρὸς αὑτάς . Νῦν δὲ καὶ περὶ τῶν διαστημάτων , ὧν ἀπ ' ἀλλήλων ἀφεστᾶσιν οἱ ὁπλῖται κατά | ||
' ἀμφοτέρας τὰς διαιρέσεις φαίνεται , τὰ δὲ μεγέθη τῶν διαστημάτων δῆλον ὅτι οὐ ταὐτὰ ἐν ἑκατέρᾳ τῶν διαιρέσεων . |
αὐτὸς δηλονότι λόγος ἁρμόσει καὶ ἐπὶ τῆς ἑτέρας τῶν διαγωνίων ἀντιθέσεων , τῆς πᾶς καὶ οὐ πᾶς : καὶ γὰρ | ||
τὰ αὐτὰ εὑρήσομεν : καὶ γὰρ καὶ ἐνταῦθα δύο οὐσῶν ἀντιθέσεων , ἐμψύχου καὶ ἀψύχου , αἰσθητικοῦ καὶ ἀναισθήτου , |
πόλις γε ἔδοξεν εἶναι δικαία ὅτε ἐν αὐτῇ τριττὰ γένη φύσεων ἐνόντα τὸ αὑτῶν ἕκαστον ἔπραττεν , σώφρων δὲ αὖ | ||
ποίει ξανθὸν καὶ ἐπίβαπτε πᾶν σῶμα χρυσοῦ . Ὦ φύσεις φύσεων δημιουργοὶ , ὦ φύσεις παμμεγέθεις ταῖς μεταβολαῖς νικῶσαι τὰς |
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται , | ||
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ |
λέξις τὸ πάντοτε . Σύγκειται δὲ ὁ λόγος ἀπὸ λέξεων διαφόρων , ἢ δυοῖν ἢ τριῶν ἢ πλειόνων οὕτω ἑκάστη | ||
τῶν τοιούτων ὑπάρχει : εἰ δέ γε γύροθεν ἅλως σχημάτων διαφόρων , εἰ μὲν γὰρ μία πέφυκε καθαρά τε ἠρέμα |
ὄργανα ἀνομοιομερῆ . τί ἐστιν ὑγεῖα ; ἡ εὐκρασία τῶν ὁμοιομερῶν καὶ ἡ συμμετρία τῶν ὀργάνων : σύνθεσις καὶ διάπλασις | ||
οὖς ἢ ἡ ῥίς . ἀλλά φαμεν ὡς ἐπὶ τῶν ὁμοιομερῶν οὐδὲν κωλύει τῷ τοῦ ὅλου ὀνόματι καὶ τὰ μέρη |
εἰδῶν τῶν ἐναντίων διακρίνει ἕξιν καὶ στέρησιν : τῶν γὰρ ἀμέσων ἐναντίων ἀνάγκη θατέρου μετέχειν τὸ ὑποκείμενον ζῷον , ἕξις | ||
λέγει τὰ ἀμέσως ὑπάρχοντα : ἐκ γὰρ τῶν προσεχῶν καὶ ἀμέσων ὑπαρχόντων αἱ ἐπιστῆμαι , ὡς εἴρηται ἐν τῇ Ἀποδεικτικῇ |
. . . . . . . Περὶ δὲ τῶν ἰδεῶν ὡδὶ διεξήρχετο , τῶν κατὰ φύσιν αἰσθητῶν κατὰ γένος | ||
καὶ τὰ νοητὰ καὶ τὰ αἰσθητὰ πάντα μετέχειν ἀρέσκει τῶν ἰδεῶν , Πορφυρίῳ δὲ μόνα τὰ αἰσθητά . . . |
ἐπεὶ ἐξ ἀξιωμάτων συνέστηκε λεκτῶν ἡ ἀπόδειξις , ἐκ τῶν λεκτῶν δὲ συνεστῶσα οὐ δυνήσεται πρὸς πίστιν τοῦ λεκτὸν εἶναι | ||
τὴν ἐν ταῖς λεκτικαῖς ὑφισταμένην κινήσεσιν , ἥτις δέδεικται τῶν λεκτῶν πάντων περὶ μόνον τὸν ἀποφαντικὸν λόγον ὑφίστασθαι δυναμένη . |
τῶν ἀπλανῶν παρόδους τετηρήκαμεν πέντε που καὶ ἑξήκοντα καὶ διακοσίων συναγομένων , ὡς ἐκ τούτων τὴν τῆς μιᾶς μοίρας εἰς | ||
ἐπουσίας συναγομένων μοιρῶν εἰς τὸ πλῆθος τῶν ἐκ τοῦ χρόνου συναγομένων ἡμερῶν . Καὶ ἐνθάδε οὖν πάλιν , ἐπεὶ ὁ |
τριῶν , μήτε τῆς οὐσίας καὶ τοῦ συμβεβηκότος καὶ τῶν λοιπῶν κατηγοριῶν . ἐν οἷς γὰρ πρῶτόν τι καὶ δεύτερον | ||
τοὺς καρπούς ; ἔτι μὴν ἐνίοτε καὶ στρουθίον ἢ τῶν λοιπῶν πετεινῶν , καταπιὸν σπέρμα μηλέας ἢ συκῆς ἤ τινος |
, τὰ δὲ τοῦ θεοῦ κινούμενα , ἔμπνοα , χρηστικὰ φαντασιῶν , δοκιμαστικά . τούτου τοῦ δημιουργοῦ κατασκεύασμα ὢν καταισχύνεις | ||
ἐν τῷ στήθει ἱδρυμένον δαίμονα μὴ φύρειν μηδὲ θορυβεῖν ὄχλῳ φαντασιῶν , ἀλλὰ ἵλεων διατηρεῖν , κοσμίως ἑπόμενον θεῷ , |
θανάτου φόβους ἀνηκέστους , ὧν ἰατρὸς ἦν οὐδείς , μίαν ἐχόντων θεραπείαν τὸ ῥωσθῆναι Γάιον . ὅτε γοῦν ἤρξατο λωφᾶν | ||
' ἐκφεύγειν ὑμᾶς . οὐ μὴν ἀλλὰ καίπερ τούτων οὕτως ἐχόντων οἴομαι καὶ πεπεικὼς ἐμαυτὸν ἀνέστηκα , ἂν ἐθελήσητε τοῦ |
τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ; | ||
τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ |
Χαῖρις οὐ βούλεται συνθέτως ἀναγινώσκειν Πελιαοφόνον : ἐκ γὰρ δυοῖν τελείων ἐστὶ τοῦ Πελίαο καὶ τοῦ φόνου . γίνεται δὲ | ||
δὲ τῇ ἀποτέξει καὶ πλεῖστον προσανευρύνεται μέχρι τοῦ καὶ χεῖρας τελείων παραδέχεσθαι . κατὰ μέντοι τὴν φύσιν τρυφερόν ἐστι καὶ |
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
. τὰ δ ' αὐτὰ νοεῖν δεῖ καὶ ἐπὶ τῶν συνθέτων λόγων οἷον πολλαπλασιεπιμορίων καὶ πολλαπλασιεπιμερῶν . εἰ γὰρ ἔσται | ||
τῶν οὕτως λαμβανομένων συλλαβῶν καὶ ἐπὶ πάντων δὲ τῶν ἄλλων συνθέτων ἀφωρισμένας ἀριθμῷ τὰς ἀρχὰς ἔστι λαβεῖν , ἀλλ ' |
μὲν ταῖς αὑτῶν χερσί , τὴν δὲ αὑτῶν ταῖς τῶν εἰλημμένων . αἱ δ ' αὖ διαφυγοῦσαι τὴν ἅλωσιν ἰσχύι | ||
. δεῖ γὰρ καθόλου τὸ συμπέρασμα ἐκ τῶν ἄκρων τῶν εἰλημμένων ἐν ταῖς προτάσεσι ταῖς δύο συγκεῖσθαι . ἄκροι δέ |
, διὰ δὲ τῆς συμπτώσεως ἀχθῇ εὐθεῖα παρά τινα τῶν ἀσυμπτώτων τέμνουσα τήν τε τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν | ||
ἀσύμπτωτόν ἐστι τῷ ΛΔΤΥ ἡμικυκλίῳ : αἱ ἄρα μεταξὺ τῶν ἀσυμπτώτων ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι |
ἐπὶ τὸ καθόλου καὶ τὴν ἀρχὴν ἡ ἀπὸ τῶν τοιούτων στάσεών τε καὶ περιλήψεων πρόοδος . τὸ δ ' ἕως | ||
ἐπεὶ καὶ τοὐναντίον τὴν παρὰ φύσιν κίνησιν ταραχῶν καὶ θορύβων στάσεών τε καὶ πολέμων αἰτίαν εἶναι συμβέβηκεν , ἣν μετίασιν |
χρόνους ἧκόν τινες ἀπὸ Σικελίας ἀπόστασιν ἀγγέλλοντες οἰκετῶν εἰς πολλὰς ἀριθμουμένων μυριάδας . οὗ προσαγγελθέντος , ἐν πολλῇ περιστάσει τὸ | ||
: ὅ ἐστιν : οὐκ εἰς τὸ ἀκριβὲς ἦλθεν ὥστε ἀριθμουμένων τῶν ψήφων εἰς τὸ βραχὺ ἐλθεῖν καὶ εἰς ἰσοψηφίαν |
ζητήσεως ἀτάκτως κινουμένων , καὶ * ἄλλο ἐπ ' ἄλλων φερομένων μορίων , καί ποτε περὶ τὸν στόμαχον , ἐφ | ||
νοητῶν ἐνεδείκνυντο , ὡς δὲ παραδειγμάτων περὶ τῶν ἐν αἰσθήσει φερομένων εἰδῶν : οἳ καὶ δοκοῦσι τοῖς πολλοῖς μόνην πρεσβεύειν |
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ | ||
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν |
τοῖς ὁδοιποροῦσιν ἐκλάπη . Ἵνα δὲ βεβαιότερον δυνώμεθα περὶ τούτων καταστοχάζεσθαι δεῖ καὶ τὰς τῶν ζῳδίων φύσεις ὁρᾶν οὕτως . | ||
τοῖς ὁδοιποροῦσιν ἐκλάπη . Ἵνα δὲ βεβαιότερον δυνώμεθα περὶ τούτων καταστοχάζεσθαι δεῖ καὶ τὰς τῶν ζῳδίων φύσεις ὁρᾶν οὕτως . |
πρόβλημα , παραβάλλον λοιπὸν τὴν ἀντίφασιν πρὸς τὴν τῶν ἐναντίων καταφάσεων ἀντίθεσιν . πρόεισι δὲ τοῦτον τὸν τρόπον . ἐπειδὴ | ||
δύο ταῦτα θεωρήματα ζητῶν , πρῶτον μὲν πῶς ἀπὸ τῶν καταφάσεων γίνονται αἱ ἀποφάσεις , δεύτερον δὲ τίς ἡ ἀκολουθία |
αὐτὰ παῖδες καὶ ἄνδρες μανθάνουσιν , ἀλλ ' ἑκατέρᾳ τῶν ἡλικιῶν εἰσιν ἁρμόττουσαι διδασκαλίαι , οὕτως πεφύκασιν εἶναί τινες αἰεὶ | ||
. Δίαιτα μετὰ τὸν ἀπογαλακτιϲμὸν τῶν νηπίων καὶ τῶν ἐφεξῆϲ ἡλικιῶν . Ἀπὸ γάλακτοϲ δὲ γεγονόταϲ τοὺϲ νηπίουϲ ἐν ἀνέϲει |
πάροδος τῆς σελήνης περὶ τὸν καταβιβάζοντα σύνδεσμον ἐν ἑκατέρᾳ τῶν ἐκλείψεων : τὸ γὰρ τοιοῦτον καὶ ἐκ τῶν ὁλοσχερεστέρων ὑποθέσεων | ||
∠ ʹ γʹ . Ἐπεὶ οὖν ἡ μὲν τῶν δύο ἐκλείψεων ὑπεροχὴ τὸ τρίτον περιέχει τῆς σεληνιακῆς διαμέτρου , ἡ |
χειρουργίας ἢ φαρμακείας προσπεσεῖν . γίνεται δὲ τὰ πολλὰ ἐξ ἀποστημάτων μὴ κατὰ τρόπον θεραπευθέντων . τὰς μὲν οὖν πλαγίας | ||
ἑξηκοστὰ μϚʹ . ἐντεῦθεν αὐτοῖς οἱ λόγοι διάφοροι καὶ τῶν ἀποστημάτων καὶ τῶν μεγεθῶν ἡλίου καὶ σελήνης ἐπιλελογισμένοι εἰσίν . |
ἑνὸς μόνου ἀγγείου ὑποπίπτοντος , ἢ καὶ τῶν ἄλλων μὲν εὑρισκομένων , ἑνὸς δέ τινος ἐπιτηδειοτέρου , τὴν ἀφαίρεσιν ἀπὸ | ||
τῶν ἐν ταῖς ? πόλεσιν ἀεργῶν καὶ ἀτέχνων ? ? εὑρισκομένων ἀνθρώπων ? , καὶ ἀνιχνευτικὴν ? τῶν οὐκ ἀνάγκῃ |
διασαφηθείη , λέγοιτ ' ἂν ἱκανῶς . τῶν γὰρ ὑποκειμένων ὑλῶν ταῖς μεθόδοις καὶ ταῖς ἐπιστήμαις αἱ μὲν δέχονται τὸ | ||
ὡς τὸ δίκαιον τοῦ Σωκράτους : τριῶν οὖν τούτων οὐσῶν ὑλῶν δῆλον ὅτι αἱ ιβ ἀντιθέσεις αἱ προειρημέναι τριχῇ διαλαμβανόμεναι |
δοτικῆς φύσει μακρά ἐστιν , ἡ δὲ παραλήγουσα τῶν ἄλλων πτώσεων θέσει μακρά ἐστι , τὸ δὲ φύσει μακρὸν μεῖζόν | ||
οὖν τῆς αἰτιατικῆς ἀναμφισβήτητόν ἐστιν , ἐπὶ δὲ τῶν ἄλλων πτώσεων φανερόν , ὅτι προσθέσει ἄρθρων οὐκέτι ἀμφίβολος γίνεται ἡ |
ἐν δὲ τῷ προβλήματι τούτῳ κάθετον ἐπίπεδον προτίθεται ἀγαγεῖν ὁ στοιχειωτής : πρός τε γὰρ εὐθεῖάν ἐστιν ἡ ἀγωγή , | ||
δεδομένον καὶ τὸ ζητούμενον , οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ |
καὶ τὰ τοιαῦτα . Ἰστέον ὅτι οὐκ ἐπήγαγε τῶν προειρημένων ἀποριῶν τὴν λύσιν . πρὸς τοῦτο οὖν ῥητέον ὅτι τὰ | ||
οὐδενὶ ἀντείρηκεν Ἵππαρχος ; Καὶ τὰ ἑξῆς δὲ πλήρη μεγάλων ἀποριῶν ἐστιν . ὅρα γάρ , εἰ τοῦτο μὲν μὴ |
, ἵνα καὶ ἡνωμένον γένηται , ἐκ πολλῶν τῷ ἑνὶ συγκραθέντων , ἀλλ ' ἔστιν ἓν πολλὰ τῇ ἰδιότητι , | ||
ὅτι δ ' ἐπὶ τοιούτων κράσεων διαμένουσιν αἱ ποιότητες τῶν συγκραθέντων , πρόδηλον ἐκ τοῦ πολλάκις ἐξ ἐπιμηχανήσεως ἀποχωρίζεσθαι ταῦτα |
τῶν μεταξὺ τῶν Β , Γ σημείων τὰς βάσεις ἐχόντων ἰσοσκελῶν . Ἐὰν ἐπὶ τῆς αὐτῆς βάσεως δύο τρίγωνα συστῇ | ||
. Ἰστέον , ὡς τὸ θεώρημα τοῦτο ἐπὶ μὲν τῶν ἰσοσκελῶν καὶ ἰσοπλεύρων τριγώνων σῴζει τὸ οἰκεῖον , ἐπὶ δὲ |
: οὐδὲν γὰρ ἰδιαίτερον περὶ αὐτῶν εἰπεῖν ἔχομεν . Τῶν ϲπονδύλων αἱ περιοχαὶ θλάϲιν μὲν ἐνίοτε , ϲπανίωϲ δὲ καὶ | ||
ἀφαιρέϲειϲ ἐπὶ τούτων ἀπὸ τοῦ ἰνίου καὶ τῶν πρώτων δύο ϲπονδύλων ποιητέον , ἐμβρέχονταϲ τὴν κεφαλὴν ἀνηθίνῳ ἐλαίῳ θερμῷ . |
παραπλησίως καὶ ἐπὶ τοῦ δωδεκαέδρου ἐκ πενταγώνων ὄντος δώδεκα , διαιρουμένων εἰς πέντε τρίγωνα , ὥστε ἕκαστον δι ' ἓξ | ||
πέμπτη δέ ἐστιν ἡ κατὰ διαίρεσιν ποιάν , ὅτε ποικίλως διαιρουμένων τῶν συνθέτων ποικίλους τοὺς ἁπλοῦς γίνεσθαι συμβαίνει : ἕκτη |
γοῦν ἐπὶ τῶν τεχνητῶν , οὕτω καὶ ἐπὶ τῶν φύσει συνεστώτων ἔχει . ἡ μὲν γὰρ ἔφεσις ἁπλῶς τοῦ θείου | ||
ὀργανικοῦ σώματος . τῶν γὰρ πραγμάτων ἐξ ὕλης καὶ εἴδους συνεστώτων ἢ ἀνάλογόν γε εἴδει καὶ ὕλῃ τὴν σύστασιν ἐχόντων |
ἐπίρρημα μὲν λέξις ἄκλιτος , κατηγοροῦσα τῶν ἐν τοῖς ῥήμασιν ἐγκλίσεων καθόλου ἢ μερικῶς , ὧν ἄνευ οὐ κατακλείσει διάνοιαν | ||
μὲν οὖν τούτων ἡμῖν συνεστάθησαν αἱ καθόλου πηλικότητες τῶν μεγίστων ἐγκλίσεων τῶν τε ἐκκέντρων καὶ τῶν ἐπικύκλων : ἵνα δὲ |
τὸ προσῆκον : τῶν γὰρ τροφῶν τῶν πρὸς τὸ ζῇν ληφθέντων ἐμπιπλαμένη ἑκάστῳ μορίῳ κατὰ τὸ οἰκεῖον ἀξίωμα ἐφιζάνει , | ||
τὰ οἰκοδομήματα . Ἰφικράτης μετὰ μὲν τὴν μάχην ἀπὸ τῶν ληφθέντων ἄξια τῶν πόνων διένειμεν ἑκάστῳ . εἰ δὲ ξένια |