, τὴν μὲν εὐθυτενῆ , τὴν δ ' ἐπικαρσίαν , τεμνούσας κατὰ μεσότητα ἀλλήλας , ὡς τὸ σχῆμα αὐτῶν παραπλήσιον | ||
πρῶτον ἐπίπεδον ἐν γεωμετρίᾳ , καὶ τὰς τούτοις ἴσας εὐθείας τεμνούσας ἀλλήλας πρὸς ὀρθὰς ἐκτιθέμεθα , ὧν ἡ μὲν πρὸς |
διὰ τοῦ προκειμένου ἀπογείου τοῦ ἐπικύκλου διάμετρον , τουτέστιν τὴν ΖΓΗ , τὴν αὐτὴν θέσιν αἰεὶ συντηρεῖν τῇ τὸ κέντρον | ||
τὸν ΑΓΕ κύκλον . κοινὴ δὲ αὐτῶν τομή ἐστιν ἡ ΖΓΗ : καὶ ἡ ΖΓΗ ἄρα ὀρθή ἐστι πρὸς τὸν |
ἀφαιροῦμεν ἐκ τῶν ἀριθμῶν τῶν τριῶν καὶ μονάδων ξ , μονάδας ξ καὶ ἐκ τοῦ ἀριθμοῦ τοῦ ἑνὸς καὶ μονάδων | ||
καὶ ἀπὸ τῶν β ἀριθμῶν καὶ τῶν μ μονάδων ὁμοίως μονάδας μ : ] λοιποὶ ʂ β ἴσοι Μο ξ |
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα | ||
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ |
τὰς ΑΚ , ΕΖ ἡ ΓΛΔΒ : τεμεῖ ἄρα τὰς τομὰς κατ ' ἄλλο καὶ ἄλλο σημεῖον . ἔσται δὴ | ||
δέ τις ἑτέρα εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον |
αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον | ||
ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ , |
δύο εὐθείας μείζους τῶν ἐκτὸς καὶ πάλιν ἄλλας μείζονα γωνίαν περιεχούσας τῆς ὑπὸ τῶν ἐκτὸς περιεχομένης . τούτου γὰρ δειχθέντος | ||
' ἡμᾶς θάλαττα τοιαύτη τις . Ὑπογραπτέον δὲ καὶ τὰς περιεχούσας αὐτὴν γᾶς , ἀρχὴν λαβοῦσιν ἀπὸ τῶν αὐτῶν μερῶν |
δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος οὖσαι καὶ τριγώνους ἔχουσαι βάσεις τὰς ΑΒΓ , ΜΝΞ , κορυφὰς δὲ τὰ Δ | ||
τὴν ἰδίαν κακοπραγίαν ὁ δείλαιος , πολλάκις δὲ καὶ τὰς βάσεις πρὸς τὸν δίφρον ἐξημμένος ἀνατραπεὶς ὕπτιος ἐπὶ νῶτα | |
τὸ ἐν τριπλεύροις ὀρθογώνιον τρίγωνον . ἐπεὶ οὖν ὀρθογώνια ἐν τετραπλεύροις τὰ καὶ τὰς δ ὀρθὰς ἕκαστον ἔχοντά φαμεν , | ||
δὲ ἰσογώνια τὰ ὀρθογώνια ; διότι ὁρίζεται οὗτος τὸ ἐν τετραπλεύροις ὀρθογώνιον λέγων τὸ τὰς γωνίας ἔχον ὀρθὰς δηλονότι καὶ |
τῶ προγεγονότος , ἀρχὰ δὲ τῶ μέλλοντος , ὥσπερ καὶ γραμμᾶς εὐθείας κλασθείσας τὸ σαμεῖον , περὶ ὃ ἁ κλάσις | ||
διαφέρει γε μὰν τῶν ἄλλων συνεχέων , ὅτι τᾶς μὲν γραμμᾶς καὶ τῶ χωρίω καὶ τῶ τόπω τὰ μέρεα ὑφέστακεν |
τὰς ἐφεξῆς γωνίας τὰς ὑπὸ ΑΓΕ , ΑΓΒ δυσὶν ὀρθαῖς ἴσας ποιοῦσιν : ἐπ ' εὐθείας ἄρα ἐστὶν ἡ ΒΓ | ||
εὐθείας ἁπτομένας ἀλλήλων ὦσι μὴ ἐν τῷ αὐτῷ ἐπιπέδῳ , ἴσας γωνίας περιέξουσιν . Δύο γὰρ εὐθεῖαι αἱ ΑΒ , |
τι παριστάντας πάθος : ἔστι γὰρ ὅτε εὐθυμίαν μόνην ἐμποιῆσαι θέλομεν , ἔστι δὲ ὅτε δεινῶσαί τε καὶ αὐξῆσαι , | ||
μικρᾶς αἰτίας μεγάλην δόξαν καρπουμένων . Ζῶμεν γὰρ οὐχ ὡς θέλομεν , ἀλλ ' ὡς δυνάμεθα . Ζητῶν γὰρ ὄψον |
Καὶ ἐπεὶ ἴσαι εἰσὶν αἱ ΓΒ , ΒΗ , ΗΘ ἀλλήλαις , ἴσα ἐστὶ καὶ τὰ ΑΘΗ , ΑΗΒ , | ||
, ἀνδρειοτέρας ἡγῇ τὰς γυναῖκας , ὅτι ἐγγύτατα μάχονται ἐπιπεσοῦσαι ἀλλήλαις ; ὁ δὲ Ἀχιλλεὺς ταῦτα ἀκούων ἅμα θυμοῦ καὶ |
Α σφαίρας : λέγω ὅτι μείζων ἐστὶν ἡ σφαῖρα . Νοείσθω γὰρ εἰς τὸ πολύεδρον ἐγγεγραμμένη σφαῖρα , ὥστε τῶν | ||
ἐν ταῖς μέσαις συνόδοις τε καὶ πανσελήνοις ὑποτιθεμένης ἀποτελεῖσθαι . Νοείσθω ἐν τῷ λοξῷ τῆς σελήνης ἐπιπέδῳ ὁμόκεντρος κύκλος τῷ |
σὺν τούτοις τὴν Σελήνην τε καὶ τοὺς λοιποὺς ἀστέρας μὴ διαμέτρους ὑπάρχειν τούτους ἐκ τῶν ἰδίων ὑψωμάτων καὶ οἴκων τε | ||
περιτίθησι γνώμονα . ἄγει δὲ καὶ ἐν ἑκάστῳ τετραγώνῳ διαγωνίας διαμέτρους , λέγω δὴ τὴν ΑΘ καὶ τὴν ΘΖ καὶ |
ὡρισμένην , ἐν ᾗ δὲ τὰ κακὰ ἀόριστον , καὶ ἀντιστρέφειν ἔλεγον τὰ καλὰ καὶ ὡρισμένα . εἴ τι γὰρ | ||
καὶ ἡγούμενον καὶ ἀντιστρέψῃ , δοκεῖ ἐλέγχειν διὰ τὸ οἴεσθαι ἀντιστρέφειν τὴν ἀκολούθησιν . ὅταν γὰρ τοῦδε ὄντος ἐξ ἀνάγκης |
λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ | ||
τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει , |
λέγειν . εἰ δέ τί ποτε καὶ κατὰ τὰς ἄλλας ἐγκλίσεις ὑποκείμενον γίνεται , καθάπερ τὸ ὑγιαίνω ἐν τῷ τὸ | ||
γράφει κατηγόρημα ἢ σύμβαμα , καὶ ἔτι τὰς ἀπὸ τούτων ἐγκλίσεις . . Διὰ τοῦτο καὶ ὡς ἐπὶ γενικὸν ὄνομα |
πυραμίδες τριγώνους ἔχουσαι βάσεις πρὸς τὰς ἐν τῇ ἑτέρᾳ πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν | ||
Β σημεῖον . διῄρηται ἄρα τὸ ΑΒΓΔΕΖ πρίσμα εἰς τρεῖς πυραμίδας ἴσας ἀλλήλαις , ὧν βάσεις μέν εἰσιν ΑΒΓΔ , |
δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν ἔδει λείπουσαν , ἐκεῖνον μετὰ φωτὸς ὁρῶσαν . Αὐτῇ μὲν οὖν | ||
Ἐπεὶ οὖν τὴν τάξιν ἐγνώκαμεν , φέρε καὶ ἐπὶ τὴν λείπουσαν διδασκαλίαν χωρήσωμεν : δεῖ γὰρ πρῶτον Ἀριστοτελικῷ νόμῳ κεχρημένους |
στερεῷ πολυέδρῳ ὅμοιον στερεὸν πολύεδρον ἐγγραφῇ , τὸ ἐν τῇ ΒΓΔΕ σφαίρᾳ στερεὸν πολύεδρον πρὸς τὸ ἐν τῇ ἑτέρᾳ σφαίρᾳ | ||
τὰ διὰ τῆς ΞΑ ἐπίπεδά ἐστιν ὀρθὰ πρὸς τὸ τοῦ ΒΓΔΕ κύκλου ἐπίπεδον : ὥστε καὶ τὰ ΒΞΔ , ΚΞΝ |
εὖ ἀκρότητος . οἱ δὲ ἀποροῦντες πρὸς τὸ τὰς ἀρετὰς μεσότητας εἶναι καὶ λέγοντες , εἰ μήτε ἡ ὑπερβολὴ μήθ | ||
τούτων , τὸ μὲν συμπληροῦν τὰ διαστήματα καὶ παρεντάττειν τὰς μεσότητας , εἰ καὶ μηδεὶς ἐτύγχανε πεποιηκὼς πρότερον , ὑμῖν |
αὐτὸν ἐκ τῶν ἔμπροσθεν βλάπτεσθαι , τὸ δὲ πλινθίον μήτε χοινικίδας μήτε ὑποχοινικίδας μήτε κατακλεῖδας ἐπικειμένας ἔχον [ βλάπτεσθαι ] | ||
χοινικίδες ἐπὶ τῶν περιτρήτων ἐπιτείνουσαι τὸν τόνον . ἡμεῖς δὲ χοινικίδας οὐκ ἐπιτίθεμεν , ποιήσομεν δὲ ὑψηλότερον τὸ πλινθίον τῷ |
ἥττονα ποιησόμεθα λόγον , τοῦ δ ' ἀσφαλοῦς προνοούμενοι δύο διαιρέσεις ἐμβαλοῦμεν συμμέτρους ὡς πρὸς τὸ ἀπόστημα , τὴν μὲν | ||
Ἐνταῦθα δηλοῖ τὸ πρῶτον διαιρετικὸν παράγγελμα τὸ λέγον δεῖν τὰς διαιρέσεις ἀπὸ τῶν γενικωτάτων μέχρι τῶν εἰδικωτάτων προάγειν καὶ μὴ |
ὑπεροχὴν τῶν παραλλάξεων μείζονα εἶναι τῶν α κζ , ἢ συναμφοτέρας τὰς παραλλάξεις πλείονα τῶν αὐτῶν συνάγειν τμημάτων , ὅταν | ||
ἐφ ' ἧς συνεστάτω τρίγωνον ἰσοσκελὲς τὸ ΑΖΓ , ὥστε συναμφοτέρας τὰς ΑΖΓ ἴσας εἶναι συναμφοτέραις ταῖς ΑΒΓ διὰ τὸ |
ἐν ἑνὶ ἐπιπέδῳ , ἀλλ ' ἴσας ἔχουσαι πάσας τὰς καθέτους τὰς ἀγομένας ἀπὸ τῶν τῆς ἑτέρας σημείων ἐπὶ τὴν | ||
ἐπὶ τὸν διὰ μέσων ἀπὸ τῶν Η καὶ Θ σημείων καθέτους τὰς ΗΚ καὶ ΘΛ , τὴν ΒΔ πάλιν ἕξομεν |
γραμμὴ ἡ εὐθεῖα οὑτωσὶ καὶ ποσόν . Εἰ γὰρ τὴν εὐθεῖαν οὐ ποσὸν μόνον , τί κωλύει καὶ τὴν πεπερασμένην | ||
ὀπίσω ὁδόν , ὡς δὲ Πτολεμαῖος ὁ Λάγου , ἄλλην εὐθεῖαν ὡς ἐπὶ Μέμφιν . Εἰς Μέμφιν δὲ αὐτῷ πρεσβεῖαί |
ἀκριβεῖς αὐτῆς κατὰ μῆκος ἐποχάς : περὶ δὲ τὰς διχοτόμους ἀμφοτέρας , τουτέστιν τῆς σελήνης ἀπὸ τοῦ ἡλίου διαστάσεις μέσως | ||
πλείους , οἷον πῦρ καὶ γῆν , ὥσπερ Παρμενίδης : ἀμφοτέρας δὲ ὑλικὰς ὑπετίθεντο τὰς ἀρχάς . ἄλλοι δέ τινες |
τὴν διάμετρον , ὑπερανέστηκε δὲ τοῦ νάματος οὐ πλεῖον ἢ ποδιαῖον ὕψος : ἀνίδρυτος δ ' ἐστὶ καὶ περινήχεται πολλαχῇ | ||
ὕψους ἀπὸ τῆς γῆς , καταστορέσας κατάχωσον εἰς τάφρον ὀρυγεῖσαν ποδιαῖον βάθος , μῆκος δὲ τοσοῦτον ὅσον ὀφθαλμοὺς τέσσαρας δέξασθαι |
ΑΒ , ΓΔ , καὶ ἐμπίπτουσα εἰς αὐτὰς ἡ ΕΖΗΘ ποιείτω τὰς ὑπὸ ΑΖΗ καὶ ὑπὸ ΓΗΖ δύο ὀρθῶν ἐλάσσονας | ||
, καὶ ὁ μὲν α τὸν ε πολλαπλασιάσας τὸν η ποιείτω , ὁ δὲ β τὸν ζ πολλαπλασιάσας τὸν θ |
δὲ τελευταῖον δι ' ἑνός . Ἐὰν δὲ καὶ τρεῖς τριάδας ποιήσωμεν τὴν μὲν πρώτην δίιον εὑρήσομεν : φιλόσοφος γὰρ | ||
γὰρ ἦσαν παρ ' αὐτοῖς ἅπαντες πλὴν τοῦ μαθηματικοῦ : τριάδας δὲ καὶ πεμπάδας καὶ δεκάδας ἐν αὐτοῖς ἐθεώρουν κατὰ |
καλῶς μοι : τὸ δὲ ὤμοι οὐκέτι τοῦ ὦ τὸν περισπασμὸν ἐφύλαξενἀπ . ' ἀντωνυμιῶν ῥήματα οὐ παράγεται : πῶς | ||
. ἆρα καὶ ἄρα διαφέρει : ὁ μὲν γὰρ κατὰ περισπασμὸν ἀπορηματικός , ὅτε ἀποροῦντες λέγομεν , ἆρά γε τέλος |
ἀρτηρίαν . ἀρτηρία ἐστὶ σώματος ἐπίμηκες κυκλικὸν , δίκην σωλῆνος διχῆ διαιρούντων ἀπὸ καρδίας ἐρχόμενον καὶ ἐπὶ τὸ πᾶν σῶμα | ||
τῶν ἐν αὐτῷ παραδιδομένων . Κατὰ δὲ τῶν ἀνωτάτω μερίζεται διχῆ , καθάπερ ἐν ἀρχῇ προαναπεφώνηται : καὶ ὁ μὲν |
πρὸς τετράγωνον ἀριθμόν . Τῇ προτεθείσῃ εὐθείᾳ προσευρεῖν δύο εὐθείας ἀσυμμέτρους , τὴν μὲν μήκει μόνον , τὴν δὲ καὶ | ||
δοθέντι . ναʹ . Οὐκ ἀπίθανον δὲ οὐδὲ τὸ γωνίας ἀσυμμέτρους εὑρεῖν . διὰ τούτου γὰρ καὶ τοῦ αὐτοῦ κύκλου |
τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ | ||
ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν |
μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
γενέσεως καὶ φθορᾶς ταῦτα ὑπομένειν ἤγουν πάσχειν : τὰς δὲ στιγμὰς καὶ τὰς γραμμὰς καὶ τὰς ἐπιφανείας οὐκ ἐνδέχεται οὔτε | ||
προσήκει καλεῖν , οὐχὶ μονάδας . ἐπειδὴ τοίνυν ἅπαν σῶμα στιγμὰς ἔχει καὶ πρὸ τῆς ψυχῆς , δῆλον ὅτι αἱ |
. ἐὰν δὲ ἕκαστον τῶν τμημάτων ἐπιπέδῳ τμηθῇ κατὰ τὰς διαγωνίους , δίχα τμηθήσεται διὰ τὸ κηʹ τοῦ ιαʹ . | ||
, καὶ ἔμπαλιν : καὶ ἔτι αἱ καθόλου πρὸς τὰς διαγωνίους μερικὰς ἀντιστρέφουσιν : ὃ γὰρ ἐνδέχεται παντί , καὶ |
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου | ||
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις |
τὰ τρήματα , συντέτρηται δὲ καὶ ὁ ἄξων κατὰ τὰς ἀποτορνώσεις , ἵνα , εἴ ποτε πρὸς τὴν χρείαν , | ||
ἐστὶν ἔκθετος μέσον ἔχων τύλον , κατὰ δὲ τὰς ἐκθέτους ἀποτορνώσεις σκυτάλας , τῇ μὲν ὕλῃ χαλκᾶς ἢ σιδηρᾶς , |
ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ μθʹ πρὸς κεʹ . πάλιν εἰ | ||
, ἢ ἕως τῆς Τενέδου , ἔχων ἐκ τῆς ἑτέρας πλευρᾶς τὴν Ἴμβρον νῆσον ὑπὸ τῆς Θρᾴκης . Ὅπου στενὸς |
φαίνεται καὶ τὰ ἀριστερὰ δεξιὰ καὶ τὸ εἴδωλον ἴσον τῷ ὁρωμένῳ , καὶ τὸ ἀπόστημα τὸ ἀπὸ τοῦ ἐνόπτρου ἴσον | ||
τὸ μεσαίτατον τῆς βάσεως τῷ τῆς ὄψεως κώνῳ προσβάλλειν τῷ ὁρωμένῳ . διά τοι τοῦτο καὶ ῥαφίδος εἰ τύχοι παρακειμένης |
, τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως | ||
τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο |
πατέρων εἰς αὐτοὺς μιμεῖσθαι . σοφὸν δέ σου τὸ μὴ ἐγγράψαι τῇ ἐπιστολῇ τὰ χρήματα : εὖ γὰρ ᾔδεις ὅτι | ||
ὄντων εἰς τὸν μείζονα κύκλον πολύγωνον ἰσόπλευρόν τε καὶ ἀρτιόπλευρον ἐγγράψαι μὴ ψαῦον τοῦ ἐλάσσονος κύκλου . Ἔστωσαν οἱ δοθέντες |
καὶ τῶν συμπιπτουσῶν τὰς ἐν αὐτῷ ἐκείνῳ τῷ πλάτει τὴν σύμπτωσιν ἐχούσας ἢ τὰς ἐκτός : ὡσαύτως καὶ τὰς διισταμένας | ||
συγκείμενον ἔκ τε τοῦ , ὃν ἔχει τῆς ἐπιζευγνυούσης τὴν σύμπτωσιν τῶν ἐφαπτομένων καὶ τὴν διχοτομίαν τῆς τὰς ἁφὰς ἐπιζευγνυούσης |
ἀλλ ' Ἀθήναζε παρέχειν ἀνέπαφα ἡμῖν , ἕως ἂν ἡμεῖς ἀπολάβωμεν τὰ χρήματα ὅσα ἐδανείσαμεν . καί μοι ἀναγίγνωσκε τὴν | ||
δὴ κἂν τὴν ΞΡ ἴσην ἑκατέρᾳ τῶν ΞΟ , ΞΠ ἀπολάβωμεν καὶ ἐπιζεύξωμεν τὴν ΟΡ , δείξομεν , ὅτι καὶ |
που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
δεῖ γάρ με εἶναι ἀπαθῆ ὡς ἀνδριάντα , ἀλλὰ τὰς σχέσεις τηροῦντα τὰς φυσικὰς καὶ ἐπιθέτους ὡς εὐσεβῆ , ὡς | ||
εἶναι πολυώνυμα , ἐφ ' ὧν οὐ κατὰ τὰς διαφόρους σχέσεις τῆς μιᾶς φύσεως διάφορα κεῖται ὀνόματα , ἀλλ ' |
κέντρου οὖσαν δίχα τέμνουσα : ὥστε καὶ πρὸς ὀρθὰς αὐτὴν τεμεῖ , καὶ ἐὰν πρὸς ὀρθὰς αὐτὴν τέμνῃ , καὶ | ||
τῶν πόλων τέμνει , δίχα τε αὐτὸν καὶ πρὸς ὀρθὰς τεμεῖ . καί ἐστι κοινὴ τομὴ αὐτῶν ἡ ΒΓ : |
καὶ ἡ ΑΕ τῇ Γ ἐστιν ἴση . Δύο ἄρα δοθεισῶν εὐθειῶν ἀνίσων τῶν ΑΒ , Γ ἀπὸ τῆς μείζονος | ||
μείζων ἐστὶν τῆς ΕΒ ἡμισείας . ] Ἔστω δὲ νῦν δοθεισῶν τῶν ΖΒ ΒΓ τὴν μείζονα ἄκραν εὑρεῖν . Ἤχθω |
δηλαδὴ λευκὸν γίνεται δίκην ψιμυθίου τὸ ἀπὸ μολύβδου γινόμενον . Δυνατὸν γὰρ οὕτως γενέσθαι καὶ ἄσβεστος : τεθέντα δηλαδὴ τὸν | ||
καὶ ὑμενοῦται τὸ δέρμα , καὶ γίνονται αἱ φλύκταιναι . Δυνατὸν δέ ἐστι πρὸς τούτοις καὶ ἄλλα σημεῖα ἐφευρεῖν , |
δυσὶ ταῖς ΔΗ , ΗΖ ἴσαι εἰσίν , καὶ γωνίας ὀρθὰς περιέχουσιν , βάσις ἄρα ἡ ΑΘ βάσει τῇ ΖΔ | ||
καὶ διὰ τοῦ Ζ ἐπὶ τὰ ἐναντία τῇ ΗΘ πρὸς ὀρθὰς γωνίας τῇ ΑΓ εὐθεῖα ἡ ΖΜΝ , ἐφ ' |
δοθεὶς κύκλος ὁ ΑΒΓΔ : δεῖ δὴ εἰς τὸν ΑΒΓΔ κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἐγγεγράφθω εἰς | ||
τὴν σελήνην ἑξακοσιάκις μὲν καὶ πεντηκοντάκις ἔγγιστα καταμετρεῖν τὸν ἴδιον κύκλον , δὶς δὲ καὶ ἡμισάκις τὸν τῆς σκιᾶς καταμετρεῖν |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
εὐθετεῖ πρὸς ἐπίδεσιν τοῦ καρποῦ καὶ τοῦ μετακαρπίου . Στενοῦ τελαμωνιδίου ὡς διδακτυλιαίου ἡ ἀρχὴ προστίθεται τῷ καρπῷ καὶ τῷ | ||
τοῦ τελαμῶνος σκελῶν ἀπὸ τοῦ σφαιρίου παρειμένων κάτω , στενοῦ τελαμωνιδίου ἡ μεσότης κατὰ τῶν σκελῶν τῷ ἄνω χείλει προστίθεται |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
Ἐὰν ἄρα τριγώνου ἡ γωνία δίχα τμηθῇ , ἡ δὲ τέμνουσα τὴν γωνίαν εὐθεῖα τέμνῃ καὶ τὴν βάσιν , τὰ | ||
μηχανήματος . διάμετρος δὲ , ἡ ἐν τῷ κύκλῳ κέντρον τέμνουσα μέσον γραμμή . διαβήτης , σταφύλη : ὅπερ ἐστὶν |
ἄλλος μῦς ἐπιζεύγνυσιν ἀμφοτέρους , ἀπὸ τῆς τοῦ πρώτου σπονδύλου πλαγίας ἀποφύσεως ἐπὶ τὴν ὄπισθεν ἀφικνούμενος τοῦ δευτέρου . καταφύεται | ||
τὰ κάτω . οὗτος ὁ ἐπίδεσμος εὐθετεῖ ἐφ ' ὧν πλαγίας οὔσης κατὰ τὸ βρέγμα διαιρέσεως , πρόκειται τὰ χείλη |
ἀνακαλεῖσθαι κελεύουσι πάντας ἐφεξῆς τοὺς ἱππέας , δεκαδάρχην πρῶτον καὶ διμοιρίτην ἐπὶ τούτῳ καὶ ὅστις ἐν ἡμιολίῳ μισθοφορᾷ , ἔπειτα | ||
, δεκαδάρχην μὲν τῆς δεκάδος ἡγεῖσθαι Μακεδόνα καὶ ἐπὶ τούτῳ διμοιρίτην Μακεδόνα καὶ δεκαστάτηρον , οὕτως ὀνομαζόμενον ἀπὸ τῆς μισθοφορᾶς |
ζῶον . καὶ εἰ ἄπειροι ἑκατέρωθεν , ἢ πᾶσαι πάσαις ἐφαρμόσουσι κἀντεῦθεν ἄπειροι δήπου καὶ ψυχαὶ τῷ ζώῳ ἐνέσονται , | ||
ἐπίπεδά ἐστι σχήματα . Δῆλον , ὅτι ἐφαρμοζουσῶν τῶν εὐθειῶν ἐφαρμόσουσι καὶ τὰ πέρατα αὐτῶν , εἰ δὲ τοῦτο , |
οὐ διαλέγεται : καὶ γὰρ ἐνδέχεται τὰς δύο προ - τάσεις ταύτας ἤτοι ἀληθεῖς εἶναι ἢ ἀμφοτέρας ψευδεῖς . ἐπὶ | ||
γεγόνασι πρὸς τὰς τῶν σωμάτων ἀγωγάς , λέγω δὲ τὰς τάσεις . τῶν δ ' ἀξόνων οἱ μέν εἰσιν ἔκθετοι |
δὴ ταῦτά τις οὕτω διατείνοιτο , καὶ τὰς δύο ἀρχὰς ἀντικειμένας ποιῶν καὶ τὴν τοῦ ἑνὸς προτάττων ἀμφοῖν , ῥητέον | ||
τρεῖς , καὶ ὅτι ταῦτα ἀντιτέτακται ἀλλήλοις καὶ ἐκείνας ὑποτίθεσθαι ἀντικειμένας , καὶ ὅτι πρὸ τοῦ πέρατος καὶ τῆς ἀπειρίας |
μέσῳ αὐτῆς κειμένας . ἐκράτυνε ] ἦρχεν , ἐδέσποζεν . μεσάκτους ] † τὰς ἐν τῷ μέσῳ τοῦ πελάγους οὔσας | ||
καὶ ἀγχιγείτων ταύτης τυγχάνουσα . . . καὶ τὰς ἀγχιάλους μεσάκτους : ἤτοι παραθαλασσίους τὰς ἄγχι καὶ πλησίον τῆς θαλάσσης |
διαιρετέον . Ὀρθῶς . Οἶσθ ' οὖν ὅτι χαλεπὸν αὐτὰς τεμεῖν δίχα ; τὸ δ ' αἴτιον , ὡς οἶμαι | ||
ὠκεανῷ . Γαλῇ χιτώνιον : ἐπὶ τῶν ἀχρήστων . Γαλλιστὶ τεμεῖν : ἐπὶ τῶν ἀφροντίστως ἀπαλλαγὴν πραγμάτων ποιήσασθαι βουλομένων . |
ΑΒ πρὸς τὴν ΒΓ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΖ , ὡς δὲ ἡ ΑΒ πρὸς τὴν ΒΗ , | ||
, ἡ ΕΖ τῇ ΓΔ οὐ συμπεσεῖται . ἡ ἄρα ΕΖ οὐδετέρᾳ τῶν ΑΒ , ΓΔ τομῶν συμπεσεῖται : κατὰ |
τὰ ἄλλ ' οὕτως κατὰ τὸν αὐτὸν λόγον ἔχει . νοήσωμεν δὴ τούτοις ἑπόμενον εἶναι τὸν τοιόνδε λόγον , ἁπάντων | ||
δεῖ προϋπάρχειν τὰ τελεώτερα τῶν ἀτελεστέρων . καὶ πάλιν ἐὰν νοήσωμεν γεννωμένην τὴν γραμμήν , πρότερον ὑπάρχει τὸ ἥμισυ αὐτῆς |
δύο γραμμῶν πάσας τὰς ἀγομένας παραλλήλους εὐθείας εὐθείᾳ τινὶ καὶ ἀπολαμβανομένας μεταξὺ τῶν γραμμῶν δίχα τέμνει , τεταγμένως δὲ ἐπὶ | ||
τοιοῦτο μὲν οὖν ἡμῖν προσπαραμεμύθηται διὰ τὰς ἐν ταῖς ἐκλείψεσιν ἀπολαμβανομένας ὑπὸ γῆν ἐπισκοτήσεις : καὶ τῶν δακτύλων δὲ τῆς |
χωριστά . Καὶ τὸ φυσιολογικὸν μὲν οὖν καὶ τὸ θεολογικὸν ὑποδιαιρέσεις τινὰς ἐπιδέχονται , ἀλλὰ τὰς μὲν τούτων ὑποδιαιρέσεις ὡς | ||
ἀξιώσεως ἀρχόμενοι εἰς τὸ πρᾶγμα ἀνερχώμεθα . Ὅταν δὲ αἱ ὑποδιαιρέσεις ἄλογοι γίγνωνται φασκόντων ἡμῶν εἰ γὰρ τόδε ἐποίησας , |
ὀλίγον ἦν τὸ ὕδωρ ἐν ἐκείνῳ τῷ μέρει . . ἐνωμοτίαν ] τάξις τις στρατιωτικὴ ἀνδρῶν εἰέ καὶ εἴκοσι παρὰ | ||
λόχῳ εἶναι τοῦτο , οἳ δὲ τὸ τέταρτον τοῦ λόχου ἐνωμοτίαν καλοῦσιν , καὶ ἐνωμοτάρχην τὸν τούτου ἡγούμενον , τὰς |
προάγειν τὴν διαίρεσιν ὡς τελευτᾶν εἰς ἄτομον εἶδος ἢ ὅλως ἐφαρμόζειν καὶ ἐξισάζειν τῷ ὁριστῷ , κἄπειτα οὕτω θαρροῦντα κατασκευάζειν | ||
τέκνον , ἔχον νόον , Ἀμφίλοχ ' ἥρως , τοῖσιν ἐφαρμόζειν , τῶν κεν κατὰ δῆμον ἵκηαι , ἄλλοτε δ |
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ , | ||
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης , |
καὶ σκαληνὸν εἴη καὶ τὰς τὴν ὀρθὴν γωνίαν περιεχούσας πλευρὰς ῥητὰς ἔχῃ , ὅτε δὲ μὴ τοιοῦτόν ἐστιν , ἀλλ | ||
ἄλλων τῶν περιεχομένων ὑπὸ ῥητῶν καὶ ἀποτομῶν τῇ τάξει διαφόρων ῥητὰς ὀφείλεται λαμβάνειν ἐκείνας , αἷς ἐστι σύμμετρος ἢ ἡ |
τε παρὰ τὴν τοῦ ἡλίου ἀνωμαλίαν καὶ τῆς παρὰ τὰς συμμεσουρανήσεις τὸ διάφορον ἐπὶ τῶν κατ ' ἀμφοτέρας τὰς εἰρημένας | ||
μηδὲ καθ ' ἓν ἕκαστον κλῖμα τὰς αὐτὰς συνανατολὰς καὶ συμμεσουρανήσεις καὶ συγκαταδύσεις ταῖς ἐν τῷ παρόντι διὰ τοσούτων ἀριθμῶν |
περὶ τὰ νευστικὰ τῶν ἐνύδρων : τὸ δὲ πεζὸν εἰάσαμεν ἄσχιστον , εἰπόντες ὅτι πολυειδὲς εἴη . Πάνυ γε . | ||
ἐπὶ τοῦ ἰνίου χρώμεθα , πᾶν τὸ [ μὲν ] ἄσχιστον αὐτοῦ μέρος προστιθέντες τῷ ἰνίῳ καὶ τὰ μὲν ἄνω |
μηνῶν καὶ ἡμερῶν καὶ ὡρῶν συνημμένων αὐτοῖς τῶν περιεχόντων τὰς διαστάσεις τῶν περὶ αὐτὸν τὸν ζῳδιακὸν ἀπλανῶν τῶν μέχρι δεκαμοίρου | ||
ἐπεὶ διαστατὸν ἂν ὑπῆρχε , τοῦ σώματος τὰς τρεῖς ἔχοντος διαστάσεις . καὶ μὴν οὐδὲ ἀσώματον . εἰ γὰρ ἀσώματόν |
ἂν οὐθενὸς ἄλλου προσεδεόμεθα πλὴν τοῦ τὰς συντάξεις τῶν ὀργάνων ὁμολόγους οὔσας ἐμφανίζειν . ἐπεὶ δὲ διηνεγμένους ὁρῶμεν οὐ μόνον | ||
τὰς δύο πλευρὰς ταῖς δυσὶν ἀνάλογον ἔχοντα , ὥστε τὰς ὁμολόγους αὐτῶν πλευρὰς καὶ παραλλήλους εἶναι , αἱ λοιπαὶ εὐθεῖαι |
ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι | ||
τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν |
, ἔστιν ἄρα ὡς ὁ ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον | ||
ἐπὶ τὴν τοῦ κύκλου περιφέρειαν διὰ τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ |
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ | ||
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς |
. Ἔστι δὲ καὶ ἀμφίβιον γῆν τε πεζεῦον καὶ θάλασσαν τέμνον καὶ πλοῦν τὸν αὐτόστολον ναυτιλλόμενον : δεῆσαν γὰρ τὸ | ||
: πάλιν γὰρ χρόνου ἐστὶ τοῦ γενικωτάτου ἐμπεριεκτικόν , οὐ τέμνον τὸ ἐπιμεριζόμενον τοῦ χρόνου , διῆκον μέντοι δι ' |
: ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη | ||
ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ |
καθάπερ τὰς λύπας οὐκ ἔφευγεν , ἀλλ ' ἄγοντα εἰς μέσας , ἠνάγκαζε καὶ ἔπειθεν τιμαῖς ὥστε κρατεῖν αὐτῶν ; | ||
ἐπιστένων καὶ κατακλαίων δαίμονα . λέγεται δέ ποτε καὶ περὶ μέσας νύκτας ὥσπερ οἱ | κορυβαντιῶντες ἔνθους γενόμενος , ἐκ |
ἐπισημαίνουσαι καθ ' ὥραν . θέσιν δὲ ἔχουσιν εὖ μάλα κείμεναι κατὰ τὸν Ἵππαρχον τριγωνοειδοῦς σχήματος . Αὕτη ἐνάτη κεῖται | ||
εὐθεῖαι αἱ ΑΓ , ΑΗ μὴ ἐπὶ τὰ αὐτὰ μέρη κείμεναι τὰς ἐφεξῆς γωνίας δυσὶν ὀρθαῖς ἴσας ποιοῦσιν : ἐπ |
' οὕτως τὰ νοτιώτερα . Καὶ τὰς συνανατολάς τε καὶ συγκαταδύσεις τοῖς δώδεκα ζῳδίοις τῶν ἄλλων ἄστρων ὁμοίως τέταχεν ὁ | ||
ζώιδια , ὁμοίως δὲ ἐπί τε τὰς συνανατολὰς καὶ τὰς συγκαταδύσεις αὐτῶν , ὅπως μηδὲν ὑπολίπωμεν τῶν πρὸς τὸν καταστερισμόν |
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ | ||
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν , |
. ἔστι τοίνυν ἡ μέθοδος γλαφυρά τις οὖσα τοιαύτη : ἐκθοῦ ἀπὸ μονάδος τοὺς ἀρτιάκις ἀρτίους ἕως οὗ βούλει καὶ | ||
πλευρὰν τὴν κ : εἰκοσάκι γὰρ κ , υ : ἐκθοῦ τοίνυν μ , κ , ι , καὶ ἔστι |
πρὸς τὰς ἐκ μεταθέσεως παραβάλλοις , ταῖς μὲν ἀποφάσεσι τὰς καταφάσεις ἑπομένας εὑρήσεις , οὐκέτι μέντοι τὰς ἀποφάσεις ταῖς καταφάσεσιν | ||
ὅτι ὁ μὴ ἀξιῶν τὰ μέρη τοῦ λόγου θεωρεῖν ὡς καταφάσεις , ἀλλ ' ὡς ἁπλᾶς φωνάς , πολλῷ δήπου |
λεγομένων τάττειν , καὶ τοὔμπαλιν : ἔστι δὲ ὅτε καὶ συμπλέκειν , ὥσπερ καὶ νῦν . παῖδα Ἀφροδίτης μὲν γὰρ | ||
τοιοῦτο κατ ' ἰδίαν ἀφοριστέον περὶ αὐτῆς , κοινῇ δὲ συμπλέκειν πάντα ἄξιον , ὡς τῆς ψυχῆς καὶ ἰδέας οὔσης |
συνάγειν βραχύτερα κώλων : τάς τε περιόδους μήτε ἰσομεγέθεις μήτε ὁμοιοσχήμονας τὰς γοῦν παρακειμένας ἀλλήλαις ἐργάζεσθαι : ἔγγιστα γὰρ φαίνεται | ||
δὲ ἡ τῆς τῶν ὑποκειμένων αὐτοῖς φύσεων τροπῆς κατὰ τὰς ὁμοιοσχήμονας τῶν οὐρανίων παρόδους διὰ τοῦ περιέχοντος ἐπιστημονικὴ παρατήρησις , |
ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
τῷ μήκει ἴσας ταῖς τοῦ τριγώνου πλευραῖς καθ ' ὕψος συννευούσας εἰς ἓν καὶ τὸ αὐτὸ σημεῖον , πυραμὶς ἂν | ||
καὶ ἐπὶ τῶν περάτων αὐτῆς ἑστώσας πρὸς ὀρθάς , εἶτα συννευούσας εἰς τριγώνου γένεσιν , ὁρῶμεν , ὅτι , καθ |
Ἑλλάδος ἐπ ' ἔσχατα ἀφικέσθαι , πάντες οὗτοι ὥσπερ κύκλου τόρνον τὰς Ἀθήνας ἢ παραπλέουσιν ἢ παρέρχονται . καὶ μὴν | ||
διὰ παντὸς ἀψευδὲς οὐδὲν , οἷον λέγω ζυγὸν , ἢ τόρνον , ἤ τι τῶν τοιούτων : ἀλλ ' ἕκαστον |
γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν | ||
γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν |
εἰ γὰρ μὴ σῶμα , πῶς ἐν τοῖς ἐνόπτροις αἱ ἀνακλάσεις γίνονται ; τοῦτο δὲ κἀν τοῖς περὶ ὄψεως ἀπορηθήσεται | ||
τὰς αἰσθήσεις ὀργάνων . ἔτι δὲ εἰδέναι δεῖ ὅτι αἱ ἀνακλάσεις αὗται καὶ διακλάσεις τῆς ὄψεως οὐκ ἀτάκτως ἐπιτελοῦνται . |
κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ | ||
γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ |
ΔΓ : ὅπερ ἄτοπον . λοιπαὶ ἄρα . , ] διαιρετέον τὰς ἐννέα γωνίας εἰς ἓξ καὶ τρεῖς , τρεῖς | ||
. τοῦ δὲ περὶ ἑκάστης αἰσθήσεως λόγου πρότερον τὰ αἰσθητὰ διαιρετέον . Τῶν τοίνυν αἰσθητῶν τὰ μὲν καθ ' αὑτά |
: δεῖ δὲ τὰς δύο τῆς λοιπῆς μείζονας εἶναι πάντῃ μεταλαμβανομένας [ διὰ τὸ καὶ παντὸς τριγώνου τὰς δύο πλευρὰς | ||
παντὸς τριγώνου τὰς δύο πλευρὰς τῆς λοιπῆς μείζονας εἶναι πάντῃ μεταλαμβανομένας ] . Ἔστωσαν αἱ δοθεῖσαι τρεῖς εὐθεῖαι αἱ Α |
ΛΗ μοιρῶν κγ να ἔγγιστα . ἔστιν δὲ καὶ ἡ ΞΔ μοιρῶν κγ μθ . ἀλλὰ καὶ ἡ ΜΞ τῇ | ||
. ἔσται τοίνυν διὰ τοῦ τῆς λοξώσεως κανονίου δοθεῖσα ἡ ΞΔ περιφέρεια μοιρῶν οὖσα κγ μθ : τοσαῦται γὰρ ἐπιβάλλουσιν |
τεμνομένων αὐτῆς κεφαλῶν ἀνεφύοντο πλείους , κελεῦσαι Ἰολάῳ ἐπικαίειν τὰς τεμνομένας . Ὑηνεῖς . ὑϊκόν τι καὶ ζωῶδες ποιεῖς . | ||
δρακόντων κεφαλὰς παμπληθεῖς εἶχεν . οὕτως γοῦν ὁρῶν αὐτὰς Ἡρακλῆς τεμνομένας καὶ πάλιν βλαστώσας ἐκέλευσεν Ἰολάῳ τὰς τεμνομένας περικαίειν . |
ἐπέχουσα : τὸ δ ' ἑωθινὸν τῷ Ῥήνῳ ποταμῷ περιγραφομένη παράλληλον ἔχοντι τὸ ῥεῦμα τῇ Πυρήνῃ : τὸ δὲ νότιον | ||
ἂν εἶεν καὶ οἱ ἀπὸ Μασσαλίας ἐπὶ τὸν διὰ Βορυσθένους παράλληλον , ὅς γε διὰ τῆς Κελτικῆς παρωκεανίτιδος ἂν εἴη |
τὸ ὕπτιον σχῆμα εἰς ἐπίγνωσιν τοῦ καταρτισμοῦ τέλους καὶ τότε ἐγγώνιον τὴν χεῖρα σχηματίζειν πρὸς τὴν ἑξῆς ἀκόλουθον θεραπείαν . | ||
ἄμφω , ὁμοίωϲ δεῖ κατατείνειν ἐϲχηματιϲμένηϲ τῆϲ χειρὸϲ κατὰ τὸ ἐγγώνιον ϲχῆμα , ὥϲτε τὸν μὲν ἀντίχειρα πάντων εἶναι τῶν |