ὀγδόῳ σελιδίῳ . τὰ μὲν οὖν διὰ τὴν ἐν τῷ ἐπικύκλῳ γινομένην μετάβασιν τῆς σελήνης συναγόμενα διάφορα τοῦτον ἡμῖν τὸν | ||
τὸ Β , ἐὰν μὲν ὁ ἀστὴρ οὕτως ἐν τῷ ἐπικύκλῳ ποιῆται τὴν κίνησιν , ὥστε τὴν ἀπὸ τοῦ ἀπογείου |
: τὰ μικρὰ ξύλα τὰ ὡσανεὶ ἧλοι πεπηγμένα ἐν τῷ ἄξονι : θραύων δὲ σάρκας : ἀντὶ τοῦ θραυόμενος . | ||
. αἱ χνόαι ἢ τὰ ἐμβαλλόμενα [ πρὸς ] τῷ ἄξονι , ὥστε μὴ ἐξιέναι τὸν τροχόν : ἄλλως : |
κατὰ τὸ αὐτὸ πρὸς ἀλλήλους τε καὶ τοὺς ἐν τῷ ζῳδιακῷ . ἐπὶ μὲν τοίνυν τῶν κατὰ τὸν Καρκῖνον ἀστέρων | ||
δὲ ἐφ ' ἑκάστου καὶ τό τε μεσουρανοῦν ἐν τῷ ζῳδιακῷ κύκλῳ ζῴδιον καὶ τὴν μοῖραν αὐτοῦ , πρὸς δὲ |
μείζων ἐστὶν ἡ ΓΕ περιφέρεια τῆς ΕΔ περιφερείας . ὁ πόλῳ γὰρ τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος | ||
φανερὸς μὲν ἀεὶ κύκλος γίνεται ὁ πόλῳ μὲν τῷ βορείῳ πόλῳ τοῦ ἰσημερινοῦ , διαστήματι δὲ τῷ τοῦ πόλου ἐξάρματι |
φέρει τόδε τὸ ζῴδιον . Τοὺς δὲ Διδύμους δίεισιν Ἥλιος ἰσοτάχως ἐκ τοῦ Παχὼν τὰς δεκαεπτὰ μέχρι τῶν δεκαπέντε Παϋνὶ | ||
φέρει τόδε τὸ ζῴδιον . Τοὺς δὲ Διδύμους δίεισιν Ἥλιος ἰσοτάχως ἐκ τοῦ Παχὼν τὰς δεκαεπτὰ μέχρι τῶν δεκαπέντε Παϋνὶ |
ὁ λόγος : ἕκαστον γὰρ τῶν μορίων συμφέρεται τῷ ἰδίῳ συντάγματι . ἀλλ ' ὁπηνίκα τὸ ἄρθρον ἐμπεριλαμβάνει τὸ ἐπίρρημα | ||
δὲ ἀναγράφει αὐτῶν γένη ὁ Κλέαρχος ἐν τῷ περὶ γρίφων συντάγματι . γρῖφοι δὲ λέγεται τὰ ἐν τοῖς συμποσίοις προβαλλόμενα |
σημεῖον στῇ καὶ ἡ εὐθεῖα , τότε νοουμένων αὐτῶν ἐν ἐπιπέδῳ δυνατὸν ἀπὸ τοῦ σημείου ἐπὶ τὴν εὐθεῖαν κάθετον ἀγαγεῖν | ||
ΨΧ καὶ ἡ ΒΓ τέμνουσιν ἀλλήλας , ἐν ἑνί εἰσιν ἐπιπέδῳ διὰ τὸ δεύτερον τοῦ ιαʹ : ἐν δὲ τῷ |
περιχώρῳ εὑρεθήσεται , καὶ θᾶττον εἰ ἐν τῷ ὑπὲρ γῆν ἡμισφαιρίῳ τύχῃ ὥσπερ βραδύτερον εἰ ἐν τῷ ὑπὸ γῆν . | ||
τοῖς λαιοῖς , καὶ ἡ Σελήνη δὲ ἐν τῷ βορείῳ ἡμισφαιρίῳ τὰ δεξιά : ἀνερχομένη γὰρ τὰ βόρεια σημαίνει ἕως |
ὡρῶν ἰσημερινῶν ἐστι τρισκαίδεκα καὶ ἡμιωρίου , ἐν δὲ τῷ ἀρκτικῷ φαίνεται καὶ ἡ μεγάλη ἄρκτος ὅλη σχεδόν τι πλὴν | ||
Πωγωνίαι μετὰ τῶν ἄλλων ἐκτὸς τοῦ ζῳδιακοῦ συνίστανται ἐν τῷ ἀρκτικῷ μέρει . Περὶ δὲ τὰς κατὰ μέρος τῶν ἐπισημασιῶν |
καὶ διὰ τοῦ π , καὶ ὁ αὐτὸς ἔσται τῷ εζηκ ἐπικύκλῳ . γεγράφθω οὖν ὁ πρχ : ἐπεὶ οὖν | ||
ἐπὶ τὰ αὐτὰ τούτῳ φερόμενος ὁμοίως τεταρτημοριαίαν ἐνηνέχθω περιφέρειαν τοῦ εζηκ τὴν εζ : ἔσται οὖν ἐπὶ τοῦ π , |
ἐπεζεύχθω ἡ ΗΘ . καὶ ἐπεί , ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ τῶν πόλων αὐτοῦ ἀγομένη εὐθεῖα | ||
κύκλον ἐγγραφομένων . ὅπερ ἔδει δεῖξαι . Δωδεκάεδρον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν , ᾗ καὶ τὰ προειρημένα σχήματα , καὶ |
μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ ὀξύ , τῷ δὲ | ||
, ὁ χρόνος ἐστίν , ἐν ᾧ προανατέλλει τῷ ΑΔΓ ὁρίζοντι , ὁ δὲ χρόνος , ἐν ᾧ τὴν ΛΒ |
κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ | ||
γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ |
ἐπὶ τὸ εʹ παραγενόμενος τὴν ἑῴαν ἀνατολὴν ποιεῖ τῷ δʹ ἄστρῳ καὶ διὰ ἡμερῶν τριάκοντα : ἑνὸς γὰρ ζῳδίου δίεισιν | ||
τι τῶν ἀπλανῶν ἀνατελλέτω τὸ δʹ : τῷ ἄρα δʹ ἄστρῳ ἀληθινή ἐστιν ἑῴα ἐπιτολή : λέγω ὅτι τοῦ δʹ |
ὑποτείνουσα κε . [ καὶ ] γίνεται ὁ ἐν τῷ ἐμβαδῷ μετὰ βας τῶν ὀρθῶν ΔΥ πδ ʂ ζ . | ||
περιμέτρῳ αὐτοῦ ᾖ κύβος , προσλαβὼν δὲ τὸν ἐν τῷ ἐμβαδῷ αὐτοῦ , ποιῇ τετράγωνον . Πρότερον δεῖ ἐπισκέψασθαι : |
σημείῳ τότε τὴν σελήνην γινομένην ἐν τῷ δι ' Ἀλεξανδρείας παραλλήλῳ , καθ ' ὃν ἐποιούμεθα τὰς τηρήσεις , τὴν | ||
οὕτως ἐστὶν τὸ ἀπὸ ΑΔ πρὸς τὸ ἀπὸ ΘΚ ἐν παραλλήλῳ : ὁ ἄρα μοναχὸς καὶ μέγιστος λόγος ἐστὶν ὁ |
μὲν καλεῖ πλευράν , παράλληλον δ ' οὐ λέγει τῇ βορείῳ . δῆλον δ ' ὅτι οὐδ ' ὁ Εὐφράτης | ||
νότιον μὲν λέγων , παράλληλον δ ' οὐ λέγων τῷ βορείῳ τὸ νότιον . τὴν δὲ διαφωνίαν τοῦ μήκους φησὶ |
, πρὸς τοὺς περιγραφομένους περὶ τὴν ἕλικα τομέας ὁμοταγεῖς τῷ ΟΘΝ , οὕτως πάντες οἱ ἐν τῷ ΑΖΓ τομεῖς οἱ | ||
ἐν τούτῳ καὶ τὸ Θ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΘΝ περιφέρειαν διελθὸν ἐπὶ τὸ Ν παραγίγνεται . Ὁμοία ἄρα |
οδ # δʹ με ὁ τούτων πρὸς δυσμὰς ἐν τῇ παρούρῳ ἐπιστροφῇ . . . . . Παρθένου ιβ # | ||
. . Ἰχθύων κε νο κ γʹ τῶν πρὸς τῷ παρούρῳ β ὁ ἑπόμενος . . . . . . |
ποιεῖν ἢ νοεῖν κἀκεῖνο θεωρεῖνκαὶ ἐν τῇ νοήσει οὐκ ἔστιν ἐμπεριεχόμενον τὸ ἐνενοήκειν , ἀλλ ' ὕστερον ἄν τις τοῦτ | ||
δὲ δὴ λέγειν , ὅτι ἡ φύσις τῶν πραγμάτων οἶδεν ἐμπεριεχόμενον τὸ πανηγυρικὸν , καὶ μάλιστα ἐν οἷς τὸν περὶ |
τὴν αʹ μοῖραν τῶν Χηλῶν . δύνοντος ἄρα αὐτοῦ δεῖ μεσουρανεῖν ὡς κατὰ παράλληλον κύκλον μέσην τὴν κδʹ μοῖραν τοῦ | ||
ἡμισφαιρίῳ , τὸ δὲ ἑξῆς ἀνατέλλεν , τὸ δὲ τελευταῖον μεσουρανεῖν ἐν τῷ ὑπὸ γῆς ἡμισφαιρίῳ , οἷον Αἰγόκερω δύνοντος |
ΑΓ . καὶ ἐπεὶ τὸ ΑΒΓ ὀρθογώνιόν ἐστιν , ἐν ἡμικυκλίῳ ἄρα ἐστίν , οὗ διάμετρος ἡ ΑΓ : περιγραφὲν | ||
ὥστε καὶ ἡ πρὸς τῷ Ε ὀρθή ἐστιν : ἐν ἡμικυκλίῳ ἄρα ἐστίν : διάμετρος ἄρα ἐστὶν ἡ ΑΘ . |
Μαίης ὠκὺν γόνον εἰσορόωντες παίδων τέκμαρ ἔχουσιν ἐτήτυμον . ἐν τροπικῷ δέ ζῴῳ μηδέ νυ Κύπρις ἔοι τότε μηδὲ Σελήνη | ||
ὅτι οἱ δύο πόλοι τοῦ ὁρίζοντος οὐκ εἰσὶν ἐν τῷ τροπικῷ , ἤτοι τῷ θερινῷ ἢ τῷ χειμερινῷ : οὐ |
ὑπὸ ΔΓΗ τῇ ὑπὸ ΔΖΗ : ἐν γὰρ τῷ αὐτῷ τμήματι τοῦ κύκλου εἰσίν . ἡ δὲ ὑπὸ ΔΖΗ ἐδείχθη | ||
ὑπὸ ΘΑΓ ἴση ἐστὶ τῇ ἐν τῷ ἐναλλὰξ τοῦ κύκλου τμήματι γωνίᾳ τῇ ὑπὸ ΑΒΓ . ἀλλ ' ἡ ὑπὸ |
τῆς σελήνης δακτύλων ιβ ὑποτιθεμένης , ἴσοι δὲ γίνονται ἐν περιγείῳ τοῖς τῆς ὑπεροχῆς ἑξηκοστοῖς . Νενοήσθω οὖν ὁ μὲν | ||
τῷ ἀπογείῳ ἀπολαμβανομένην ὑπολειπτικὴν εὑρήσομεν , τὴν δὲ πρὸς τῷ περιγείῳ προηγητικήν . ἀπειλήφθω γὰρ πρὸς τῷ ἀπογείῳ πρῶτον τυχοῦσα |
: ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
τούτους ἕκαστον τῶν πλουσίων ἐγγράψαντα ἐς χαλκῆν στήλην ἔχειν ἐν μεσαιτάτῳ τῆς αὐλῆς , καὶ ἀναγινωσκέτω . δεῖ δὲ εἰδέναι | ||
, τὸν δὲ βασιλέα ἐν τῷ ἀσφαλεστάτῳ , τουτέστι τῷ μεσαιτάτῳ , κατασκηνοῦν , δείκνυσιν ἐν τῷ τοὺς μὲν γενναιοτάτους |
τὸν ἰσημερινὸν οἰκήσεως : αὕτη δέ ἐστιν ἐν μέσῃ τῇ διακεκαυμένῃ ζώνῃ . Καί φησιν οἰκεῖσθαι τοὺς τόπους καὶ εὐκρατοτέραν | ||
τε καὶ φωτισμῶν τοῦ ἀέρος . Ἐν μὲν γὰρ τῇ διακεκαυμένῃ ἴσαι διὰ παντὸς αἱ νύκτες ταῖς ἡμέραις , ἐν |
περιτιθέσθω τῷ πήχει πλησίον τοῦ καρποῦ , οὗ αἱ ἀρχαὶ ἀναγέσθωσαν καὶ ἀποδεδέσθωσαν ἑνὶ κλιμακίῳ πρὸς κράτημα , ἵνα μείνῃ | ||
περιειλημένη τῷ περινέῳ προστιθέσθω : αἱ δὲ τοῦ κάλου ἀρχαὶ ἀναγέσθωσαν ὑπὲρ κεφαλῆς . ἐπὶ μὲν οὖν τῆς ἔξω καὶ |
Καὶ αὗταί εἰσιν αἱ τέσσαρες ἀρχαὶ τοῦ παρυφισταμένου ἐν τῷ διαγράμματι : ἐπεὶ δὲ τὸ παρυφιστάμενον εἴπομεν ἔχειν τόπους τρεῖς | ||
κεῖνται καὶ οὐκέτι αἱ ἀντιφάσεις χωρὶς ὡς ἐν τῷ α διαγράμματι . ἐν οἷς ἐστι καὶ δεύτερον διάγραμμα . ἀπορεῖ |
πλατυνομένης , καὶ τοῦ μὲν μήκους ἐπὶ παραλλήλου τινὸς τῷ ἰσημερινῷ γραφομένου , τοῦ δὲ πλάτους ἐπὶ μεσημβρινοῦ , δεῖ | ||
ἡμέραν , μείζονα μέντοι τῆς νυκτός , μέχρι πελάσῃ τῷ ἰσημερινῷ , διαμένουσαν . Ἐπὰν δὲ τούτου ἐφαψάμενος φθινοπωρινὴν ἰσημερίαν |
ληγούσης ἐφαίνετο ἐπ ' εὐθείας τῷ τε μέσῳ καὶ τῷ νοτίῳ τῶν ἐν τῷ μετώπῳ τοῦ Σκορπίου ἡ νότιος κεραία | ||
ἐν ταῖς χηλαῖς τοῦ Σκορπίου λαμπρῶν τὸν ἐν ἄκρᾳ τῇ νοτίῳ Τιμόχαρις μὲν ἀναγράφει νοτιώτερον τοῦ ἰσημερινοῦ μοίραις ε , |
δʹ τὸ μʹ δύνει , ἅμα δὲ ἀνατέλλει , ὥστε συνδύσεται τῶν ἡγουμένων τινὶ τοῦ δʹ . Συνδυνέτω τῷ ξʹ | ||
ἀνατέλλοντος ὁ ἥλιος ὢν πρὸς τῷ αʹ δύσεται : καὶ συνδύσεται τῷ ἡλίῳ τὸ αʹ ἄστρον καὶ ἔσται τοῦ αʹ |
ὑπολειπόμενος τοῦ μεσημβρινοῦ : ἔσχατος δὲ μεσουρανεῖ τοῦ ἐν τῷ Κήτει τετραπλεύρου ὁ νοτιώτερος τῶν ἑπομένων λαμπρῶν , καὶ ὁ | ||
μέσος τῶν ἐν τῇ κεφαλῇ , καὶ τοῦ ἐν τᾷ Κήτει τετραπλεύρου ὁ νοτιώτερος τῶν ἑπομένων . Δύνει δὲ ὁ |
ἑνός . Ἆρ ' οὖν ταὐτόν ἐστι τῷ ἡνωμένῳ καὶ γνωστῷ εἶναι ; ἀλλ ' οὕτω γε οὐκ ἂν αὐτόθεν | ||
δ ' οὖν ἐμοὶ φαινόμενα οὕτω φαίνεται , ἐν τῷ γνωστῷ τελευταία ἡ τοῦ ἀγαθοῦ ἰδέα καὶ μόγις ὁρᾶσθαι , |
, καὶ τοῦ Κήτους ὁ νοτιώτερος τῶν ἡγουμένων ἐν τῷ τετραπλεύρῳ . Ἀνατέλλει δὲ ὁ Προκύων ἐν τρίτῳ μέρει ὥρας | ||
ἀριστερὸς πούς , ἔσχατος δὲ τοῦ Κήτους τῶν ἐν τῷ τετραπλεύρῳ ὁ βορειότερος τῶν ἡγουμένων . Ἀνατέλλει δὲ ὁ Λαγωὸς |
ἔσχατος ἀνατέλλει , τῇ βʹ καὶ κʹ μοίρᾳ τοῦ Τοξότου συναναφέρεται . Τοῦ δὲ Ὑδροχόου ἀρχομένου ἀνατέλλειν φησὶ συνανατεταλκέναι τῷ | ||
ιθ ιβ : καὶ μόνον ἄρα τὸ τοῦ Ταύρου δωδεκατημόριον συναναφέρεται χρόνοις κβ μϚ . διὰ τὰ αὐτὰ δὲ πάλιν |
. * χλοάοντος : γράφεται καὶ κλώθοντος * κλώθοντος : στρεφομένου καὶ ἠρτημένου ἐν ἀρπέζαισιν ἐρίνου : ἐρινεὸν Ἀθηναῖοι ὀνομάζουσιν | ||
πῆχυς πρὸς τὴν σπάθην τῆς χειρὸς κεκαμμένης , ὅτε λοιπὸν στρεφομένου τοῦ ἐν τοῖς σκέλεσιν ἄξονος ὑπὸ τοῦ κάλου καθελκομένη |
μὲν δοκεῖ πρὸς τὰ ἐν τῷ Σοφιστῇ καὶ πρὸς τῷ πέρατι τοῦ πέμπτου τῆς Πολιτείας περὶ τοῦ μὴ εἶναι δοξαστὸν | ||
γόνυ κνήμης ἔγγιον . προσομιλεῖ γὰρ ἀεὶ τὸ γόνυ τῷ πέρατι τῆς κνήμης καὶ σύνεστιν αὐτῷ φιλίως . εἰ δὴ |
τοῦ γάμου τὴν συναφὴν ποιῆται ἡ Σελήνη ἐφεστώσης ἐπὶ τοῦ γαμικοῦ τῆς Ἀφροδίτης συνελεύσεται καὶ κοινωνήσει φιλίας τῷ ἀγορασθέντι ἢ | ||
τοῦ γάμου τὴν συναφὴν ποιοῖτο ἡ Σελήνη ἐφεστώσης ἐπὶ τοῦ γαμικοῦ τῆς Ἀφροδίτης καὶ συνελεύσεσθαι καὶ κοινωνῆσαι φιλίας τῷ ἀγορασθέντι |
ὀρθὰς ἔχει , ἀλλὰ ταὐτὸν ὑπόκειται τριγώνῳ τε εἶναι καὶ σκαληνῷ . εἰ δὲ μὴ ταὐτὸν ἀλλ ' ἕτερον , | ||
ἡ ὑπὸ ΑΓΒ τῆς ὑπὸ ΓΔΒ . Ἐὰν ἐν κώνῳ σκαληνῷ τμηθέντι διὰ τῆς κορυφῆς ἐπιπέδοις τισὶν ἐπὶ παραλλήλων βάσεων |
ταῖς Ϛʹ τοῦ Τοξότου παράκειται Καρκίνος : ἐν Καρκίνῳ τῷ ὡροσκοποῦντι εὗρον περὶ τὴν αὐτὴν Ϛʹ μοῖραν . ὁμοίως ταῖς | ||
ἐν Καρκίνῳ Ϛʹ παράκειται Παρθένος . Παρθένον ἐν Καρκίνῳ τῷ ὡροσκοποῦντι εὗρον περὶ μοίρας κʹ : τὰ μεταξὺ σελίδια εʹ |
γὰρ καθόλου ἀκίνητα καὶ ἀίδια : [ καὶ ] ἐν ταυτότητι γὰρ ἀεὶ ὑπάρχουσιν . ἄλλως τε δὴ καὶ σύ | ||
μόνον , οὐχ ἑαυτῇ , ἀλλ ' ἑτερότητι ἕτερον καὶ ταυτότητι ταὐτόν . Οὐδὲ δὴ ἡ στέρησις ποιότης οὐδὲ ποιόν |
, καὶ ἡνωμένη πάσχει τι ὅμως διακρινόμενον , τῷ μὲν ἡνωμένῳ καὶ μένοντι τὸ ὅλον οὖσα , τῷ δὲ διακρινομένῳ | ||
τόδε καὶ τοδί , ἀλλ ' ὡς ἐν τῷ πάντη ἡνωμένῳ τὸ πληθοειδὲς ἐμφαντάζεται διὰ τὴν ἁπλότητα τοῦ πρώτου μικτοῦ |
ὅλῃ τῇ εγζʹ ἐστὶν ἴση : ἡμικύκλιον δέ ἐστιν τὸ αεγʹ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ εγζʹ . Καὶ | ||
τὸ εγζʹ ἡμικύκλιον ἐν ἡμίσει ἐνιαυτοῦ , ἐπειδήπερ καὶ τὸ αεγʹ : τῷ ἄρα αʹ ἄστρῳ ἀπὸ ἑῴας φαινομένης ἐπιτολῆς |
ΚΞ τεταρτημόρια ἀλλήλοις . ὅσαι ἄρα εἰσὶν ἐν τῷ ΒΕ τεταρτημορίῳ πλευραὶ τοῦ πολυγώνου , τοσαῦταί εἰσι καὶ ἐν τοῖς | ||
ἕκαστον τῆς γῆς τόπον τῶν ἐν τῷ καθ ' ἡμᾶς τεταρτημορίῳ τεταγμένων , λέγω δὲ τῶν ἀπὸ τοῦ ἰσημερινοῦ μέχρι |
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
τι σῶμα ὅμοιον ἀεὶ διὰ παντὸς φαίνεται ἡμῖν ἐν τῇ σελήνῃ . τί δὲ καὶ τὸ συνεχὲς τοῦ σώματος τούτου | ||
, πάντα δὲ ἀέρα ἀνιπταμένη , συνθέουσα ἡλίῳ , συμπεριφερομένη σελήνῃ , συνδεδεμένη τῷ τῶν ἄλλων ἄστρων χορῷ , καὶ |
. ἀλλ ' ἴσως ὁ Ἀριστοτέλης μετὰ τὸ ἐπισημήνασθαι τῇ ἀταξίᾳ τῆς ἐξ ἀρχῆς γενομένης ἐκθέσεως τῶν τοῦ ἀναγκαίου προτάσεων | ||
ἐξηγησαμένους . ἐν τούτῳ δὴ τῷ θορύβῳ τε καὶ τῇ ἀταξίᾳ ἐπιθεμένους αὐτοῖς τοὺς βαρβάρους κατακόψαι πάντας , ὥστε ἱππέας |
οὐ γὰρ ὅσα συμβέβηκε τῷ ἁπλῷ ταῦτα ἀνάγκη καὶ τῷ συνθέτῳ ὑπάρχειν : οὐ γάρ εἰσι ταυτά : εἰ μὲν | ||
. εἰκότως δὲ τοῦτο : ὑπάρχει γὰρ οὐ μόνον τῇ συνθέτῳ , ἀλλὰ καὶ τῇ ἁπλῇ , τοῦτ ' ἔστι |
ἐκπέσῃ , ἐμβληθεῖσα μένει , οἱ μόνον αὐτῇ τῇ τριβῇ προσχρώμενοι , θεωροῦντες ἐκ τοῦ ἀνὰ λόγον ἐμβαλλόμενα καὶ μένοντα | ||
εἰσι πᾶσαι . Ἐπεὶ δὲ μέλλομεν τῇ εἰς ἀδύνατον ἀπαγωγῇ προσχρώμενοι δεικνύναι συλλογιστικὴν οὖσαν συζυγίαν τὴν ἐξ ὑπαρχούσης τῆς μείζονος |
τε ἐπὶ τῆς θαλάσσης δέῃ ταλαιπωρεῖν : ἀλλ ' ἐν ἐλάσσονι δυνάμει προσφερές τι τοῖς θεοῖς γένος ἐσμέν , εἴτε | ||
λόγῳ ἐστὶν ἢ ὃν ἔχει Μρκε͵θψιβ πρὸς Μζ͵θφζ , ἐν ἐλάσσονι δὲ ἢ ὃν Μκα͵Ϛ πρὸς ͵Ϛωνθ . Ἔστω γὰρ |
ἀνατελλέτω , πρότερον δὲ δυνέτω : τῶν ἄρα προηγουμένων τινὶ συνδύνει . Συνδυνέτω τῷ ζʹ : ἡ ἄρα ζδʹ περιφέρεια | ||
τὴν ΛΕ περιφέρειαν διαπορεύεται . Καὶ συνανατέλλει τῷ Ε : συνδύνει ἄρα τῷ Λ : ὥστε ἡ πρὸ τῆς Ε |
. γίνεται δὲ ἐν ὀστρείῳ τινὶ παραπλησίῳ ταῖς πίνναις πλὴν ἐλάττονι : μέγεθος δὲ ἡλίκον ἰχθύος ὀφθαλμὸς εὐμεγέθης , φέρει | ||
τῷ ΚΟΛ [ ] τμήματι γωνία : ἡ γὰρ ἐν ἐλάττονι τμήματι γωνία . . μείζων : ἡ δὲ πρὸς |
ἐξ ὕδατος Πηγάσῳ ἀναφερομένῳ τῇ κινήσει τοῦ οὐρανοῦ καὶ τῇ ἡλιακῇ ἀνιμήσει ἐποχουμένη συναναφέρεται ἡ Ἡμέρα : σφαιροειδὴς γάρ ἐστιν | ||
οἷόν ποτε μέρος ἢ θέσιν στῇ τὸ Γ σημεῖον τῇ ἡλιακῇ ἀκτῖνι , διὰ τοῦ ἐπιπέδου ἐσόπτρου ἡ ἀνάκλασις ἐπ |
δὲ τὸ ἡγεμονικὸν ὥσπερ ἐν κόσμῳ κατοικεῖ ἐν τῇ ἡμετέρᾳ σφαιροειδεῖ κεφαλῇ . Ἐμπεδοκλῆς τὴν πρώτην ἀναπνοὴν τοῦ πρώτου ζῴου | ||
οὐρανοὺς θεοὺς εἶναι νομίζει . Δημόκριτος δὲ νοῦν ἐν πυρὶ σφαιροειδεῖ τὴν τοῦ κόσμου ψυχὴν ὑπολαμβάνει . Πυθαγόρας δὲ τῶν |
, ὥστε παραλλάξει τυχούσῃ ἅμα ἓξ ζῴδια καὶ δύσεται καὶ ἀνατελεῖ . Τοῖς ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν ὁ μεσημβρινὸς δίχα | ||
πρὸς τῷ Ε οἰκοῦσι πάντα τὰ ἄστρα καὶ δύσεται καὶ ἀνατελεῖ καὶ τὸν ἴσον χρόνον ἐνεχθήσεται ὑπέρ τε τὸν ὁρίζοντα |
φορὰ καὶ τῶν ἐν αὐτῷ ὄντων ἁπάντων νοῦ κινήσει καὶ περιφορᾷ καὶ λογισμοῖς ὁμοίαν φύσιν ἔχει καὶ συγγενῶς ἔρχεται , | ||
κέντρου τάξιν ἐπέχει πρὸς τὸν κόσμον . Ἐν μιᾷ κόσμου περιφορᾷ ὁ μὲν διὰ τῶν πόλων τῆς σφαίρας κύκλος δὶς |
διὰ τῶν ἐπιπέδων εὑρεῖν ἔστιν εὐθεῖαν ἴσην τῇ τοῦ κύκλου περιφερείᾳ χρησάμενον τοῖς ἐπὶ τῆς ἕλικος εἰρημένοις θεωρήμασιν . Σοφίας | ||
πάλιν , ἐπεὶ ὁμοία ἐστὶν ἡ ΘΗ περιφέρεια τῇ ΠΝ περιφερείᾳ , ἐν ᾧ ἄρα χρόνῳ τὸ Θ ἐπὶ τὸ |
, καὶ εὐθὺς ὁρᾷ , ὅτι ἂν τεθῇ ἐν τῷ διαφανεῖ , τὰ δὲ μαλακόφθαλμα ἀντὶ παντὸς φυλακτηρίου προβάλλει τὰ | ||
πάσης νομιζομένης ἠμοίρησε διαφανείας τῇ πρὸς τὰ λευκὰ ἐπιτεταμένως ὄντα διαφανεῖ ἀντιθέσει : τῷ γεωδεστέρας μᾶλλον κεκοινωνηκέναι φύσεως , εἰκότως |
καὶ πρῶτον μὲν καὶ προηγουμένως ἐκ τοῦ ὄντος ἐν τῇ δύσει ἀστέρος , εἰ δὲ μηδένα ἔχει τὸ δῦνον ἐκ | ||
τε καὶ δόξῃ . εἰ δὲ νυκτὶ γενήσεται , τῇ δύσει φέρει μάχας . Τετέλεσται τὸ ζῴδιον , Ἰχθύων δὲ |
δὲ τῆς τοῦ Ἄρεως σφαίρας νοείσθω κατὰ τὰ αὐτὰ κύκλος ὁμόκεντρος τῷ ζῳδιακῷ φερόμενος ἐν τῷ ἐπιπέδῳ αὐτοῦ καὶ περὶ | ||
τξ καλείσθω τὰ τμήματα ἰδίως χρόνοι . ἔπειτα ἕτερος κύκλος ὁμόκεντρος αὐτῷ περιφερέσθω ἐν τῷ αὐτῷ ἐπιπέδῳ καὶ περὶ τὸ |
Πάτερ , ἤθελα κἀγὼ ἀναπαῆναι μεθ ' ὑμῶν ἐν τῷ τρικλίνῳ τούτῳ , ἵνα ἀκούσω κἀγὼ τὰ διαλεγόμενα ὑμῶν : | ||
Ἁβραὰμ ἔδωκεν δόξαν τῷ θεῷ . καὶ ἀνελθὼν ἐν τῷ τρικλίνῳ αὐτοῦ , ἀνέπεσεν : ἐλθὼν δὲ καὶ ὁ θάνατος |
μοίρᾳ , τόδ ' αὐτὸ καὶ ἐπὶ τῶν ἄλλων ζωδίων νοείσθω , ὡς θέμις , συγκρίνοντός μου ἢ ὡροσκοποῦντος ♌ | ||
δὲ τῆς ὁμαλῆς τοῦ ἐπικύκλου κινήσεως τὸ Β , καὶ νοείσθω πρῶτον ἐπ ' αὐτοῦ τοῦ ἀπογείου τὸ κέντρον τοῦ |
μὲν ἀρχέτυπον , πῦρ ἐν τῷ ἑτέρῳ ἡμισφαιρίῳ τοῦ κόσμου πεπληρωκὸς τὸ ἡμισφαίριον , ἀεὶ καταντικρὺ τῇ ἀνταυγείᾳ ἑαυτοῦ τεταγμένον | ||
οὐκ ἔστιν ὅπως ἀπολείπεται ἑαυτοῦ , ἀλλ ' ἔστι τε πεπληρωκὸς ἑαυτὸ καὶ ὂν ἴσον ἑαυτῷ : καὶ οὗ τὸ |
ἐν ᾧ ὁ ἥλιος τὴν ΖΘ περιφέρειαν διαπορεύεται . Καὶ συνανατέλλει τῷ Ζ : συνδύνει ἄρα τῷ Θ : ὥστε | ||
φησιν ἀνατέλλειν . . . . . . , Βορρόθεν συνανατέλλει τὰ λειπόμενα τῆς Ἀνδρομέδας καὶ τὰ λοιπὰ τοῦ Περσέως |
δὴ εἰς ἑτέραν σφαῖραν τῷ ἐν τῇ ΒΓΔ σφαίρᾳ στερεῷ πολυέδρῳ ὅμοιον στερεὸν πολύεδρον ἐγγράψωμεν , ἔσται ἑκάστη τῶν πυραμίδων | ||
Α σφαίρας ἐπιφάνεια μείζων ἐστὶν τῆς ἐπιφανείας τῆς ἐγγεγραμμένης τῷ πολυέδρῳ σφαίρας : καὶ ἡ ἐκ τοῦ κέντρου ἄρα τῆς |
τοὺς ἰδίους ἀριθμοὺς τὰς συναλοιφὰς ἀναδέχονται ; ἔστω δὲ ἐν ὑποδείγματι τὸ ἔργον τοὖργον , τὰ ἔργα τἆργα . καὶ | ||
πάλιν τὰς μακροτέρας τε καὶ ὑψηλοτέρας : οἷον ὡς ἐν ὑποδείγματι ἔστωσαν τρία μεγέθη ἀλλήλων ἀπέχοντα ἱκανὸν διάστημα τὰ ΒΓ |
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
. πελώρια : μεγάλα , πέλας ὄρη ὄντα ἢ πελάζοντα Ὠρίωνι , ἢ πελάζονται ὤρῃ καὶ φροντίδι πελώρια : μεγάλα | ||
καὶ ὡραίους ἄρνας ἐπὶ προθύροις . Μυριόπουν σκολόπενδραν ὑπ ' Ὠρίωνι κυκηθεὶς πόντος Ἰαπύγων ἔβρας ' ἐπὶ σκοπέλους : καὶ |
καὶ ἀδυνάτου ὥρισται : καθόλου γὰρ ὧν ἀντιφάσεων θάτερα μόρια συναληθεύει , τούτων καὶ τὰ λοιπὰ συναληθεύει . ἔστωσαν γὰρ | ||
τῷ α . οὐκοῦν εἰ ὁ λέγων ἔστιν ἄνθρωπος καλός συναληθεύει τῷ λέγοντι ἔστιν ἄνθρωπος οὐ καλός [ συναληθεύει τῷ |
ὑπ ' ἐμοῦ . . χειρωναξία ] βάναυσος τέχνη . ἁπλῷ λόγῳ ] ἐν ἀληθεῖ λόγῳ , ἢ ἐν συντόμῳ | ||
γὰρ γίνεται ψυχόμενον . Καὶ τὸ βαλάνινον δὲ παραπληϲίωϲ τῷ ἁπλῷ ἀμυγδαλίνῳ γίνεται ἀπὸ τῶν ἐν ταῖϲ δρυϲὶ βαλάνων . |
περίθεσιν τῆς καιρίας αἱ τοῦ βρόχου ἀρχαὶ ἀγέσθωσαν κάτω καὶ ἀποδιδόσθωσαν κατ ' εὐθὺ τῷ τύλῳ τοῦ ἄξονος , εἶτα | ||
αἱ τοῦ βρόχου ἀρχαὶ ἀγέσθωσαν καὶ ὑπὲρ κεφαλῆς ἀναφερέσθωσαν καὶ ἀποδιδόσθωσαν κρατήματι . ἄλλος δὲ βρόχος ἰσότονος ὡς καρχήσιος τῷ |
εἰς τὴν μασχάλην . βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω τῷ βραχίονι , οὗ αἱ ἀρχαὶ ἀγέσθωσαν πρὸς τὰς | ||
καὶ ἀποδεδέσθωσαν ἑνὶ κλιμακίῳ πρὸς κράτημα , τῷ δὲ βραχίονι περιτιθέσθω βρόχος ἰσότονος , οὗ αἱ ἀρχαὶ ἀναγέσθωσαν ὑπὲρ κεφαλῆς |
Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
καὶ δεξιός ἐστιν ὁ τόπος κατὰ τρίγωνον στάσιν τῷ μεσουρανοῦντι κέντρῳ . σημαίνει δὲ ὁ τόπος τὰ πρὸς ὑπηρεσίαν συντείνοντα | ||
ἔλλοπος δὲ τοῦ ἰχθύος τουτέστι τῆς τρυγόνος : τῷ γὰρ κέντρῳ αὐτῆς χρώμενος ἀντὶ δόρατος ὁ Τηλέγονος ἀνεῖλε τὸν πατέρα |
, ἐν ᾗ τὴν τροπὴν ἐποιήσατο πρὸς τῷ Ε , ἀνατελλέτω κατὰ τὸ Ζ , καὶ ἔστω , καθ ' | ||
τῆς ἀρχῆς τῶν Διδύμων ἔγγιστα χρόνων ἰσημερινῶν ιζ , καὶ ἀνατελλέτω πρῶτον ἡ ἀρχὴ τοῦ Κριοῦ , ἵνα μεσου - |
κέντρου τοῦ ἐκκέντρου β ∠ ʹ . πάλιν δὴ νοείσθω κυκλίσκος περὶ τὸ κέντρον τῆς ἐπικύκλου σφαίρας ἐν τῷ τοῦ | ||
ξʹ α . πάλιν καὶ ἐν τῇ ἐπικύκλῳ σφαίρᾳ νοείσθω κυκλίσκος περὶ τὸ κέντρον αὐτῆς ἐν τῷ τοῦ λοξοῦ κύκλου |
ἐπὶ τῆς δύσεως ἔστω πρὸς μεσημβρίαν τὸ εʹ , καὶ συνδυνέτω τῷ γʹ : τῶν ἄρα ἑπομένων τινὶ τῷ γʹ | ||
ἔστω ἐπὶ τῆς δύσεως πρὸς μεσημβρίαν τὸ εʹ , καὶ συνδυνέτω τῷ γʹ , συνανατελλέτω δὲ τῶν ἑπομένων τινὶ τῷ |
μετὰ συναμφοτέρου ποιεῖν Μο η . τὸ δὴ ἐν τῇ ἀορίστῳ τοιοῦτόν ἐστιν , ἵνα τὸν ʂ , ὅσων ἄν | ||
, ἂν μή τι προστεθῇ : ἐὰν γὰρ ἢ τῷ ἀορίστῳ ὀνόματι ῥῆμά τι προσθῶμεν , ἢ τῷ κατὰ τὸ |
τομή ἐστι κυλίνδρου , οἵα καὶ ἐν τῷ πρὸ τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν | ||
τὰς ἀποδείξεις ποιοῦνται , ὡς γεωμετρία ἀποδείκνυσιν ἐν τῷ πρώτῳ θεωρήματι καὶ δευτέρῳ καὶ τοῖς ἐφεξῆς , ἢ ἀναγκαιότερον , |
λεῖα ποιείσθωσαν : πρόσμισγε μέλιτος ὀλίγον , ἐπὶ ἀνδρῶν ἐν ὁλκῇ ὀβολοὺς γʹ , παιδίοις δὲ ὀβολοὺς βʹ . χρῶ | ||
ἀνομοίας τῆς ἀνθολκῆς τῶν ἀντιρροπούντων ἀντικειμένης τῇ τοιαύτῃ διὰ παντὸς ὁλκῇ . προδήλου δὴ τῆς αἰτίας ὑπαρχούσης εὔγνωστον , ὡς |
ἐπὶ γραμμῇσι , Γάδειρά τε καὶ στόμα Νείλου , ἔνθα βορειότατος πέλεται μυχὸς Αἰγύπτοιο καὶ τέμενος περίπυστον Ἀμυκλαίοιο Κανώβου : | ||
ιʹ μοίρας μέσης . καὶ πρῶτος μὲν ἀστὴρ ἀνατέλλει ὁ βορειότατος τῶν ἐν τῇ δεξιᾷ πτέρυγι ἔσχατος δὲ ὁ νοτιώτατος |
ἐπίπνοιαι καὶ ἀντικόψεις . Αἱ δ ' ἐπ ' Ὠρίωνος ἀνατολῇ καὶ δύσει τῶν πνευμάτων ἀκρισίαι συμβαίνουσιν ὅτι ἐν μεταβολαῖς | ||
ἡ δὲ Σελήνη τυχοῦσα μετὰ Κρόνου ἐν τῇ τοῦ Κυνὸς ἀνατολῇ σημαίνει ᾗ προσοικείωται χώρᾳ τὸ ζῴδιον ἐφ ' οὗ |
. δειρῇ : ἀντὶ τοῦ ἐν νιφοέσσῃ δειρῇ ἐν νιφοέσσῃ ἐξοχῇ * κιχών : εὑρών * ἐφράσσατο : ἐνόησεν ἀμαρακόεσσα | ||
καὶ οἷον κονδυλώδη τῶν ὑποκειμένων ὀστῶν περιλαμβάνον ἐπιτηδείαις κοιλότησιν , ἐξοχῇ δέ τινι βραχείᾳ τὴν μηροῦ τε καὶ κνήμης εὐρυχωρίαν |
ἵμερον ἀστράπτεσκεν . ἶσά τ ' ἐπ ' ἀλλήλοισι κέρα ἀνέτελλε καρήνου ἄντυγος ἡμιτόμου κεραῆς ἅτε κύκλα σελήνης . ἤλυθε | ||
πάντα τὰ δωδεκατημόρια τοῦ ζῳδιακοῦ ἴσα ὄντα ἐν ἴσῳ καὶ ἀνέτελλε χρόνῳ , συνέβαινεν ἂν καὶ τὰ νυχθήμερα πάντα ἴσα |
τοῖς ἀρίστοις : Πρίαμον δὲ τὸν βασιλέα τῆς Ἀσίας ἐν ἐσχάτῳ γήρᾳ κατατρωθέντα παρὰ τὸν τοῦ Διὸς βωμόν , ἀφ | ||
προφανῆ δέ σοι καὶ τὴν ὄψιν αὐτοῦ θήσομεν ἐπ ' ἐσχάτῳ σχηματογραφήσαντες . . λοιπὸν ἡμῖν λείπεται περὶ τοῦ ἀναλώματος |
φακῷ : ἔξωθεν δὲ περικέχυται τούτῳ τὸ ὠοειδὲϲ ὑγρόν : προϲέοικε γὰρ τῇ χρόᾳ καὶ τῇ ϲυϲτάϲει τῷ ἐν τοῖϲ | ||
κρυϲταλλοειδὲϲ ὑγρόν , ὃ καὶ διϲκοειδὲϲ καὶ φακοειδὲϲ καλεῖται : προϲέοικε γὰρ τῇ μὲν χρόᾳ κρυϲτάλλῳ , τῷ δὲ ϲχήματι |
τέσσαρσι τῆς οἰκουμένης μέρεσι , βορείῳ λέγω καὶ νοτίῳ καὶ ἑσπερίῳ καὶ ἑώῳ . Εἶτα γραμμῇ διελόντες τὴν ὅλην οἰκουμένην | ||
, νηπίη , ἥ ῥ ' ἐπίθησεν ὀιζυρῷ περ Ὀνείρῳ ἑσπερίῳ , ὃς φῦλα πολυτλήτων ἀνθρώπων θέλγει ἐνὶ λεχέεσσιν ἄδην |
ἐν νυκτί . ἐπισημαίνεται δὲ τοῦτο Ἄρατος λέγων ἓξ αἰεὶ δύνουσι δυωδεκάδες κύκλοιο : δυωδεκάδες γὰρ εἶπε τὰ δωδεκατημόρια τῶν | ||
δὲ , τὴν πρώτιστον δὲ ταύτης Ὑάδες σὺν τῷ Λαγωῷ δύνουσι πρὸς τὸν ὄρθρον , καὶ τὴν δευτέραν τὸ αὐτὸ |
καὶ ἐὰν αἴσθηται ὁ κάμνων βάρους καὶ ὀδύνης ἐν τῷ ὑπερκειμένῳ , γίνωσκε ὅτι ἐν τῇ δεξιᾷ κοιλίᾳ ἐστὶ τὸ | ||
, νώτῳ τε καὶ τῷ πρώτῳ αὐτοῦ σπονδύλῳ τῷ τε ὑπερκειμένῳ τοῦ ὤμου ἄρθρῳ . εἰ μέντοι ὅλου τοῦ σώματος |
: οὐδὲ γάρ , ὅτι ἐπὶ ταὐτοῦ μεσημβρινοῦ ἐστιν ἡ Θάψακος καὶ ἡ Βαβυλών . τἀναντία γὰρ αὐτὸς ὁ Ἵππαρχος | ||
: οὐ γὰρ ἐπὶ τοῦ αὐτοῦ παραλλήλου κεῖται ἥ τε Θάψακος καὶ ἡ τῆς Αἰγύπτου παραλία , ἀλλ ' ἐπὶ |
κατὰ τὴν ἀνατολικὴν πλευρὰν , καθ ' ἣν συνῆπται τῇ Βελγικῇ κατὰ τὸν Σηκοάναν ποταμὸν , ὡς εἶναι τοῦ μήκους | ||
Ἰάτινον κγʹ μζʹ ∠ ʹʹ Μεθ ' οὓς πρὸς τῇ Βελγικῇ Οὐαδικάσιοι καὶ πόλις Νοιόμαγος κδʹ γʹʹ μϚʹ ∠ ʹʹ |
ταύτῃ τὸ τοῦ αἰσθητοῦ ὁμοίωμα τελειωθέν , ἐν δὲ τῷ αἰσθητηρίῳ ἀτελὴς καὶ συμμιγὴς πάθει ἡ ἐνέργεια : καὶ τὸ | ||
τοῦ ὑποκειμένου αὐτῇ αἰσθητοῦ ἐστι γνωριστική , ὑπάρχουσα ἐν τῷ αἰσθητηρίῳ ᾗ αἰσθητήριον , καὶ κρίνει τὰς τοῦ ὑποκειμένου αἰσθητοῦ |
Εὐδόξῳ Λύρα ἑῷος δύνει : ἐπισημαίνει . Ἐν δὲ τῇ κθῃ Εὐδόξῳ ἐπισημαίνει . Καλλίππῳ Παρθένος ἐπιτέλλει : ἐπισημαίνει . | ||
ἐπιτέλλει . Εὐδόξῳ Ὠρίων ἄρχεται ἐπιτέλλειν . Ἐν δὲ τῇ κθῃ Δημοκρίτῳ ἄρχεται Ὠρίων ἐπιτέλλειν , καὶ φιλεῖ ἐπισημαίνειν ἐπ |
Κρόνου , νυκτὸς δὲ Ἑρμοῦ . κεῖται δὲ ἐν τῷ κλίματι τῷ τῆς Αἰγύπτου ἀπομεμερισμένον ἀνέμῳ Λιβί . κυριεύει δὲ | ||
πῆξιν τοῦ ἀναφορικοῦ : ὡς εἶναι ἐν μὲν τῷ πρώτῳ κλίματι ἀπὸ Καρκίνου ἕως Τοξότου ἀναφορὰς σιʹ , ἐν δὲ |
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
τοῦ ἄξονος παραλληλόγραμμον τὸ ΘΛ , ἔσται καὶ ἐν τῷ κυλίνδρῳ τομή , ἧς διάμετρός ἐστιν ἡ ΖΕ . ὁμοίως | ||
ἄρα ὁ ΑΒΖ κῶνος ἢ κύλινδρος τῷ ΓΔΘ κώνῳ ἢ κυλίνδρῳ : ὅπερ ἔδει δεῖξαι . Δύο κύκλων περὶ τὸ |
μέγιστον κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ | ||
, ΒΕΖ τρίγωνα ἴσα ἀλλήλοις ἐστίν . ἔστω τῷ ΑΗΓΔ κώνῳ ἰσοϋψὴς ὁ ΚΘΕΖ κῶνος . ἐπεὶ οὖν , ὡς |
περιτιθέσθω , οὗ αἱ ἀρχαὶ ἀγέσθωσαν κάτω καὶ ἀποδιδόσθωσαν τῷ τύλῳ τοῦ ἄξονος , ἵνα τῇ τούτου στροφῇ κράτημα γένηται | ||
ὄργανον μέσα τὰ διαπήγματα εἶχε τετρημένα στρογγύλοις τρήμασι καταλλήλοις τῷ τύλῳ τοῦ ἄξονος . δῆλον δ ' ὅτι τῶν τρημάτων |
ΑΕΖ , καὶ ἴσον ὁμοίως . Ἐὰν ἐν σκαληνῷ κώνῳ τμηθέντι διὰ τῆς κορυφῆς ἐπιπέδοις ἐπὶ παραλλήλων βάσεων ἰσοσκελῆ τρίγωνα | ||
αἰσχύνομαι εἰς ὄψιν ἐλθεῖν τοῦ ἰατροῦ . Σχολαστικῷ τὴν σταφυλὴν τμηθέντι παρήγγειλεν ὁ ἰατρὸς μὴ λαλεῖν . ὁ δὲ τῷ |