καὶ παρὰ ταῦτα , εἰ μὲν ἓν τῶν ΓΔ , προσυλλογισμός ἐστι τοῦ συλλογισμοῦ , καὶ διὰ τοῦτο οὐχ εἷς | ||
τῶν ΑΒ , πολλοὶ ἔσονται οἱ συλλογισμοί , ὁ μὲν προσυλλογισμός , ὁ δὲ τοῦ προκειμένου : εἰ δὲ ἄλλο |
τρίγωνα ἰσόπλευρα εἶναι . ἔσται δὴ ἡ ΑΒΓΔΕ πυραμὶς μέρος εἰκοσαέδρου σχήματος . τετμήσθω μία πλευρὰ ἑνὸς τριγώνου ἡ ΖΓ | ||
, οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό τε τοῦ |
ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ | ||
ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων |
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
τὸ ὕψωμα τῆς ῥινός : εἶθ ' ὑπὸ λοβὸν ὠτὸς ἀντικειμένου καὶ ἐπὶ ἰνίον . ταύτῃ τῇ ἐπιδέσει ἔνιοι καὶ | ||
οὐκ ἐκ τοῦ αὐτοῦ μέρους , ἀλλ ' ἐκ τοῦ ἀντικειμένου καὶ ἀντεστραμμένου , ἀμφοτέροις τε περιλαμβάνοντες ἀναβαλοῦμεν . ἰστέον |
ΑΒΓ , ὁ δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἔστω ὑπὸ γῆν τὸ ΑΔΓ ἡμικύκλιον , | ||
ἐμβαδὸν τοῦ ΑΖΓΗ κύκλου : δηλονότι καὶ τὸ μὲν τοῦ ΑΕΓΔ τομέως ἐμβαδὸν ἕξομεν τοιούτων κϚ ιϚ οἵων ἐδείχθη τὸ |
τὸν ζῳδιακὸν ἀπλανῶν τὸν τοῦ ἐπὶ τῆς καρδίας τοῦ Λέοντος συναγόμενον ἀριθμὸν καὶ τὸν παρακείμενον πάντοτε κατὰ μῆκος τῷ ἐπιζητουμένῳ | ||
στοχαζόμενοι , τό τε πεπερασμένον ἀεὶ καὶ τὸ ἐν βραχυτάτοις συναγόμενον πρεσβεύειν οἰόμενοι δεῖν καὶ τιμᾶν , εἴ τι δὲ |
σφαίρας τοῦ ἀπὸ τῆς ΖΘ καθέτου ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου . τριπλάσιόν ἐστιν . μζʹ . Ἔστω τρίγωνον ἰσόπλευρον | ||
πέντε ἡ τοῦ εἰκοσαέδρου , ὑπὸ δὲ τεσσάρων ἡ τοῦ ὀκταέδρου , ὑπὸ δὲ τριῶν ἡ τῆς πυραμίδος . δῆλον |
ἐστιν . Κεφ . ιβʹ . [ Πρὸς τὰ τοῦ βρόγχου καὶ φάρυγγος πάθη . ] [ αʹ . Πρὸς | ||
, ὥσπερ τῷ ἐμπύῳ , ὁ ῥόος γένηται διὰ τοῦ βρόγχου καὶ τῶν ἀορτρέων , αἳ ξυνέχουσι τὸν πλεύμονα καὶ |
προσεχής ἐστιν ὁ συλλογισμὸς οὐδ ' ἁπλοῦς ἀλλὰ σύνθετος ἐκ προσυλλογισμοῦ : εἰ δὲ ἄλλο παρὰ τὸ Ε καὶ τὰ | ||
τὴν γὰρ ἀποφατικὴν πρότασιν ἐν τῷ συλλογισμῷ συμπέρασμα οὖσαν τοῦ προσυλλογισμοῦ οὐ παραληψόμεθα ἐν τῷ συνθέτῳ συλλογισμῷ : συντιθέντες γὰρ |
βραχίοϲιν ἢ τοῖϲ ἄκροιϲ ἐκτέμνειν οὐκ ἀϲφαλέϲ : κίνδυνοϲ γὰρ κυλλὸν γενέϲθαι τὸ μόριον : τὰ δὲ κατὰ κεφαλὴν ἢ | ||
τί δεῦρο πόδα σὺ κυλλὸν : Ὅτι πολλάκις τὸ μὲν κυλλὸν ἐπὶ τοῦ ποδὸς ἔτασσον , ὡς ὁ ποιητὴς [ |
Ν ποιείτω . καὶ πάλιν ὁ μὲν Β τὸν Γ πολλαπλα - σιάσας τὸν Ξ ποιείτω , ἑκάτερος δὲ τῶν | ||
λόγον ἕξει . τὰ δὲ λόγον ἔχοντα πρὸς ἄλληλα δύναται πολλαπλα - σιαζόμενα ὑπερέχειν ἀλλήλων : καὶ κερατοειδὴς ἄρα πολλαπλασιαζομένη |
ὅταν λήξωσι τῆς ἀρχῆς , σπαράττειν . ἐγὼ μὲν οὖν ὡμολόγηκα πρὸς ἐκεῖνον , ὡς παντὸς ἂν παρὰ σοῦ τύχοι | ||
ἀποδέδεικταί μοι ὡς οὔτε ἠσέβηκα οὔτε μεμήνυκα περὶ οὐδενὸς οὔτε ὡμολόγηκα περὶ αὐτῶν , οὐδὲ ἔστι μοι ἁμάρτημα περὶ τὼ |
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
οἱ μακρότατοι αὐτῶν πηχέων δύο , οἱ δὲ πλεῖστοι ἑνὸς ἡμίσεως πήχεος . κόμην δὲ ἔχουσι μακροτάτην μέχρις ἐπὶ τὰ | ||
ἔχῃ : Χίῳ δ ' ἐγκεράσας τάδε μίγματα πικρὸν ἐχίδνης ἡμίσεως δραχμῆς ἰὸν ἀποσκεδάσεις : τῷ δὲ ποτῷ καὶ δεινὰ |
βουβῶνα καὶ τὸ ἦτρον . καὶ τότε ἐκ τοῦ εἰλητοῦ ἐπιδέσμου ἡ τοῦ ἁπλοῦ βουβωνίσκου γίνεται πλοκή , τῶν ἁμμάτων | ||
τοῦ τελαμῶνος ἀνατεινομένου , ἀπὸ [ δὲ ] τοῦ εἰλητοῦ ἐπιδέσμου ἐπάγονται δύο ἢ τρεῖς κυκλοτερεῖς περιειλήσεις , καὶ τότε |
ἐστιν ἅπαν καθόλου καὶ κατηγορικόν : οἱ γὰρ κυρίως ὅροι κατηγορικοὶ ἅπαντες , οἱ δὲ ἀποφατικοὶ οὐχ ὅροι κυρίως : | ||
ἀεὶ πλείω συλλογίζονται , τῶν δὲ ἐν μέρει οἱ μὲν κατηγορικοὶ πλείω “ καὶ τὰ ἑξῆς . ἢ τὰ γὰρ |
Ζ Ε σημείοις , ὅπερ : ∼ Ὁ μοναχὸς πρώτου προβλήματος τοῦ τρίτου ἐπιτάγματος . καʹ . Τριῶν δοθεισῶν εὐθειῶν | ||
ἀναγκαζόμεναι δυστυχοῦσιν ἀπαιδίαν αἱ νῆσοι . Διήγησίς ἐστι παντὸς μὲν προβλήματος αὐτὸ τὸ πρᾶγμα , ἐξ οὗ συνέστηκεν ἡ ὑπόθεσις |
⊂ , πλάτος δὲ τρήματος α ⊂ πάχος δὲ ἡμίσους τρήματος καὶ ἔτι ὀγδόου : τοὺς δὲ μεσοστάτας μῆκος ἔχοντας | ||
τῷ μεταξὺ διαστήματι τῶν τροχῶν , κεχωρισμένων δὲ τοῦ μέσου τρήματος . οὗτοι οἱ κάλοι εἴρονται : εἶθ ' ὅταν |
τῆς κυρτῆς περιφερείας ἴσον τῷ ἀπὸ τῆς ἐφαπτομένης τετραγώνῳ . Κύκλου γὰρ τοῦ ΑΒΓ εἰλήφθω τι σημεῖον ἐκτὸς τὸ Δ | ||
ὀρθάς , ἐπειδήπερ καὶ διὰ τῶν πόλων αὐτὸν τέμνει . Κύκλου δὴ τοῦ ΜΞΝ ἐπὶ διαμέτρου τῆς ἀπὸ τοῦ Φ |
λοβὸν ὠτὸς ἐπὶ ἰνίον , εἶτα λοξὴν κατὰ τοῦ ἑτέρου κροτάφου καὶ τοῦ βρέγματος ὑπὸ τὸν ἕτερον λοβὸν ἐπὶ ἰνίον | ||
ἀναλύεται χωρὶϲ φανερᾶϲ αἰτίαϲ . νυγματώδειϲ δὲ διαδρομαὶ γίγνονται μέχρι κροτάφου καὶ παρέπεται αὐτοῖϲ ῥευματιϲμὸϲ ὑγροῦ ϲυμμέτρωϲ δριμέοϲ καὶ λεπτοῦ |
ἐπιμορίου καὶ τῶν λοιπῶν εἰδῶν ἐν αὐτῶι , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί . τὸ μὲν | ||
ἐξ ἀρχῆς βάθος τι προσκτωμένου : οἷον καθ ' ὑποδιαίρεσιν γραμμικοὶ μέν εἰσιν ἀριθμοὶ ἁπλῶς ἅπαντες οἱ ἀπὸ δυάδος ἀρχόμενοι |
” . ἢ δεῖ μεταλαμβάνειν τὸ ἐνδεχόμενον καθόλου ἀποφατικὸν εἰς καταφατικὸν καὶ ἐπὶ τοῦ ἐνδέχεσθαι . οὐκέτι δὲ ὡς ἐπὶ | ||
ἀποφατικῶν γένοιτ ' ἄν ποτε προτάσεων . οὐ κατὰ τὸ καταφατικὸν δὲ καὶ ἀποφατικὸν μόνον δεῖ ἢ ἀμφοτέρας τὰς προτάσεις |
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ | ||
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ |
ὄργανον καὶ ἄλλον ἄξονα κάτωθεν κεκρυμμένον τοῖς σκέλεσιν ὑπεράνω τοῦ διαπήγματος ὡς διὰ πενταδακτυλιαίου μέτρου . οὗτος δ ' ὁ | ||
σφηνοειδές , καὶ τότε διπλῆς καιρίας μεσότης τάσσεται μεταξὺ τοῦ διαπήγματος καὶ τῆς σπάθης , ἧς αἱ ἀρχαὶ ἔξω ἐῶνται |
κατατείναντα προσδῆσαι , ὅκου ἂν ἁρμόσῃ , ἐκ δὲ τοῦ σιναροῦ ἐς κεράμιον ὕδωρ ἐγχέαντα ἐκκρεμάσαι ἢ ἐς σφυρίδα λίθους | ||
ἐν τῇ ὁδοιπορίῃ οὐ δύναται τὸ σῶμα ὀχέεσθαι ἐπὶ τοῦ σιναροῦ σκέλεος , εἰ μὴ προσκατερεί - δεται τὸ σιναρὸν |
δοθέντας ἀριθμούς . Δεῖ δὴ τῶν εὑρισκομένων τὸν ἀπὸ τοῦ ἡμίσεος τοῦ συναμφοτέρου τετράγωνον τοῦ ὑπ ' αὐτῶν ὑπερέχειν τετραγώνῳ | ||
προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου καὶ ἡμίσεος ποδὸς ἀδιαφόρου . Τὸ ηʹ ἰαμβικὸν δίμετρον ἀκατάληκτον : |
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
μυκτὴρ διαφέρει . ῥὶς μὲν γὰρ λέγεται ἡ ἀπὸ τοῦ μεσοφρύου καταγωγὴ μέχρι τοῦ χείλους , μυκτῆρες δὲ αἱ τῶν | ||
Ἐπιδήσαντες τὴν ἡμίρομβον ἐπείλησιν , ὥστε τὸ χίεσμα κατὰ τοῦ μεσοφρύου ταγῆναι , ἐπιπλέκομεν τὴν διμερῆ φορβεὰν δίχα γενειάδος καὶ |
πῶς ἐχουσῶν . ἢ κατὰ τὸ ἁπλοῦν καὶ σύνθετον τοῦ κατηγορικοῦ συλλογισμοῦ ἢ κατὰ τὸ κατηγορικὸν καὶ ὑποθετικὸν τοῦ ἁπλῶς | ||
βαρύτερα καὶ τὰ κουφότερα κινήσεται . ἡ δὲ δεῖξις διὰ κατηγορικοῦ συλλογισμοῦ οὕτως : ἐν ᾧ μηδέν ἐστι τὸ διαιρούμενον |
' ἐμὸν δέμας ; δοῦναι κελεύσω πορθμίδ ' , ἧι καθήσομεν κόσμον τάφωι σῶι πελαγίους ἐς ἀγκάλας . ὡς εὖ | ||
, εἰ μὴ παραδέχοιντο τὸν δάκτυλον , τὸ πλατὺ μήλης καθήσομεν ἢ τὸν πυρῆνα : τὰ δ ' ἄλλα ὁμοίως |
† ) ἀντὶ τοῦ δαπάνης , τροφῆς , τό τε μετροῦν καὶ τὸ μετρούμενον . ἅπαξ ἐνταῦθα ἡ φωνή : | ||
μαχόμενα : αὔταρκες δὲ νῦν ἐκεῖνο λέγειν , ὅτι τὸ μετροῦν τὴν κίνησιν ἢ τὴν μονὴν ἐν χρόνῳ γίνεται καὶ |
δ ' ἀρχαὶ ὑπὸ λοβοὺς ὤτων ἐπὶ ἰνίον , κἀκεῖ ἁμματιζέσθωσαν πρὸς ἀλλήλας τε καὶ πρὸς τὰς διακρατουμένας : τρίτου | ||
, τῷ καλουμένῳ μοτοφύλακι . κατὰ δὲ τούτου οἱ ἀγκτῆρες ἁμματιζέσθωσαν τοπικοῦ κρατήματος χάριν : εἶτ ' ἔξωθεν ἐπιμοτούσθω ἡ |
τῆς Β ζ μϚ λϚ ιε οὐδέν . ἀσύμμετρος τῇ ΓΔ μήκει . . , ] δυνάμει δὲ δηλονότι σύμμετρος | ||
ἐστι . καὶ πάντα ἑξάκις . τὸ ἄρα τριακοντάκις ὑπὸ ΓΔ , ΖΗ ἴσον ἐστὶ τῇ τοῦ δωδεκαέδρου ἐπιφανείᾳ . |
οὔτε δίτονον πρὸς διτόνῳ τεθήσεται οὔτε τόνος ἐπὶ τὸ βαρὺ διτόνου , ὥστε λείπεται τὸ πυκνόν . φανερὸν δὴ ὅτι | ||
πρὸς αὐτῷ κατ ' οὐδέτερον τῶν τόπων οὔτε τόνος . διτόνου γὰρ οὕτω τιθεμένου ἤτοι βαρύτατος πυκνοῦ ἢ ὀξύτατος πεσεῖται |
ἐκεῖνο ἔνεστιν εἰπεῖν , ὅτι τοῦ ἡλίου ἐπὶ τοσοῦτον διάστημα ἐκτεταμένου , ἔνια μὲν αὐτοῦ τῶν ποδιαίων μερῶν τηλικαῦτα φανήσεται | ||
ἀναγινώσκεσθαι ἡ ἀνοία ἀντὶ τοῦ ἄνοια , διὰ τὸ μέτρον ἐκτεταμένου Ἀττικῶς τοῦ α : ἔστι δὲ τὸ σχῆμα καινοπρεπές |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
ὄντα . σχηματιζέσθω δὲ νῦν ὁ πάσχων πρηνὴς ἐπὶ τοῦ βάθρου , ἵνα αἱ τῶν βρόχων ἀρχαὶ κατάλληλοι γίνοιντο τοῖς | ||
, ὀπίσω : καταρτίζεσθαι δ ' ὀφείλει ἤτοι ἐπὶ τοῦ βάθρου ἢ ἐπὶ τῆς κλίμακος κεκλιμένης , παρακαθημένου τοῦ πάσχοντος |
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
τὸ ἦτρον ἐμφανὴς γένηται , κἀκεῖνον διελεῖν τρυφερὸν ὂν καὶ ἐξέλκειν τὰ ἔντερα καὶ τὰ λοιπὰ σπλάγχνα . Εἰ δὲ | ||
προπέσοιεν , ἀμφοτέρας ἀποκόπτειν εἶτα τὸ κεφάλιον συνθλᾶν καὶ οὕτως ἐξέλκειν . Τῶν δὲ ἐπὶ πόδας φερομένων ἡ μὲν παρέγκλισις |
τὰ ζητούμενα διὰ μεθόδων . Λαβόντες γὰρ τὴν πλευρὰν τοῦ πολυγώνου , ἀεὶ διπλασιάσαντες , ἀφελοῦμεν μονάδα , καὶ τὸν | ||
ἀπὸ τοῦ Η κέντρου ἤχθω ἐπὶ μίαν πλευρὰν τοῦ ΑΒΓΔΕ πολυγώνου ἐπὶ τὴν ΓΔ κάθετος ἡ ΗΘ . ἐπεὶ οὖν |
, ὅπερ καὶ Ἀριστοτέλης προλαβὼν εἴληφε , καὶ ἔστω τὸ ὁριστὸν ἄνθρωπος . αἰτούμεθα τούτου γένος εἶναι τὸ ζῷον , | ||
τε καὶ τὸ ὁριστὸν ἀντιστρέφει πρὸς ἄλληλα , εἰ τὸ ὁριστὸν ᾗ ὁριστὸν ἀποδεικτόν , δῆλον ὅτι καὶ ὁ ὅρος |
ὄψις δὲ ἡ ΒΔ ἀνακλωμένη ἐπὶ τὸ Α , καὶ ὁράσθω τὸ Α , κέντρον δὲ τῆς σφαίρας ἔστω τὸ | ||
σχῆμα ὁτὲ μὲν κοῖλον , ὁτὲ δὲ κυρτὸν ποιεῖ . ὁράσθω γὰρ τὰ ΓΒΔ τοῦ ὄμματος ἐπὶ τοῦ Κ κειμένου |
ἄνωθεν πάντως διὰ τὴν ἐλάττονα . εἰ δὲ τὸ συμπέρασμα ἀποφατικόν , δεῖ πάντως τὴν προστιθεμένην καταφατικὴν εἶναι καὶ κάτωθεν | ||
, τὸν μὲν τὶς καταφατικόν , τὸν δὲ οὐ πᾶς ἀποφατικόν . μεμαθήκαμεν τοίνυν τί ἐστιν προσδιορισμὸς καὶ πόσοι εἰσὶν |
δὲ τοῦ κάμνοντοϲ πυρώϲαντεϲ δέκα καυτῆραϲ ἐμβαλοῦμεν , κατὰ τοῦ μέϲου ϲημείου πρῶτον τοὺϲ ἡλωτούϲ , εἶτα κατὰ τῶν πλευρῶν | ||
ἐϲ τὸ ἴϲον , καὶ γλῶϲϲα μέϲφι τῶν ὁρίων τοῦ μέϲου , καὶ παρίϲθμιον ἕν , καὶ ἰϲθμόϲ , καὶ |
δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε | ||
πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ |
γαιῶν . ἄμπωτις δέ ἐστιν οἱονεὶ ἀνάποσις καὶ ἀναρρόφησις , ὑποστελλομένου τοῦ ὕδατος εἰς μυχούς τινας τῆς ὑποκειμένης γῆς , | ||
καὶ τὰ ὅμοια . . εἴπερ οὖν τὸ ἔνθα καταλιμπάνεται ὑποστελλομένου τοῦ δε , ἴδιον δ ' ἐστὶ τοῦτο τῶν |
τὸν ρμδ , ὅς ἐστι διπλάσιος τοῦ ὑπὸ τῶν ἄκρων προμήκους , τοῦτ ' ἔστι τοῦ οβ . ἡ δὲ | ||
πολυπλασιασθέντων διπλάσιον ἀποτελεῖσθαι τὸ γινόμενον τοῦ ὑπὸ τῶν ἄκρων γινομένου προμήκους . ὀκτάκις γὰρ ἡ τῶν ἄκρων σύνθεσις τουτέστι τὰ |
τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
εὐλόγου γεννῶντες αὐτῶν τὰς διαφοράς , ἔπειτα προσάγοντες διὰ τοῦ κανόνος ταῖς ἀπὸ τῶν φαινομένων μαρτυρίαις , ἀλλὰ ἀνάπαλιν πρότερον | ||
ὅλου χρῆσίς τε καὶ ἀνάκρισις γίνοιτο τῶν λόγων διὰ πεντεκαιδεκαχόρδου κανόνος . Μέθοδοι πρὸς τὴν διὰ μόνων τῶν ὀκτὼ φθόγγων |
κλιμακίῳ ἑνί τινι κλίμακος πρὸς κράτημα . γενομένου δὲ τοῦ κρατήματος , καθὼς ἐδηλώθη , στρέφεται ὁ ἄξων , ὅτε | ||
ἐπ ' ὀφθαλμοῦ παραλαμβάνομεν , ἤτοι προπεσεῖν κινδυνεύοντος , ἢ κρατήματος ἕνεκα τῶν ἐπικειμένων αὐτῷ : τὸν δὲ ῥόμβον ἐπὶ |
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , | ||
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ |
τῇ ἐπιφανείᾳ ἐν τοῖς βλεφάροις γίνεται : δεῖ οὖν τοῦ βλεφάρου διατεινομένου ταινίδιον περιχαράσσειν κατὰ πλάτος ἀνάλογον τῷ τοῦ ὄγκου | ||
ξηραίνει . Τὸ μὲν τράχωμα τραχύτηϲ ἐϲτὶ τῶν ἔνδον τοῦ βλεφάρου , ἡ δὲ τούτων ἐπίταϲιϲ , ὥϲτε καὶ οἷον |
οὐδὲ πρὸς ἔλαττον . ὁ ΑΒΓΔΛ ἄρα κῶνος πρὸς τὸν ΕΖΗΘΝ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΔ πρὸς τὴν | ||
τὸν ΕΖΗΘ κύκλον , οὕτως ὁ ΑΒΓΔΛ κῶνος πρὸς τὸν ΕΖΗΘΝ κῶνον . καί ἐστι μὲν κύλινδρος ὁ βάσιν ἔχων |
: ἐὰν δὲ ὡϲ ὑπὸ ϲκόλοποϲ ἐμπεπαρμένου ἢ ὡϲ ὑπὸ τρυπάνου τιτρᾶϲθαι νομίζῃ , παχέοϲ ἐντέρου τὸ εἶδοϲ τῆϲ ὀδύνηϲ | ||
καὶ τότε μᾶλλον ἡ ἐνέργεια ὀξυτέρα γινέσθω , στρεφομένου τοῦ τρυπάνου τῇ ἀρίδι , ἕως ὅτου καταβιβασθῇ ἡ ἀκμὴ εἰς |
παραλέλειπται . καὶ τοῦτο δῆλον ἐκ τοῦ κατὰ τὴν διαίρεσιν ὑποθετικοῦ . εἰ γάρ τι παραλέλειπται , ἢ γένος ἂν | ||
οὐ μόνον οἱ ὑποθετικοὶ οἱ μικτοὶ ἐκ κατηγορικοῦ συλλογισμοῦ καὶ ὑποθετικοῦ εἰς τὰ τρία σχήματα ἀνάγονται διὰ μέσου τοῦ κατηγορικοῦ |
, καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν | ||
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν |
ὁ δὲ ὁρισμὸς ἄμεσος πρότασις ἢ ὅλως πρότασις μετὰ τοῦ ὁριστοῦ : ὥστε πάλιν ἐν μιᾷ προτάσει πλείω τῶν δύο | ||
τὰς ἑκάστου τῶν ὄντων διαφοράς , καθ ' ἃς τοῦ ὁριστοῦ διαφέρει , οὐδ ' εἰ διαφέρει οἶδεν : ἀγνοῶν |
τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον | ||
Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ |
τοὺς δύο καμπτῆρας , καὶ ἐκ τοῦ τετράκι πέντε ἢ πεντάκι τέσσαρα γεννώμενος , καὶ τοῦτο μέχρι παντὸς συμβήσεται κατὰ | ||
πλευρὰ πέντε , τὸ ἀπὸ ταύτης γίνεται εἴκοσι πέντε : πεντάκι γὰρ πέντε εἴκοσι πέντε . ἡ δὲ περίμετρος γίνεται |
προσκατηγορουμένου προτάσεων , ἀλλὰ καὶ ἐπὶ τῶν ἐξ ὑποκειμένου καὶ κατηγορουμένου συμβαίνειν ἐροῦμεν , οἷον τῆς τὶς ἄνθρωπος οὐ γεωμετρεῖ | ||
σχέσεως οὐ δύναται . Τριῶν οὖν τούτων ὄντων , ὑποκειμένου κατηγορουμένου καὶ σχέσεως , διέλωμεν χωρὶς ἕκαστον αὐτῶν : οὔτω |
καὶ προσεγένετο ἡ κλῆσις , ἐπεί τοί γε , εἰ ἐφυλάσσετο τὸ ἔλαβες ἐν τῷ ἐὰν λάβῃς , συνέμεινεν ἂν | ||
, στάδιοι πέντε καὶ τριάκοντα , τὸ δὲ ἄλλο πᾶν ἐφυλάσσετο . πράξας δὲ οὕτω ταῦτα μετακαλεῖται τοὺς μηχανοποιοὺς καὶ |
προσαγορεύουσι καὶ μετροῦσι τὰ νάματα , καὶ πανήγυρις αὐτοῖς ὁ πῆχυς γίνεται . . . Δεινὸς χρηματιστὴς ἐκ τῆς κατὰ | ||
γενικῆς στάχυος , βότρυος , κέγχρυος πλὴν τῶν δύο τούτων πῆχυς πήχεως , καὶ πέλεκυς πελέκεως . ταῦτα γὰρ μόνα |
. ὁρίζονται δ ' αὐτὸ ὧδε : κόμμα ἐστὶ τὸ κώλου ἔλαττον , οἷον τὸ προειρημένον , τό τε Διονύσιος | ||
μόνον πλέκεται καὶ περιτίθεται , ἀλλὰ καὶ ἐκ περιθέσεως τοῦ κώλου γίνεται : ἀπαρτίζεται γὰρ ἡ καιρία , καὶ ἡ |
μεσοφρύου ταγῆναι , ἐπιπλέκομεν τὴν διμερῆ φορβεὰν δίχα γενειάδος καὶ μετωπιαίας , ἵνα ἁρμόσῃ ἐφ ' ὧν βρέγμα ἀνατρηθὲν δίχα | ||
ἐπὶ βρέγμα , λοξαὶ ἐπὶ ἰνίον , εἶτα γενειὰς καὶ μετωπιαίας . Κεφ . κηʹ . Μεσότης κατ ' ἰνίου |
. Ταύρου θ νο α Ϛʹ τοῦ ἐν τῷ αὐχένι τετραπλεύρου τῆς προηγουμένης πλευρᾶς ὁ νοτιώτερος . . . . | ||
τῶν ἐν τῇ κεφαλῇ , καὶ τοῦ ἐν τᾷ Κήτει τετραπλεύρου ὁ νοτιώτερος τῶν ἑπομένων . Δύνει δὲ ὁ Ἰχθὺς |
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
τῶν εὐθειῶν ἐφ ' αἷς ΕΖ ΖΗ ἀφαιρούμενα ἐντὸς τοῦ μηνίσκου ἀπὸ τοῦ εὐθυγράμμου τμήματα ἴσα ἐστὶ τοῖς ἐκτὸς τοῦ | ||
οὐκ ἐπὶ τετραγωνικῆς πλευρᾶς δεῖξαί φησι τὸν Ἱπποκράτην τὸν τοῦ μηνίσκου τετραγωνισμόν , ἀλλὰ καθόλου , ὡς ἄν τις εἴποι |
φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται | ||
καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν |
. διὰ τοῦτο γραμμὴ μὲν ἄνευ ἐπιπέδου καὶ τοῦτο χωρὶς στερεοῦ θεωρεῖται , ἐν δὲ τῷ τελείῳ μεγέθει πάντα χρὴ | ||
οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλ ' ὡς ἡ ΒΜ βάσις πρὸς |
κράσεων ἐννέα διαφοροὶ , τέσσαρες μὲν ἁπλαῖ , τέσσαρες δὲ σύνθετοι , καὶ πρὸς τούτοις ἡ εὔκρατος . καὶ τῶν | ||
σῴζειν τὰς ἀναλογίας . Τῶν ῥυθμῶν τοίνυν οἱ μέν εἰσι σύνθετοι , οἱ δὲ ἀσύνθετοι , οἱ δὲ μικτοί , |
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
ἔτυχεν , πολλαπλάσιον τὸ Ζ . Ἐπεὶ οὖν ἰσάκις ἐστὶ πολλαπλάσιον τὸ Δ τοῦ Α καὶ τὸ Ε τοῦ Β | ||
οὔτε πολλαπλάσιον ἔσται οὔτε ἐπιμόριον . ἔστω γὰρ διάστημα μὴ πολλαπλάσιον τὸ ΒΓ , καὶ γεγενήσθω , ὡς ὁ Γ |
, κορυφὴν δὲ τὸ Β σημεῖον . διῄρηται ἄρα τὸ ΑΒΓΔΕΖ πρίσμα εἰς τρεῖς πυραμίδας ἴσας ἀλλήλαις , ὧν βάσεις | ||
πυραμίδας ἴσας ἀλλήλαις τριγώνους βάσεις ἐχούσας . ἔστω πρίσμα τὸ ΑΒΓΔΕΖ τρίγωνον ἔχον βάσιν τὴν ΓΖΔ . λέγω , ὅτι |
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ | ||
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ |
τῶν ΑΒ , ΑΓ τοῦ ἀπὸ τῆς ΔΕ . Τούτου δεδειγμένου δεικτέον , ὅτι ὁ αὐτὸς κύκλος περιλαμβάνει τό τε | ||
ἀνάγεται τῆς φιλοσοφίας διὰ τὸ εἰδέναι ποῦ μάλιστα συντελεῖ . δεδειγμένου δὲ τίνος ἕνεκα ταῦτα προλέγουσιν οἱ φιλόσοφοι , καιρὸς |
διὰ πασῶν , τόνων ἕξ , οἷόν ἐστι τὸ ἀπὸ προσλαμβανομένου ἐπὶ μέσην : τέταρτον δὲ τὸ διὰ πασῶν καὶ | ||
τρίτη συνημμένων , τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ |
τὸ Μένδης Μένδητος καὶ τὸ γλοίης γλοίητος καὶ τὸ πλήρης πλήρους καὶ τὸ Ἄρης Ἄρεος . Καὶ τὸ μὲν Ναίης | ||
ἢ πῶς ἐμποδιεῖ ; ἔτι φασὶν αὐτοὶ διὰ μὲν τοῦ πλήρους μηδὲν κινεῖσθαι : μὴ γὰρ ὑπείκειν , διὰ τοῦ |
γ . λέγω , ὅτι καὶ ὁ β τοῦ α ἐπιμόριός ἐστι κατὰ τὸ ὁμώνυμον μόριον τοῦ γ ἐναλλάξ , | ||
μέτρου . ἄφελε ἴσον τῷ Θ τὸν ΗΖ καὶ ἐπεὶ ἐπιμόριός ἐστιν ὁ ΔΖ τοῦ Θ , ἡ ὑπεροχὴ ὁ |
καὶ θεωρία ἐκεῖνο . Ἡ ἄρα πρᾶξις ἕνεκα θεωρίας καὶ θεωρήματος : ὥστε καὶ τοῖς πράττουσιν ἡ θεωρία τέλος , | ||
ἀνεκλείπτου περιφερείας δεδειγμέναις μοίραις ρνζ , ὡς ἐπὶ τοῦ προκειμένου θεωρήματος σελήνης , ἑκατέρα τῶν ΕΓΗ , ΖΑΘ περιφερειῶν [ |
' ἀντιστροφὴν τοῦ προτέρου . Εἰσὶ δὲ καὶ ἕτεροι ῥυθμοὶ μικτοὶ τὸν ἀριθμὸν ἕξ : κρητικός , ὃς συνέστηκεν ἐκ | ||
οἱ μὲν εὐκτικοί , οἱ δὲ ἀπευκτικοί , οἱ δὲ μικτοὶ ἢ δύο τούτων ἢ τριῶν ἢ πάντων ὁμοῦ . |
: παρὰ τὸ ἔζω : τοῦτο παρὰ τὸ ἔω τὸ καθέζομαι . τὸ γὰρ ἔδω , οὐ μόνον τὸ ἐσθίω | ||
αἳ τοῦ μηνὸς γίγνονται τετράκις , τοῦτο δὲ ποιήσας ἄφωνος καθέζομαι δεικνύς , ὡς οὐ τοῦ πολλὰ πράττειν ἐπιθυμῶ , |
δι ' αἰγείρων καὶ αἱ λοιπαὶ ἐπιϲπαϲτικαί . Τοῦ μὲν ὀϲχέου τὴν φλεγμονὴν διαγνωϲτέον ἐκ τοῦ κατὰ τὴν πρώτην τῆϲ | ||
τῇ δεξιᾷ χειρὶ τὸ πέραϲ ἐνδιπλοῦντεϲ ἐπὶ τὰ ἔνδον τοῦ ὀϲχέου ὁμοῦ τε τῇ ἀριϲτερᾷ τὸν περιτόναιον ἀνέλκοντεϲ πρὸϲ τὴν |
τῷ ξεϲτίῳ , εἶτα ἕτερον ὀϲτράκινον ἀγγεῖον ἄωτον λαβὼν μακροτράχηλον ϲτόμιον ἔχον ἁρμόδιον τῷ ϲτομίῳ τοῦ περιέχοντοϲ τὰ εἰρημένα εἴδη | ||
ϲτομίου τῆϲ ὑϲτέραϲ μετέωρον κἄπειτα λαβόμενον αὖθιϲ ἀπευθύνειν ἐπὶ τὸ ϲτόμιον . εἰ δὲ πλείονα τοῦ ἑνὸϲ ἐμβρύου καταφέροιτο , |
ἐπὶ τὸν μέγαν , ὁμοίωϲ διὰ μέϲηϲ τῆϲ βάϲεωϲ τοῦ ϲταφυλώματοϲ , ἵνα γένηται τὸ ϲχῆμα τῶν ἐμπεπαρμένων δύο βελονῶν | ||
ῥάμμαϲιν ἀπολινῶϲαι τῇδε κἀκεῖϲε τὸν ὄγκον , ὡϲ ἐπὶ τοῦ ϲταφυλώματοϲ ἐλέγομεν . εἰ δὲ φόβοϲ εἴη τῆϲ τῶν ῥαμμάτων |
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
! ! κροτάλων ? ἱέτω ? [ ] ! ˈ τύμπανον ἰάχει ? ? ? [ ˈ [ ⚕ ἐμβαίνει | ||
ἐμπλώῃ καὶ ὑπὸ τῆϲ πρήϲιοϲ ἐν τοῖϲι πατάγοιϲι δονέῃ ὅκωϲ τύμπανον , τυμπανίηϲ κικλήϲκεται . ἢν δὲ ὕδωρ ἅλιϲ ἐϲ |
οἷόν τε : κἀκεῖνο μὲν ἐπιβολὴ καὶ θίξις ἐστὶ τοῦ νοουμένου , τοῦτο δὲ ὥσπερ κίνησις περὶ αὐτὸ καὶ ἐπέλευσις | ||
ἐξ ἐκείνου γεννᾶσθαι μερικὸν Προμηθέα , Προμηθέως γοῦν τοῦ πρώτου νοουμένου νοός , ἤτοι τῆς καθόλου ψυχῆς τοῦ παντός . |
: καὶ ἐνταῦθα ἁμάρτημα : οἱ γὰρ παλαιοὶ ἐπὶ τοῦ στρογγύλου τιθέασιν , οἱ δὲ νῦν ἐπὶ τῆς ὑπὸ τῶν | ||
, ἀλλὰ καὶ πρὸς τοὐκτὸς ἐπιστρέφων αὐτὴν διὰ τένοντος ἠρέμα στρογγύλου : ὁ δ ' αὖ πάλιν ἐφεξῆς τῷδε τοῖς |
. ὁ κόρυς τοῦ κόρεος , ὡς ὁ πῆχυς τοῦ πήχεος . τήμερον ] σήμερον . . τὸ παρὸν σύστημα | ||
: τοῦ γὰρ βραχίονος τὸ γιγγλυμοειδὲς , ἐν τῇ τοῦ πήχεος βαθμίδι ἐν τουτέῳ τῷ σχήματι ἐρεῖδον , ἰθυωρίην ποιέει |
παραθέντες τὸν τῶν δέκα πληροῦμεν ἀριθμόν , τοῦτον δὲ τῷ τριακονταπέντε συνθέντες ποιήσομεν τὸν τεσσαρακονταπέντε , καθ ' ὅν φασι | ||
τριακοντατέσσαρα ὁ τριακοντατρία , τοῦ δὲ τριακοντατέσσαρα καὶ τριακονταὲξ ὁ τριακονταπέντε , ὡς μεταξὺ τριακονταδύο καὶ τριακοντατέσσαρα γίνεσθαι δύο διαστήματα |
, εἰς α τρέπεται , ὡς δερῶ ἔδαρον ἐδάρην , ἔπαρον ἐπάρην , ἔφθαρον ἐφθάρην , τὰ δὲ μὴ οὕτως | ||
ἰδοὺ ὑπεροχή . πάλιν ὁ τετράγωνος ἐξ ὑπεροχῆς δυάδος : ἔπαρον οὖν τῶν δ β , ἰδοὺ καταλείπονται β . |
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
Ζηνᾷ ” ἰδού , ἀπὸ τοῦ νῦν κεχάρισταί σοι : πώλησον , χάρισον , ἀπόλυσον , ὃ βούλει εἰς αὐτὸν | ||
πρὸς ἑαυτὸν εἵλκυσε καί φησι : ” τὴν ταχίστην με πώλησον , ἐπεὶ δραπετεύσω ” . καὶ ὁ Ξάνθος : |
ἄνευ μὲν γὰρ διαφορᾶς ἕκαστον τῶν ἐνδει - κνυμένων τοῦ ἀπαιτουμένου γένος ἐνδείκνυται . διαφορὰν δὲ προσειληφὸς τὸ αὐτῷ γένει | ||
κύκλῳ ἐς τὴν Αἰγυπτίαν σίτησιν , ἐπί τε τῆς Ῥώμης ἀπαιτουμένου πέντε καὶ εἴκοσι μυριάδας ὑπεραπέδωκε ταῦτα τὰ χρήματα οὔτε |
δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β | ||
ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ |
ἀρχαί . ἔστι δ ' ὁ βρόχος οὗτος τῇ δυνάμει ἀνισότονος , καὶ εὔχρηστος οὐ μόνον πρὸς τὴν τάσιν , | ||
τῷ δὲ πήχει πάλιν κατὰ τὰ ἀπολήγοντα μέρη περιτιθέσθω βρόχος ἀνισότονος , ὡς ἐρτὸς ἢ ναυτικός , οὗ αἱ ἀρχαὶ |
ὁ ε τοῦ β διπλασιεφημιόλιος , ὁ ζ τοῦ γ διπλασιεπίτριτος , ὁ θ τοῦ δ διπλασιεπιτέταρτος , ὁ ια | ||
τοῦ μείζονος ἐπιμερὴς ἤτοι τρισεπιτέταρτος , ἀπὸ δὲ τοῦ ἐλάσσονος διπλασιεπίτριτος , ὡς ἐκ τοῦ ιϚ , ιβ , θ |