παραλέλειπται . καὶ τοῦτο δῆλον ἐκ τοῦ κατὰ τὴν διαίρεσιν ὑποθετικοῦ . εἰ γάρ τι παραλέλειπται , ἢ γένος ἂν | ||
οὐ μόνον οἱ ὑποθετικοὶ οἱ μικτοὶ ἐκ κατηγορικοῦ συλλογισμοῦ καὶ ὑποθετικοῦ εἰς τὰ τρία σχήματα ἀνάγονται διὰ μέσου τοῦ κατηγορικοῦ |
ἐστιν ἅπαν καθόλου καὶ κατηγορικόν : οἱ γὰρ κυρίως ὅροι κατηγορικοὶ ἅπαντες , οἱ δὲ ἀποφατικοὶ οὐχ ὅροι κυρίως : | ||
ἀεὶ πλείω συλλογίζονται , τῶν δὲ ἐν μέρει οἱ μὲν κατηγορικοὶ πλείω “ καὶ τὰ ἑξῆς . ἢ τὰ γὰρ |
οὔτε ἐλάσσων ; κατασκευάζει τοῦτο διὰ τοῦ βʹ τρόπου τῶν ὑποθετικῶν , ὅτι , εἴ ἐστιν ἡ ΒΑΓ γωνία ἴση | ||
ἂν εἴη μόνον . Εἰπόντες δὲ περὶ τῶν ἐξ ὁμολογίας ὑποθετικῶν καὶ δείξαντες , ὅτι μὴ γίνεται τοῦ τιθεμένου , |
πῶς ἐχουσῶν . ἢ κατὰ τὸ ἁπλοῦν καὶ σύνθετον τοῦ κατηγορικοῦ συλλογισμοῦ ἢ κατὰ τὸ κατηγορικὸν καὶ ὑποθετικὸν τοῦ ἁπλῶς | ||
βαρύτερα καὶ τὰ κουφότερα κινήσεται . ἡ δὲ δεῖξις διὰ κατηγορικοῦ συλλογισμοῦ οὕτως : ἐν ᾧ μηδέν ἐστι τὸ διαιρούμενον |
τῶν δὲ συλλογισμῶν οἱ μέν εἰσι κατηγορικοί , οἱ δὲ ὑποθετικοί , οἱ δὲ μικτοὶ ἐκ τούτων : κατηγορικοὶ μέν | ||
ἐν δεσμῷ τὴν ἑνότητα καὶ ἀκολουθίαν ἔχων , ὡς οἱ ὑποθετικοί : εἰ ἡμέρα ἐστὶν ἥλιος ὑπὲρ γῆν ἐστίν : |
πλασματικὰ πολλὰ συλλέξας καὶ διάφορα ἕτερα εἰς τὸ τέλος τοῦ ἕκτου λόγου καταντήσεις . . Δημοσθένου ] | κατὰ [ | ||
οὐ πολλοῦ χρόνου ἐπὶ μέγα ἐχώρησαν δυνάμεως . Τέλος τοῦ ἕκτου λόγου Νικολάου Δαμασκηνοῦ . . . : Ὅτι Κύψελος |
δέ τινες ἐν ἀριθμητικῇ λόγοι ἀριθμῶν οὐ μόνον πολλαπλάσιοι καὶ ἐπιμόριοι , ἀλλὰ καὶ ἐπιμερεῖς καὶ πολλαπλασιεπιμερεῖς καὶ ἔτι πλείους | ||
τεθέντων [ αʹ αʹ αʹ ] καὶ ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ |
καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος | ||
κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος |
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
πρῶτα τὰ ἐκλελεγμένα , ἀποδεικτικοί . ἀληθεῖς μὲν οὖν καὶ ἀποδεικτικοὶ οἱ ἐκ γένους , ἐκ διαφορᾶς , ἐξ ἰδίου | ||
ψυχῆς λάμβανε τὰς διαφορὰς τῶν συλλογισμῶν . οἱ μὲν γὰρ ἀποδεικτικοὶ ἐπιστημονικοί εἰσιν δι ' ἀληθῶν ἀποδείξεων ἐπιστημονικῶς ὁδεύοντες : |
ἀναπαύεται οὐδένα χρόνον . Ὁ δὲ τριταῖος μακρότερός ἐστι τοῦ ἀμφημερινοῦ , καὶ ἀπὸ χολῆς ἐλάσσονος γίνεται : ὁκόσῳ δὲ | ||
μὲν τοιαῦτ ' ἂν εἴη οὖρα . Τοῦ δέ γε ἀμφημερινοῦ κρατοῦντος λεπτά τε καὶ λευκὰ καὶ οἷον ὑδατώδη καὶ |
προσεχής ἐστιν ὁ συλλογισμὸς οὐδ ' ἁπλοῦς ἀλλὰ σύνθετος ἐκ προσυλλογισμοῦ : εἰ δὲ ἄλλο παρὰ τὸ Ε καὶ τὰ | ||
τὴν γὰρ ἀποφατικὴν πρότασιν ἐν τῷ συλλογισμῷ συμπέρασμα οὖσαν τοῦ προσυλλογισμοῦ οὐ παραληψόμεθα ἐν τῷ συνθέτῳ συλλογισμῷ : συντιθέντες γὰρ |
ἀέρι διὰ παντὸς φαινόμενος , διὰ δὲ τὴν λευκόχροιαν ὀνομαζόμενος γαλαξίας . καὶ τῶν Πυθαγορείων τινὲς ἀστέρος εἶναι διάκαυσιν ἐκπεσόντος | ||
μὲν γράφονται πρὸς αἴσθησιν , ὅ τε ζωιδιακὸς καὶ ὁ γαλαξίας , οἱ δὲ ὁρίζοντες ἐπινοίαι μόνον λαμβάνονται , τῶν |
κράσεων ἐννέα διαφοροὶ , τέσσαρες μὲν ἁπλαῖ , τέσσαρες δὲ σύνθετοι , καὶ πρὸς τούτοις ἡ εὔκρατος . καὶ τῶν | ||
σῴζειν τὰς ἀναλογίας . Τῶν ῥυθμῶν τοίνυν οἱ μέν εἰσι σύνθετοι , οἱ δὲ ἀσύνθετοι , οἱ δὲ μικτοί , |
δὲ τετράγωνοι , οἱ δὲ πεντάγωνοι καὶ κατὰ τὸ ἑξῆς πολύγωνοι . γεννῶνται δὲ οἱ τρίγωνοι τὸν τρόπον τοῦτον . | ||
, ὅσοιπέρ εἰσι τὸν ἀριθμὸν οἱ εἰς σύστασιν αὐτῆς συσσωρευθέντες πολύγωνοι . πάλιν γὰρ τὴν ιδ πυραμίδα συνόλην βάσιν ἔχουσαν |
ηζθʹ κύκλου ἐπιπέδῳ : ἡ αβʹ ἄρα πρὸς ἑκατέραν τῶν ηθʹ κμʹ ὀρθή ἐστιν : ὥστε ἡ ὑπὸ τῶν κμθʹ | ||
γὰρ τῶν ηζʹ ζθʹ ἀνὰ ἥμισύ ἐστιν ζῳδίου : ἡ ηθʹ ἄρα ζῳδίου ἐστίν , ὥστε καὶ ἡ λμʹ : |
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ | ||
κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ |
οὐκέτι μέντοι τὸ οὐ πᾶς ἀληθές , ὥσπερ ἐπὶ τῆς ἀδυνάτου διὰ τὴν καθόλου κατάφασιν ψευδομένην καθ ' ὅλην ἑαυτὴν | ||
καὶ τοῦ κατὰ μηδενὸς δείκνυνται ἀλλὰ δεόνται τῆς διὰ τοῦ ἀδυνάτου δείξεως πᾶσαι : πλὴν οἱ μὲν διὰ τοῦ ἀδυνάτου |
καὶ τὸν τρίτον ἀριθμὸν συνάμφω ἐπιτρίτους χρὴ εἶναι δευτέρου καὶ τετάρτου , ἔστι δὲ πρόλογος ἐν ἐπιτρίτῳ πυθμέσιν ὁ δʹ | ||
τέσσαρα : καὶ ταῦτα ἑψείσθω μέχρι τοῦ τρίτου μέρους ἢ τετάρτου , τὸν ἀφρὸν ἀφαιρούντων ἡμῶν . εἰ δ ' |
' ὑποθετικοῦ συλλογισμοῦ χρεία . καὶ ἄλλως δὲ καθόλου πᾶς ὑποθετικός , ἐπ ' εὐθείας καὶ δι ' ἀδυνάτου , | ||
εἶναι τὸ ἀδιαιρέτῳ εἶναι . ἔστιν οὖν τοιουτοτρόπως γινόμενος ὁ ὑποθετικός , ἐκ τριῶν συγκείμενος ὑποθέσεων , αἷς ἐπάγεται τὸ |
τὴν συγγνώμην ἀπὸ τῆς μεταστάσεως οὐ τῷ ἀνευθύνῳ καὶ ὑπευθύνῳ ἐχώρισάν τινες , ἀλλ ' ἁπλῶς τὰ μὲν εἴς τι | ||
τὴν συγγνώμην ἀπὸ τῆς μεταστάσεως οὐ τῷ ἀνευθύνῳ καὶ ὑπευθύνῳ ἐχώρισάν τινες , ἀλλ ' ἁπλῶς τὰ μὲν εἴς τι |
. βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου | ||
βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς |
ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ | ||
Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ ' |
τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν | ||
πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια |
ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
εἰ οὐδενί , καὶ οὐ παντί . Περὶ ὧν οἱ συλλογισμοί , τουτέστιν τῶν προβλημάτων : ἐπάγει γὰρ καὶ ποῖον | ||
δοξαστικόν , ἀλλὰ τὸ διανοητικόν , καὶ περὶ τίνων οἱ συλλογισμοί , ὅτι οὐ περὶ τῶν νοητῶν , οὐ περὶ |
, οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
ὑπότροχον ποιήσας σχεδίαν ἐπέθηκε πλάγιον τὸν κριὸν καὶ οὐκ ἐξ ἀντισπάστων εἷλκεν , ἀλλ ' ὑπὸ πλήθους ἀνδρῶν προωθούμενον ἐποίησε | ||
ἀντισπαστικὸν δίμετρον ὑπερκατάληκτον : ἔχει δ ' ἐπιτρίτους δʹ ἀντὶ ἀντισπάστων . Τὸ Ϛʹ σύνθετον ἔκ τε τοῦ λεγομένου προσοδιακοῦ |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
οἳ διενείμαντο τὰς βασιλείας , * * * γραμμάτων σχηματουργίᾳ κατηστερίσθησαν ; πῶς τε ὁ πεδηθεὶς Κρόνος καὶ τῆς βασιλείας | ||
μὲν οὗτοι καὶ οἱ λοιποὶ πάντες ἀστέρες καὶ τὰ ἄστρα κατηστερίσθησαν . οὐ γὰρ ἐπειδὰν ἀποθάνωμεν , κατά τινας τῶν |
υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
λάβοιεν : περὶ ὧν ἐνέτυχεν . Ἄλλοι τε ἡγεμόνες πλεῖστοι συνεληλύθεσαν . Προσφεύγουσι τῷ Καίσαρι καὶ Ζακύνθιοι μεγάλα ἐγκλήματα ἔχοντες | ||
δύναμις ἐξεστρατευμένη πρὸ τῆς πόλεως πολλή τε καὶ ἀγαθή . συνεληλύθεσαν γὰρ ἐξ ἁπάσης Τυρρηνίας οἱ δυνατώτατοι τοὺς ἑαυτῶν πενέστας |
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
τινὰ ὁμοιότητα πρὸς τὸν Θεαίτητον , δόξει ἡ σκιαγραφία τοῦ Θεαιτήτου εἶναι , ἐπειδὴ ἔχει τι αὐτοῦ : οὐκ ἔστι | ||
. μετὰ γὰρ τοὺς τοῦ Πρωταγόρου ἐλέγχους πάλιν ἐπὶ τὴν Θεαιτήτου μαιείαν ἀναδραμεῖται . μυρίοι γὰρ κτλ . οἱ Θρασύμαχοι |
διότι περιέχει τά τε πολλαπλάσια καὶ τὰ ἐπιμόρια καὶ τὰ ἐπιμερῆ : τὰ δὲ πολλαπλάσια οὐχ ἥκουσιν εἰς ἐπιμόρια καὶ | ||
ἀριθμὸς πρὸς ἅπαντα λόγον ἔχει ἢ πολλαπλάσιον ἢ πολλαπλασιεπιμόριον ἢ ἐπιμερῆ ἢ καθ ' ἕνα τινὰ λόγον , οὓς αὐτὸς |
ιδ πρὸς τὸν δ καὶ ἁπλῶς οἱ καθ ' ἑβδομάδα προχωροῦντες πρὸς τοὺς ἀπὸ δυάδος εὐτάκτους ἀρτίους . εἶτα πάλιν | ||
καὶ ἀπὸ ἑξαγώνου καὶ ἑπταγώνου βάσεως καὶ ἐπὶ πλεῖον ἀεὶ προχωροῦντες πυραμίδας συστησόμεθα τοὺς ἀναλογοῦντας ἑκάστῃ πολυγώνους ἐπισωρεύοντες ἀλλήλοις ἀπὸ |
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
μὲν ἀρτηρίαι , φησίν , συστέλλον - ταί τε καὶ διαστέλλονται τόν τε σφυγμὸν ἀποδιδόασιν , αἱ δὲ φλέβες οὔτε | ||
κατ ' ὠμοπλάτας , ὅτε καὶ τὰ πτερύγια τῆς ῥινὸς διαστέλλονται . καὶ διαστέλλεται μὲν ἐπὶ μέγα ὁ θώραξ , |
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
θέλω ἴσους εἶναι Μο π : ἀλλ ' οἱ δύο συντεθέντες ʂ εἰσι δ καὶ Μο δ . ʂ ἄρα | ||
ἄρα ὁ αος ἔσται ʂ δ . καὶ οἱ τρεῖς συντεθέντες ποιοῦσι τὸν ἐπιταχθέντα ⃞ον , ΔΥ α ʂ β |
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον μετὰ τῆς | ||
πᾶς δὲ ἀριθμὸς πρὸς ἅπαντα λόγον ἔχει ἢ πολλαπλάσιον ἢ πολλαπλασιεπιμόριον ἢ ἐπιμερῆ ἢ καθ ' ἕνα τινὰ λόγον , |
γὰρ αὐτῶν ἐκ περαινόντων περαίνοντι , τὰ δ ' ἐκ περαινόντων τε καὶ ἀπείρων περαίνοντί τε καὶ οὐ περαίνοντι , | ||
Ὑπέρου περιτροπή . ἐπὶ τῶν τὰ αὐτὰ ποιούντων καὶ μηδὲν περαινόντων . Ὑπὲρ τὰ ἐσκαμμένα , ὑπὲρ τὰ μέτρα . |
δὴ τοσούτων εἶναι μονάδων τοὺς δύο πρώτους ἀριθμούς , οἵπερ διπλάσιοι ἔσονται τῶν λοιπῶν δύο , ὄντων δηλονότι καὶ αὐτῶν | ||
, ὀγδοήκοντα δὲ ἐκ Μυκηνῶν καὶ ἐκ Φλιοῦντος διακόσιοι , διπλάσιοι δὲ τούτων Κορίνθιοι : παρεγένοντο δὲ καὶ Βοιωτῶν ἑπτακόσιοι |
οἱ δὲ συνεζευγμένοι , οἱ δὲ συμπεπλεγμένοι , οἱ δὲ ἀντεγκληματικοὶ , καὶ μετὰ τούτους ἕτερα εἴδη , οἱ παράδοξοι | ||
ὁ δὲ δύο : τῶν δὲ διπλῶν οἱ μέν εἰσιν ἀντεγκληματικοὶ , οἱ δὲ κατὰ ἀμφισβήτησιν : διαφέρουσι δὲ οἱ |
Δεῖ δὲ τὸ ἐλεγεῖον τέμνεσθαι πάντως καθ ' ἕτερον τῶν πενθημιμερῶν : εἰ δὲ μή , ἔσται πεπλημμελημένον , οἷον | ||
λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ , δακτυλικὸν |
ἐπιθυμίας . λγʹ . πρὸς τὸ ἀνανήφειν τοὺς μεθύοντας . λδʹ . ὅτι οὐ μόνον ὁ οἶνος ἀλλὰ καὶ ἕτερά | ||
φαίνεται τὸ ὁρώμενον τοῦ κώνου ἤπερ πρὸς τῷ Σ . λδʹ . Ἐν κύκλῳ ἐὰν ἀπὸ τοῦ κέντρου πρὸς ὀρθάς |
ποιητὴν ἐκτείνειν πολλὰ ἕνεκεν τοῦ μέτρου , ὡς δὲ οἱ ἀκριβέστεροι λέγουσι διὰ τὸ φευκτέον εἶναι ἐν δακτυλικῷ μέτρῳ τὸ | ||
, φύσει τινὶ στέρξαντες ἐξ ἀρχῆς : ἔτι δὲ καὶ ἀκριβέστεροι γίνοιντο ἂν τῶν κοινῶν οἱ καθ ' ἕκαστον νόμοι |
ὄντος , καὶ τὸ ὅπερ ὂν ἐξ ἀχωρίστων μὲν καὶ ἀδιαιρέτων ὑπάρξει , ἐξ ὅπερ δὲ ὄντων . ὅμως τούτῳ | ||
δύναμιν τῶν δημιουργικῶν ἀνυμνοῦσι μονάδων : ὅταν δὲ μέγεθος ἐξ ἀδιαιρέτων ὑφίστασθαι , οὐχ ὅτι συνελθόντα τὰ ἄτομα καὶ οἱονεὶ |
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
* ἐσχατιῇ : τελευτῇ * ἐσχατιῇ μογέουσιν : περὶ θάνατον ἐγγίζουσιν * μογέουσιν : μοχθοῦσι κακοπαθοῦσι τρόμον : καὶ γὰρ | ||
οἱ μὲν ἔμπροσθεν τεταγμένοι ἐκ πλαγίου εἰς τὰ βούκουλα ἀλλήλοις ἐγγίζουσιν , οἱ δὲ ὄπισθεν κατὰ νώτου ἀλλήλοις σχεδὸν κεκόλληνται |
κατὰ τοὺς κυνόδοντας ἐπῆρται , οἷς δὲ τὰ κατὰ τοὺς τομεῖς , κυνώδεις . Τῶν ἐρώντων ὑπάρχει σημεῖα τοιαῦτα : | ||
τὰ αὐτὰ δὴ καὶ οἱ ΘΕΖ , ΘΖΜ , ΘΜΝ τομεῖς ἴσοι ἀλλήλοις εἰσίν . ὁσαπλασίων ἄρα ἐστὶν ἡ ΛΒ |
μέσην ὑπολύδιον , ὁ δὲ μεσοειδὴς ἄρχεται μὲν ἀπὸ ὑπάτης φρυγίου , λήγει δὲ ἐπὶ μέσην λύδιον , ὁ δὲ | ||
ἀπὸ τοῦ δωρίου τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν |
αὐτῇ ἐλλείψει τοῦ δοθέντος κυλίνδρου : ὅπερ ἔδει ποιῆσαι . Κώνου δοθέντος εὑρεῖν κύλινδρον καὶ τεμεῖν ἀμφοτέρους ἑνὶ ἐπιπέδῳ διὰ | ||
ἡ ΔΖ τῇ ΖΕ ἐστιν ἴση : ὅπερ ἀδύνατον . Κώνου τομὴ κώνου τομὴν ἢ κύκλου περιφέρειαν οὐ τέμνει κατὰ |
τοῦ εἰπεῖν ἔϲτιν ⸒ ἄξιοϲ εἴπῃ ἔϲτι ⸒ Νάξιοϲ , τουτέϲτιν ἀπὸ τῆϲ Ναξίαϲ τῆϲ νήϲου . οὕτωϲ καὶ τὰ | ||
κῆποϲ δῆμοϲ . Ἡ γὰρ βαρεῖα ϲυλλαβικὸϲ τόνοϲ ἐϲτί , τουτέϲτιν εἰϲ τὴν ϲυλλαβὴν τὴν μὴ ἔχουϲαν τὸν κύριον τόνον |
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
φωναὶ ὑπάρχουσιν οὔτε συνώνυμοι . καὶ ὅτι μὲν οὐχ ὑπάρχουσιν ὁμώνυμοι προφανές : ὑποκατιὼν γὰρ λέγει κοινότητα αὐτῶν τινα , | ||
Χρύσην [ νέμω ” . ] εἰσὶ καὶ ἄλλαι Χρῦσαι ὁμώνυμοι πόλεις καὶ τόποι πολλοί . περὶ Σκῦρον . καὶ |
δακτυλικαί τε οὖσαι καὶ ἀναπαιστικαὶ παιωνικαί τε καὶ ἔστιν ὅτε ἰαμβικαὶ σπονδειακαί τε καὶ μᾶλλον : διὸ καὶ αἱ ἐξ | ||
δακτυλικαί τε * καὶ ἀναπαιστικαὶ καὶ παιωνικαί ἐστι ὅτε καὶ ἰαμβικαὶ σπονδιακαὶ δὲ μᾶλλον . ‚ Κῶλον τοίνυν ἐστὶ μόριον |
γὰρ ἦν , ὦ ἄνδρες , Συπαλήττιος . Οὗτος ἔλαβε Ξεναινέτου Ἀχαρνέως θυγατέρα , ἐξ ἧς γίγνεται Κυρωνίδης καὶ Δημοχάρης | ||
καὶ οὗτοι , ὄντες ἐξ ἐκείνου , μὴ μόνον τὸν Ξεναινέτου οἶκον πλέον ἢ τεττάρων ταλάντων ἕξουσιν , ἀλλὰ καὶ |
. Γαϲτρὸϲ κράϲεωϲ γνωρίϲματα . ξεʹ . Πνεύμονοϲ διάγνωϲιϲ . ξϚʹ . Καρδίαϲ γνωρίϲματα . ξζʹ . Ἥπατοϲ κράϲεωϲ διάγνωϲιϲ | ||
καʹ , κϚʹ , λϚʹ , μγʹ , μϚʹ , ξϚʹ , πδʹ , Ϙβʹ . ὁ δὲ τὸν γʹ |
. Πάλιν δὲ ὁ Εὔδοξος διασαφεῖ καὶ τοὺς ἐπὶ τῶν κολούρων λεγομένων κύκλων κειμένους ἀστέρας καί φησιν ἐπὶ μὲν τοῦ | ||
δὲ τέμνοντες τὴν σφαῖραν διὰ τῶν πόλων ὥσπερ διὰ τῶν κολούρων τὰ μεταξὺ τῶν παραλλήλων διαστήματα κατὰ πλάτος οὐκ εἰς |
καὶ διὰ πλείστων συλλογισμῶν : ἀλλὰ καὶ διὰ τοῦ καθόλου ἀποφατικοῦ , ὃ καὶ αὐτὸ ἐν δύο τε σχήμασι καὶ | ||
ἀλλὰ παρὰ τὴν συμπλοκὴν τοῦ καθόλου καὶ μερικοῦ καταφατικοῦ καὶ ἀποφατικοῦ . ἄνευ γὰρ τῆς τοίας συνθέσεως οὐδὲν ἐδείκνυτο : |
δὲ ἐκ πληγῆϲ ἢ θλάϲματοϲ , κατ ' ἀρχὰϲ μὲν ἐνερευθὴϲ καὶ ἐπώδυνοϲ γίνεται ὁ ὄγκοϲ , ὕϲτερον δὲ ἀργευομένου | ||
θαλάϲϲηϲ . Τοῖϲ ὑπὸ φαλαγγίων δεδηγμένοιϲ αὐτὸϲ μὲν ὁ τόποϲ ἐνερευθὴϲ φαίνεται καὶ ὅμοιοϲ κεντήμαϲιν , οὔτε ᾠδηκὼϲ οὔτε περίθερμοϲ |
: καίτοι εἰσὶ καὶ ἐν δευτέρῳ μερικοὶ καὶ ἐν τρίτῳ ἀποφατικοί , ὡς καὶ ἐν τῷ πρώτῳ οὐ τὸ καθόλου | ||
: οἱ γὰρ ἐν τῷ δευτέρῳ , φησί , πάντες ἀποφατικοί , οἱ δ ' ἐν τῷ τρίτῳ πάντες μερικοί |
πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
. Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
ἐξ ἀσωτίας γὰρ καὶ μέθης μανίαν ἀπεργάζεσθαι . Τούτου γέγονε Πασικλῆς ἀδελφός , μαθητὴς Εὐκλείδου . Χάριεν δ ' αὐτοῦ | ||
ταῦτα . ὡς τοίνυν ταῦτ ' ἀληθῆ λέγω καὶ ὁ Πασικλῆς οὐδὲν ἐγκαλεῖ , λαβέ μοι τὴν τούτου μαρτυρίαν . |
, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
ἔθνος , τρὶς ἐν τῷ βίῳ λούονται μόνον , ὅταν γεννῶνται , καὶ ἐπὶ γάμοις , καὶ τελευτῶντες . , | ||
. ἐκ δὲ αὐτῶν τούτων τῶν εὐτάκτως πολλαπλασίων ἀναστραφέντων εὐθὺς γεννῶνται φύσει τινὶ ἀναγκαίᾳ διὰ τῶν αὐτῶν τριῶν προσταγμάτων οἱ |
. ἰδοὺ γεγόνασιν ἐπιδιμερεῖς : ὁ γὰρ κε τοῦ ιε ἐπιδιμερής : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ μέρη : | ||
πάλιν ὡς ἐν ἐπιμερέσι κατὰ τὴν οἰκειότητα τῆς δυάδος ὁ ἐπιδιμερής . εἰ δὲ οἱ πρῶτοι ἐν τριπλασίῳ λόγῳ , |
τοῦ Θᾶ , ὁ Χνᾶς τοῦ Χνᾶ , Δᾶς Βᾶς Λᾶς πᾶς : εἰ δὲ περιττοσυλλάβως κλίνοιτο μονογενῆ ὄντα ὀξύνεται | ||
ᾖσαν ἐπὶ τὰ πράγματα . ἅμα γὰρ καὶ ἀπὸ τῆς Λᾶς αἱ νῆες ἤδη περιπεπλευκυῖαι καὶ ὁρμισάμεναι ἐς τὴν Ἐπίδαυρον |
δύο καμπτῆρες ὅ τε γʹ καὶ ὁ δʹ , ιβʹ τετράκι γʹ ἀποτελεῖται . καὶ μὴν ἐκ τοῦ αʹ βʹ | ||
τέσσαρές εἰσιν πλευραί , ὧν ἑκάστη - ἐστὶν πέντε , τετράκι τὰ πέντε εἴκοσι . καὶ λοιπὸν ἀεὶ προιόντι τὸ |
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
ἀπεῖχε τοῦ μεσουρανήματος ὁ ἀφέτης , τὸν δὲ γενόμενον ἀριθμὸν συγκρινόμενοι πρὸς ὃν ἔχομεν τῆς θέσεως τοῦ ἑπομένου καὶ τοὺς | ||
πρόσθεν πάντες ἐσημειώσαντο , οἱ ἐν τοῖς ἐλάττοσιν ὅροις λόγοι συγκρινόμενοι πρὸς τοὺς ἐν τοῖς μείζοσι μείζονές εἰσι : δειχθήσονται |
φημι συντίθεσθαι τὸν δεκάσημον . πάλιν ποιῶ τὸν αὐτὸν ἐκ τετρασήμου καὶ ἑξασήμου : συνέστη λόγος ῥυθμικὸς ἡμιόλιος . πάλιν | ||
ἄρσεως , σπονδεῖος μείζων , ὁ καὶ διπλοῦς , ἐκ τετρασήμου θέσεως καὶ τετρασήμου ἄρσεως : κατὰ δὲ συζυγίαν γίνονται |
μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
τοιούτοις οἱ σάτυροι καθηδύνουσι . λυρικοὶ δέ , οἱ καὶ κυκλικοὶ καὶ διθύραμβοι , ἢ ᾔνουν κυδαίνοντες ἀθλητὰς ἀγῶσι νικῶντας | ||
ὁ αὐτός ἐστιν , ὁμοίως δὲ καὶ εἰ οἱ κοσμικοὶ κυκλικοὶ τῆς γενέσεως σύμφωνοι ἢ οἱ αὐτοί . πρὸς ἐπὶ |
συζυγίας τροχαϊκῆς ἤτοι ἐπιτρίτου βʹ , τῆς δὲ βʹ Ἰωνικῆς καταληκτικῆς . Τὸ ιϚʹ , ὡς ἐμοὶ δοκεῖ , ἀναπαιστικόν | ||
τὸ γʹ περίοδος καταληκτική , ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς . τὸ δʹ χοριαμβικὸν καθαρὸν ἡμιόλιον . τὸ εʹ |
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
δʹ φυλὰς τὴν Κεφαλληνίαν διῃρῆσθαι , Πρωνίους , Σαμαίους , Πάλεις , Κρανίους . λαφυστίαν δὲ λαφυσσομένην καὶ ἀπαντλουμένην . | ||
δʹ φυλὰς τὴν Κεφαλληνίαν διῃρῆσθαι , Πρωνίους , Σαμαίους , Πάλεις , Κρανίους . λαφυστίαν δὲ λαφυσσομένην καὶ ἀπαντλουμένην . |
περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ | ||
ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ |
φυλῆς ἕνα ὑπὲρ ἑκάστου μέρους . καὶ οἱ δῆμοι οἱ μερικοὶ οἷον ὥσπερ αἱ κῶμαι . τοῦτο δὲ εἶπεν , | ||
οἱ δειλοὶ τὸ ἦθοϲ τῆϲ ψυχῆϲ . Καιροὶ καθολικοὶ καὶ μερικοὶ ἐπιτήδειοι εἰϲ ἐλλεβοριϲμόν . Ὥρα δὲ ἐαρινὴ ἐπιτηδειατάτη , |
περιεχόμενον ὑπὸ δύο φθόγγων ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις | ||
οἱ τοῦ διὰ τεσσάρων ὅροι σύμφωνοι : ἀπὸ δὲ τοῦ ὀξυτέρου αὐτῶν λαμβάνεται φθόγγος σύμφωνος ἐπὶ τὸ ὀξὺ διὰ τεσσάρων |
καὶ οἱ λοιποί . λέγονται οὕτως ἐκεῖνοι μὲν πρῶτοι καὶ ἀσύνθετοι , ἐπειδὴ ὑπὸ μόνης τῆν μονάδος μετροῦνται , ἐπεὶ | ||
ὡσαύτως καὶ ὁ λθ καὶ ὅμως οὐκ εἰσὶ πρὸς ἀλλήλους ἀσύνθετοι , πρὸς δὲ ἑαυτοὺς σύνθετοι : ἀμφότεροι γὰρ ὑπὸ |
οὐδὲν τοῖος ἔην ἐπὶ νηυσὶν Ἀχαιῶν . † ) ὁ κυκλικὸς τὸ Δέκτῃ ὀνοματικῶς ἀκούει , παρ ' οὗ φησι | ||
ἐξ ἴσου διαστήματος εἰς ταὐτὸν ἀποκαθίσταται . εἰ δὲ ὁ κυκλικὸς λόγος τῇ μονάδι ἐμφαίνεται ἄρχονται δὲ ἐπὶ τριάδος αἱ |
κατασκευάζουσιν : οἱ γὰρ θερμότεροι βαρύτεροί τε ? ? καὶ πολυτροφώτεροι [ ] , οἱ δὲ ψυχρότεροι κουφότεροι καὶ ὀλιγοτροφώτεροι | ||
δὲ ὁ Σίφνιος φησίν : ἄρτοι οἱ ἐκ πυρῶν κριθίνων πολυτροφώτεροι καὶ εὐοικονομητότεροι καὶ τὸ ὅλον κρείσσονες , εἶθ ' |
τρίτος Εὐριπίδης . Μήδεια , Φιλοκτήτης , Δίκτυς , Θερισταὶ σάτυροι . οὐ σώζεται . . . . Ἀριστοφάνους γραμματικοῦ | ||
ἐστι καὶ Ἀριστίου μνῆμα τοῦ Πρατίνου : τούτῳ τῷ Ἀριστίᾳ σάτυροι καὶ Πρατίνᾳ τῷ πατρί εἰσι πεποιημένοι πλὴν τῶν Αἰχύλου |
εἰσι ταῦτα τὰ στοιχεῖα , μεταξὺ δὲ δύο στερεῶν δύο μέσοι ἀνάλογοι γίνονται . ἐν δὲ ταῖς Πολιτείαις ζητεῖ εἰ | ||
παρ ' Αἰολεῦσι τὸ μέσοι , γαίας καὶ νιφόεντος ὠράνω μέσοι : τῇδε ἔχει καὶ ἀπὸ τοῦ τηλόθι τὸ τήλοι |
, ὡς ἐπελογισάμην , ἀδιάκριτος ἔσται καὶ ὁ κατὰ διάρτησιν ἀσύνακτος λόγος . καὶ γὰρ ὁ λέγων κατὰ διάρτησιν ἀσύνακτον | ||
ὁ δὲ ἐκ συνημμένου καὶ τοῦ λήγοντος τὸ ἡγούμενον συνάγων ἀσύνακτος , ὡς ὁ προειρημένος , παρὸ καὶ ἀληθῶν ὄντων |
τοιούτων οὐδέν . τὸ γὰρ αὐτὸ εἶδος τοῦ διπλασίου καὶ τριπλασίου ἔν τε τοῖς ἐλάττοσι καὶ ἐν τοῖς πλείοσιν ἀριθμοῖς | ||
►βασιλικός αʹ τιμοκρατικός βʹ ὀλιγαρχικός γʹ δημοκρατικός θʹ τυραννος Ϛʹ◄ τριπλασίου ἄρα κτλ . εἰλήφθω κατὰ τὴν μονάδα αὐτὴν ὁ |
καὶ τῆς ἰδίου οὐσίας δηλωτικὸν ἢ καὶ τὸν αὐτὸν τῷ προσκειμένῳ : οὕτως γὰρ αὐτῷ ὑπάρξει ὁ μείζων ἄκρος . | ||
δυνα - τόν . Ἀλλ ' ὅταν μὲν ἐν τῷ προσκειμένῳ τῶν ἀντικειμένων τι ἐνυπάρχῃ . τὸν κανόνα παραδίδωσιν λοιπὸν |
πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν | ||
σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ |
. ὁμοίως ἐστὶ καὶ ἐπὶ τοῦ ποδός : ἔχει πέντε ὀστάρια τὸ πεδίον καὶ τέσσαρα τὸ ταρσὸν καὶ δεκατέσσαρα οἱ | ||
εὐδοκίμησαν . λαβὼν ἀφόδευμα λύκου , εἰ δυνατὸν , ἔχον ὀστάρια κατάκλεισον εἰς σωληνάριον καὶ δὸς φορεῖν περὶ τὸν δεξιὸν |
τούτων λαμβανομένων μέσων γίνονται αἱ τρεῖς μεσότητες : οἷον ἔστωσαν ἄκροι ὅ τε μ καὶ ὁ ι . ἐὰν μὲν | ||
. Ἀλλὰ τριῶν ὄντων τοῦ γένους ἀρχηγετῶν , οἱ μὲν ἄκροι μετωνομάσθησαν , Ἀβραάμ τε καὶ Ἰακώβ , ὁ δὲ |
φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται | ||
καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν |
' ἂν γένοιό γ ' ἀθλιωτάτη γυνή . ἴτω : περισσοὶ πάντες οὑν μέσωι λόγοι . ἀλλ ' εἶα χώρει | ||
μὲν οὖν ἄρτιον δεῖ εἶναι , ὅπως ἴσοι ἐνῶσιν οἱ περισσοὶ καὶ ἄρτιοι καὶ μὴ ἑτερομερῶς : ἐπεὶ γὰρ πρότερος |
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
τοὺς οἰκείους μᾶλλον τῶν πολεμίων : λαβόντες δ ' αὐτὸν ἱππέες τινες εἷλκον ἐς τὸν Πομπήιον , ἐπιβλασφημούμενον ὑπὸ τῶν | ||
τῆς ει διφθόγγου καὶ βασιλῆς ἀττικῶς διὰ τοῦ η , ἱππέες ἱππεῖς διὰ τῆς ει διφθόγγου καὶ ἱππῆς διὰ τοῦ |