| ἀπὸ τῶν ΜΧ , ΧΥ , ὧν τὸ ἀπὸ τῆς ΓΦ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΜΧ . λοιπὸν ἄρα | ||
| ἐστιν ἢ διπλάσιον . ἤχθω ἀπὸ τοῦ ΜΕ ἐπὶ τὴν ΓΦ κάθετος ἡ ΜΩ . καὶ ἐπεὶ ἐλάσσων ἐστὶν ἡ |
| τοῦ κέντρου δύναται τὸ ὑπὸ ΛΑΒ , ὕψος δὲ ἡ ΓΟ , μείζων ἐστὶν τοῦ κώνου , οὗ ἡ μὲν | ||
| τὸ ΜΓΟΥ , καὶ τρεῖς αἱ ΥΜ , ΜΓ , ΓΟ ἴσαι ἀλλήλαις εἰσίν , καὶ μείζων ἐστὶν ἡ ΜΓ |
| . διὰ τὰ αὐτὰ ἔσται , ὡς μὲν τὸ ἀπὸ ΜΥ πρὸς τὸ ἀπὸ ΥΙ , τὸ ὑπὸ ΞΡΓ πρὸς | ||
| δὲ ΛΤ τὰ ἴσα ἔγγιστα ὡσαύτως κη , τῆς δὲ ΜΥ ἑξηκοστὰ μ . ὧν τὰ μὲν τῆς αʹ καὶ |
| δειχθήσεται δὲ ἑκατέρα τῶν ΒΧ , ΧΓ ἴση ἑκατέρᾳ τῶν ΒΥ , ΥΦ οὕτως : ἐπεζεύχθωσαν ἀπὸ τῶν Β , | ||
| τουτέστι τῆς ΡΥ , ἐστι διπλῆ : ἴση ἄρα ἡ ΒΥ τῇ ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ |
| ἡ δὲ ΝΧ τῆς ΔΦ διπλῆ , καὶ λοιπὴν τὴν ΧΓ ἕξομεν τοιούτων νε λδ , οἵων ἐστὶν ἡ ΝΧ | ||
| ἐπεὶ δύο αἱ ΒΥ , ΥΦ δυσὶ ταῖς ΒΧ , ΧΓ ἴσαι εἰσίν , καὶ βάσις ἡ ΒΦ βάσει τῇ |
| οἱ Στωϊκοὶ Διὸς νοῦν προσηγορεύκασι , . ΟΥΤΩΣ ΟΥΤΙ ΠΟΥ ΕΣΤΙ . Τὸ σχῆμα ἐπιλογικὸν καὶ συμπερασματικώτατον : κατὰ δὲ | ||
| . . ἙΚΤΗ Δ ' Ἡ ΜΕΣΣΗ ΜΑΛ ' ΑΣΥΜΦΟΡΟΣ ΕΣΤΙ ΦΥΤΟΙΣΙΝ . Ἡ ἑκκαιδεκάτη μετέχει ψυχρότητος : τότε γὰρ |
| ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ | ||
| ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ , |
| ἡ ὑπὸ ΛΘΗ , ἐλάσσων ἄρα ἐστὶν ὀρθῆς ἡ ὑπὸ ΛΗΘ : μείζων ἄρα ἐστὶν ἡ ὑπὸ ΛΘΗ τῆς ὑπὸ | ||
| τρίγωνον τῷ ΛΗΘ τριγώνῳ , τὸ ΕΒΓ ἄρα πρὸς τὸ ΛΗΘ διπλασίονα λόγον ἔχει ἤπερ ἡ ΓΕ εὐθεῖα πρὸς τὴν |
| διπλῆ ἡ ΦΧ : πενταπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΩΨ τοῦ ἀπὸ τῆς ΧΦ . καὶ ἐπεὶ τετραπλῆ ἐστιν | ||
| δὲ ΣΟ τῇ ΨΥ ἴση , καὶ τὰ ἀπὸ τῶν ΩΨ , ΨΥ τριπλάσιά εἰσι τοῦ ἀπὸ τῆς ΟΝ . |
| ΑΞ ἄρα ἴση τῇ ΤΓ . ἐπεὶ οὖν ὅλη ἡ ΑΧ ὅλῃ τῇ ΧΓ ἐστιν ἴση , ἐξ ὧν ἡ | ||
| δύο , ὅπερ δὴ καὶ ὁρᾶται : ἔστι γὰρ τοῦ ΑΧ ὄντος δευτέρου ξου [ ͵γχου ] δύο ἑξηκοστά . |
| ΜΡ μείζων ἐστὶν ἢ διπλῆ , ἡ δὲ ΞΝ τῆς ΝΣ ἐλάσσων ἐστὶν ἢ διπλῆ , ἐλάσσων ἄρα ἐστὶν ἡ | ||
| μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ ΘΚ ἄρα τῆς ΝΣ μείζων ἐστὶν ἢ ὁμοία . καὶ εἰσὶ τοῦ αὐτοῦ |
| . Ὑπὸ γὰρ τοῦ ν ἀμεταβόλου ἐκτείνεται . . ΟΥΔΕ ΤΙ ΔΕΙΛΟΝ ΓΗΡΑΣ . Οὐδὲ κατά τι δειλὸν ὑπῆρχεν αὐτοῖς | ||
| ΔΡΕ , ὡς δὲ τὸ ἀπὸ ΛΤ πρὸς τὸ ἀπὸ ΤΙ , τὸ ὑπὸ ΟΡΓ πρὸς τὸ ὑπὸ ΔΡΕ . |
| ὀρθὰς ἤχθω ἡ ΥΞΧ , καὶ ἐπεζεύχθωσαν αἱ ΝΥ , ΥΜ , καὶ τετμήσθω δίχα ἡ ΜΝ κατὰ τὸ Τ | ||
| ἡ ΥΜ περιφέρεια τῇ ΩΞ περιφερείᾳ . Ἀλλ ' ἡ ΥΜ τῇ ΣΟ ἐστὶν ὁμοία : καὶ ἡ ΣΟ ἄρα |
| παίδων θεραπείαϲ με Περὶ τραχωμάτων καὶ δαϲυμάτων ϲυκώϲεων καὶ τύλων Ϲεβήρου . Κολλύρια διάφορα ὑγρὰ τραχωματικά μϚ Περὶ ὀφθαλμῶν ἀτονίαϲ | ||
| Περὶ τῆϲ ἐπὶ πλήθει γιγνομένηϲ φλεγμονῆϲ καὶ χημώϲεωϲ ἐν ὀφθαλμοῖϲ Ϲεβήρου ϲοφιϲτοῦ . πλήθουϲ δὲ ὑποκειμένου ἐν ὅλῳ τῷ ϲώματι |
| λοιπὸν ἄρα τὸ ἀπὸ τῆς ΒΨ λοιπῷ τῷ ἀπὸ τῆς ΨΚ ἴσον ἐστίν : ἴση ἄρα ἡ ΒΨ τῇ ΨΚ | ||
| ἄρα τὸ ἀπὸ τῆς ΚΒ τῶν ἀπὸ τῶν ΒΨ , ΨΚ . ἴση δὲ ἡ ΒΨ τῇ ΨΚ : ὥστε |
| ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς | ||
| ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία , |
| , ἴση δὲ ἡ ΒΓ τῇ ΓΑ , τουτέστι τῇ ΤΠ , καὶ ἡ ΓΠ τῇ ΤΑ , ἴσον ἄρα | ||
| μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΕΠ πρὸς τὸ ἀπὸ ΤΠ . ἐπεὶ οὖν τὸ ἀπὸ ΟΕ πρὸς τὸ ἀπὸ |
| τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης | ||
| ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ |
| ἐπίπεδον , ἔσται τρίγωνον ἐν τῷ κώνῳ : γεγονέτω τὸ ΑΖΘ . ἐπεὶ οὖν τρίγωνόν ἐστιν ἐν κώνῳ τὸ ΑΖΘ | ||
| Ἐπεζεύχθωσαν γὰρ αἱ ΑΖ ΖΓ : ἴση ἄρα ἡ ὑπὸ ΑΖΘ γωνία τῇ ὑπὸ ΘΖΓ . ἔστιν δὲ καὶ ἡ |
| ΞΝ τῆς ΜΟ ἐλάσσων ἐστὶν ἢ β : καὶ ἡ ΣΛ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ β : ὥστε | ||
| ΞΟ τῇ ΘΣ ἐστὶν ὁμοία , ἡ δὲ ΟΠ τῇ ΣΛ ἐστὶν ὁμοία , καὶ ἡ ΘΣ ἄρα τῇ ΣΛ |
| ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
| ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
| γιεʹ : καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις ὥραις γ ∠ ʹιβ : ἡ δὲ Οὐολουβιλὶς ἔχει τὴν μεγίστην ἡμέραν ὡρῶν | ||
| . . . . . ογ ∠ ʹ κη ∠ ʹιβ Φαράθα . . . . . . . . |
| τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα | ||
| . ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ |
| ΝΡ τῆς ΥΧ , ὅλη ἄρα ἡ ΡΜ ὅλης τῆς ΜΧ ἐστὶ διπλῆ . Πάλιν , ἐπεὶ διπλῆ ἐστιν ἡ | ||
| τῶν ΓΦ , ΦΟ ἄρα ἴσα ἐστὶ τοῖς ἀπὸ τῶν ΜΧ , ΧΥ , ὧν τὸ ἀπὸ τῆς ΓΦ ἴσον |
| δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε | ||
| ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ |
| καὶ συμπίπτει αὐτῇ ἡ ΕΤ , τὸ ἄρα ὑπὸ τῆς ΤΧ καὶ τῆς ΕΚ ἴσον ἐστὶ τῷ ἀπὸ ΓΧ : | ||
| ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ πρὸς ΕΚ , τὸ ἀπὸ ΤΧ πρὸς τὸ ἀπὸ |
| ἀνὰ τὸν Λυδίαν : Ἄξιος ποταμὸς , Ἐχέδωρος ποταμὸς , Θέρμη πόλις , Αἴνεια Ἑλληνὶς , Παλλήνη ἄκρα μακρὰ εἰς | ||
| Συρίᾳ , τὰ δὲ Δορυλαείου . οἱ οἰκοῦντες Θερμηνοί . Θέρμη , πόλις Θρᾴκης . Ἀπολλόδωρος δὲ Μακεδονίας φησὶ καὶ |
| : δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς | ||
| τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ |
| τῆς αὐτῆς βάσεως τῆς ΑΒ στερεὰ παραλληλεπίπεδα τὰ ΓΜ , ΓΝ ὑπὸ τὸ αὐτὸ ὕψος , ὧν αἱ ἐφεστῶσαι αἱ | ||
| ὧν αὐτὸ ἔσται βαρύτατον , τὰ ΑΒ καὶ ΒΓ καὶ ΓΝ . Ὅτι μὲν οὖν παρακειμένης τοῖς διεζευγμένοις τελείοις συστήμασι |
| ΕΛΑΒΕ ] ΜΟΝΟ [ ΔΑΚΤΥΛΙΚΩΙ ] ΣΠΑ [ ΕΠΙ ] ΠΟΛΥ [ ] [ ] ! [ ] Σ ? | ||
| τὸ ἀργύριον τῆς γῆς γενεαλογεῖ . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ ΠΟΛΥ ΧΕΙΡΟΤΕΡΟΝ . Γένους τοῦ χρυσοῦ πολὺ χειρότερον , ἤγουν |
| ἐξαλλάσσουσι τὸ φανερὸν ἡμισφαίριον . ἐν πλείονι δὲ χρόνῳ ἡ ΛΘ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΘΝ : ἐδείχθη | ||
| ἐστίν , ὡς δὲ ἡ ΛΝ πρὸς ΝΞ , ἡ ΛΘ πρὸς ΘΜ : ἴση ἄρα ἡ ὑπὸ ΛΖΘ γωνία |
| ἀπὸ ΗΓ ἐστιν ἴσον , καί ἐστιν ὡς τὸ ὑπὸ ΗΘΖ πρὸς τὸ ἀπὸ ΘΕ , ἡ ὀρθία πρὸς τὴν | ||
| καί ἐστιν ὁ τοῦ ΕΘΠ πόλος μεταξὺ τῶν ΒΓ , ΗΘΖ , μείζων ἐστὶν ἡ ΠΥ περιφέρεια τῆς ΥΝΞ περιφερείας |
| ΑΔ τῇ ΗΓ , λοιπὴ ἄρα ἡ ΔΛ λοιπῇ τῇ ΛΗ ἐστὶν ἴση . καὶ εἰσὶ τρεῖς παράλληλοι αἱ ΔΕ | ||
| ἴση , ἡ δὲ ΑΛ τῇ ΔΕ , ἡ δὲ ΛΗ , τουτέστιν ἡ ΛΜ , τῇ ΕΖ , ὡς |
| ὀφθήσεται διὰ τὸ λαʹ θεώρημα : ὁμοίως καὶ ἐπὶ τῆς ΛΣ . Ὀρθὴ ἂν εἴη . , ] ἐπεὶ γὰρ | ||
| ἴσα . ᾧ ἄρα διαφέρει τὸ ἀπὸ ΓΡ τοῦ ἀπὸ ΛΣ , τούτῳ διαφέρει τὸ ἀπὸ ΣΚ τοῦ ἀπὸ ΚΡ |
| ΑΚΓΜ κύκλους τινὰς τῶν ἐν τῇ σφαίρᾳ τοὺς ΑΒΓΔ , ΒΚΔ διὰ τῶν πόλων τέμνει , δίχα τε αὐτοὺς τεμεῖ | ||
| , ὀρθὴ δὲ πάντοτε ἡ ὑπὸ ΑΒΕ , δίδοται τὰ ΒΚΔ καὶ ΒΛΕ ὀρθογώνια καὶ λόγος τῆς ΖΒ πρὸς τὰς |
| δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων , τοῦ δὲ ΒΔΖ ὀρθογωνίου τὸ ἀπὸ τῆς ΒΖ τετράγωνον ἴσον ἐστὶν τῷ | ||
| τῷ ἀπὸ ΒΝ τετραγώνῳ . ἐπεὶ δὲ ἐν τριγώνῳ τῷ ΒΔΖ κάθετος ἦκται ἡ ΔΝΞ , καὶ κεκλασμέναι πρὸς αὐτῇ |
| ἐγκείμενα περιττώματα τοῖς ἀναπνευστικοῖς μορίοις δυσανάγωγα γίνεται μᾶλλον ὑπεροπτώμενα καὶ καταξηραινόμενα . διὸ συμβουλεύω , ἐφ ' ὧν ἐστι σφήνωσις | ||
| χυλῷ τῆς κυκλαμίνου σὺν ὀλίγῳ μέλιτι , ὡς μὴ ἄγαν καταξηραινόμενα θρύπτηται . καὶ συνεργῶ βαλάνιον προσθεὶς ἐκ τῆς κυκλαμίνου |
| πρὸς τὴν ΓΔ . διὰ τὰ αὐτὰ δὴ καὶ τὸ ΜΕ πρὸς τὸ ΝΗ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ | ||
| τὴν ΖΕ , συνθέντι καὶ ἐναλλάξ ἐστιν , ὡς ἡ ΜΕ πρὸς τὴν ΕΗ , οὕτως ἡ ΘΕ πρὸς τὴν |
| ΑΓ , ΓΒ μέσα ἐστίν . μέσον ἄρα ἐστὶ τὸ ΔΛ . καὶ παρὰ ῥητὴν τὴν ΔΕ παραβέβληται : ῥητὴ | ||
| ἡ μὲν ΑΚ τῇ ΛΒ , ἡ δὲ ΓΚ τῇ ΔΛ , δύο δὴ αἱ ΑΚ , ΚΓ δύο ταῖς |
| , ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν | ||
| διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ |
| διήχθω γὰρ λόγου χάριν ἡ ΛΚ , καὶ κάθετος ἡ ΛΟ , καὶ ἐκβεβλήσθω ἐπὶ τὸ Ρ , καὶ ἐπεζεύχθωσαν | ||
| ΧΕΤ . καὶ ἐπεὶ ζητῶ τίς ἡ ΖΘ περιφέρεια τῇ ΛΟ , τουτέστιν ἡ ΕΗ τῇ ΚΦ , ζητήσω ἄρα |
| . ΜΕΝ ΟΥΝ ΕΙΣΙΝ ΟΙ ΡΥΘΜΟΙ ΟΥΤΟΙ ΤΗΣ ΤΟΙΑΥΤΗΣ ΛΕΞΕΩΣ ΧΡΗΣΑΙΤΟ Δ ΑΝ ΑΥΤΗΙ ΚΑΙ Ο [ ΙΑΜΒΟΣ ] δακτυλ | ||
| ΑΝ ΚΑΔΜΟΣ ΕΓΕΝΝΑΣΕ ΠΟΤ ΕΝ ΤΑΙΣ ΠΟΛΥΟΛΒιΟΙΣΙΝ 〚 〛 ΘΗΒΑΙΣ ΧΡΗΣΑΙΤΟ Δ ΑΝ ΚΑΙ Ο ΙΑΜΒΟΣ ΤΗΙ ΑΥΤΗΙ ΤΑΥΤΗΙ ΛΕΞΕΙ |
| : βοηθόν : ἀλλ ' εἰ καὶ μηδέν ἐστιν ἡ ἱκετεύουσά σε , ἀντὶ τοῦ : μὴ ὡς αἰχμάλωτον καὶ | ||
| ὦ τάλας , ψυχὴν τότε , ὅτ ' ἐξέβαλλε μαστὸν ἱκετεύουσά σε μήτηρ ; ἐγὼ μὲν οὐκ ἰδὼν τἀκεῖ κακὰ |
| ΔΜ , πέμπτον δὲ τὸ ΓΛ , ἕκτον δὲ τὸ ΒΚ , ἕβδομον δὲ τὸ ΑΘ , μόνα δὲ καὶ | ||
| ταῦτα γὰρ ἡμῖν πάντα προαποδέδεικται : τοιούτων καὶ ἑκατέρα τῶν ΒΚ καὶ ΚΘ ἔσται ιε νε . πάλιν , ἐπεὶ |
| λαβεῖν ἑκατὸν Βαβυλῶνας ἐπὶ τῷ μὴ Ζώπυρον ἔχειν ὁλόκληρον . Κρεῖσσον ὀλίγον φωτίζεσθαι , ἢ παντελῶς σκοτίζεσθαι . Κριτὴς κάκιστος | ||
| διδόναι τοὺς ἀδικοῦντας , ἐλεεῖσθαι δὲ τοὺς ἀδίκως κινδυνεύοντας . Κρεῖσσον δὲ χρὴ γίγνεσθαι ἀεὶ τὸ ὑμέτερον δυνάμενον ἐμὲ δικαίως |
| γωνία τῇ ἐναλλὰξ ὑπὸ ΡΠΤ ἴση . ἐὰν δὲ ἡ ΤΦ παράλληλος ᾖ τῇ ΡΠ , διὰ τὰς ἴσας ἐναλλὰξ | ||
| οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΤΦ πρὸς τὸν ἀπὸ τοῦ ΞΦ παραλληλογράμμου κύλινδρον περὶ τὸν |
| τετραγώνοις , ὧν τὸ ὑπὸ ΖΒΔ ἴσον ἐστὶν τῷ ὑπὸ ΕΒΗ , λοιπὸν ἄρα τὸ ὑπὸ ΒΖΔ ἴσον ἐστὶν τῷ | ||
| . ἀλλὰ ἡ ὑπὸ ΑΒΖ γωνία ἴση ἐστὶν τῇ ὑπὸ ΕΒΗ , ἡ δὲ Γ τῇ Δ ἐναλλὰξ ἴση ἐστίν |
| διεχρήσατο , τὸ δὲ λειπόμενον προσθεῖναι τὴν αἰχμάλωτον βούλεται . ΕΠΙ ΤΗι ΚΑΤΑΣΤΑΣΕΙ Δ ' Η ΒΟΥΛΗΣΙΣ . Τῶν γὰρ | ||
| πάντα τὰ κατὰ τὸν βίον πληροῦσα . . ΟΙ ΜΕΝ ΕΠΙ ΚΡΟΝΟΥ . Ὅτι μὲν οἱ ἀπὸ χρυσοῦ γένους ἄνθρωποι |
| αἱ ΔΓΑ [ ] , ΔΒ : καὶ ἡ μὲν ΔΓΑ τεμνέτω τὸν ΑΒΓ κύκλον , ἡ δὲ ΒΔ ἐφαπτέσθω | ||
| , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΖΗ γωνία τῇ ὑπὸ ΔΓΑ : καὶ κοινὴ τῶν δύο τριγώνων τῶν ΑΔΓ , |
| τιμῶσι μὲν καλῶς εἶπεν , οὐ φιλοῦσι δέ . . ΤΗΝ Δ ' ἙΤΕΡΗΝ . Τὴν ἀμείνω λέγει : καὶ | ||
| κατάθου λοιπὸν μετὰ τὴν συμφορὰν τὴν πόλιν εἰρωνευόμενος . ΜΕΤΑ ΤΗΝ ἈΝΤΙΛΗΨΙΝ ΘΗΣΕΙΣ ΤΟ ΧΡΩΜΑ Ἀντεγκληματικὸν τυγχάνον διὰ τὴν ἔχθραν |
| Υ ! [ ! . . . . . . ΜΕΝ ΟΥΝ ΕΙΣΙΝ ΟΙ ΡΥΘΜΟΙ ΟΥΤΟΙ ΤΗΣ ΤΟΙΑΥΤΗΣ ΛΕΞΕΩΣ ΧΡΗΣΑΙΤΟ | ||
| ! [ ] ! Α ! ! [ ] ! ΜΕΝ [ ] [ ! ] ! ! Π [ |
| τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ | ||
| τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ |
| σιωπᾷν , ἢ λαλεῖν οὐ καιρίως . . ΖΕΥΣ ΔΕ ΠΑΤΗΡ . Ὁ Ζεὺς δὲ ὁ πατὴρ τῶν ἀνθρώπων καὶ | ||
| θεοῦ . . ὩΣ ΕΦΑΤ ' ΕΚ Δ ' ΕΓΕΛΑΣΣΕ ΠΑΤΗΡ ΑΝΔΡΩΝ ΤΕ ΘΕΩΝ ΤΕ . Καὶ τοῦτο δὲ προσωποποιΐα |
| τέσσαρα . γίνονται οὖν τῶν δύο τετραγώνων αἱ μονάδες . ρδ ἡ δὲ ΑΓ ιϚ : τετράκις γὰρ δ ιϚ | ||
| δ ' ἐπὶ τῆς ΕΘ τῶν λοιπῶν εἰς τὸ ἡμικύκλιον ρδ ιζ . καὶ τῶν ὑπ ' αὐτὰς ἄρα εὐθειῶν |
| Ν , Ο , Π τῇ ΑΒ παράλληλοι ἤχθωσαν αἱ ΝΥ , ΟΣ , ΤΠ : ἴσον ἄρα ἐστὶ τὸ | ||
| τῆς ΖΝ βάσεως , ὑπερέχει καὶ τὸ ΛΥ στερεὸν τοῦ ΝΥ [ στερεοῦ ] , καὶ εἰ ἴση , ἴσον |
| ΒΑ τῆς ΑΓ μείζων : μείζων ἄρα καὶ ἡ ὑπὸ ΒΔΑ γωνία τῆς ὑπὸ ΑΔΓ . ἐκβεβλήσθω ἡ ΑΔ , | ||
| , ὡς δὲ ἡ ὑπὸ ΓΔΒ γωνία πρὸς τὴν ὑπὸ ΒΔΑ , οὕτως ἡ ΓΒ περιφέρεια πρὸς τὴν ΒΑ : |
| συνημμένον ἔχει λόγον ἐξ οὗ ὃν ἔχει ἡ ΤΣ πρὸς ΣΥ καὶ ἡ ΤΣ πρὸς ΣΡ καὶ ἐξ οὗ ὃν | ||
| στερεόν . τὸ ΕΜ ἄρα πρὸς ἑκάτερον τῶν ΗΝ , ΣΥ τὸν αὐτὸν ἔχει λόγον . ἴσον ἄρα ἐστὶ τὸ |
| τὸ ΠΝ , καὶ διὰ τοῦ Π σημείου τετμήσθω ὁ ΕΟ κύλινδρος ἐπιπέδῳ τῷ ΤΥΣ παραλλήλῳ τοῖς τῶν ΕΖΗΘ , | ||
| ΟΣ , ΣΒ μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΕΟ . καὶ ἐπεὶ αἱ ΓΝ , ΝΚ , ΚΗ |
| διπλάσιον ; καὶ δεικτέον οὕτως : ἐπεὶ γὰρ ἐπιζευγνυμένων τῶν ΨΟ , ΨΣ αἱ ὑπὸ ΚΨΒ , ΚΨΣ , ΣΨΟ | ||
| τὸ ἀπὸ τῆς ΑΨ . λοιπὸν ἄρα τὸ ἀπὸ τῆς ΨΟ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΨΣ . ἴσον δὲ |
| ] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ | ||
| ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις . |
| ἄρα ἐστὶν ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν | ||
| ἡ μὲν ΠΟ τῆς ΟΚ , ἡ δὲ ΞΟ τῆς ΟΛ , ἴση ἐστὶ τῇ ΚΟ ἡ ΟΛ . διὰ |
| τῷ μὲν ἀπὸ τῆς ΓΑ ἴσα ἐστὶ τὰ ἀπὸ τῶν ΓΨ , ΨΛ . ὀρθὴ γάρ ἐστιν ἡ πρὸς τῷ | ||
| , ΥΨ , ΨΜ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΓΨ τῇ ΨΥ , καὶ κοινὴ ἡ ΨΟ , δύο |
| τῷ ΚΖΛ . καὶ φανερόν , ὅτι ἴσον γίνεται τὸ ΚΖΛ τρίγωνον τῷ ΜΗΚΔ τετραπλεύρῳ . Τῶν αὐτῶν ὑποκειμένων ἐὰν | ||
| ΑΒ ἡ ΕΜ . ἐπεὶ οὖν ἴσον ἐστὶ τὸ ὑπὸ ΚΖΛ τῷ ἀπὸ ΑΖ , ἔστιν , ὡς ἡ ΚΖ |
| ὁ ΕΑΒ τομεὺς πρὸς τὸν ΑΗΒ τομέα ἤπερ τὸ ΔΑΒ τρίγραμμον πρὸς τὸν ΑΗΒ τομέα . τὸ δὲ ΔΑΒ τρίγραμμον | ||
| ΑΗΒ τομέα , ὁ ἄρα ΔΘΕ τομεὺς πρὸς τὸ ΔΕΚ τρίγραμμον μείζονα λόγον ἔχει ἤπερ ὁ αὐτὸς τομεὺς πρὸς τὸν |
| ἕως τῶν Ἡρακλείων στηλῶν καὶ τὰ ἀπ ' Ἀλεξανδρείας ἕως Καρνῶν . ] [ Ἀπὸ * * ] εἰς Κάρνας | ||
| λεʹ ∠ ʹʹ μεʹ ιβʹʹ Ἀλοῦον λϚʹ μεʹ Τῶν δὲ Καρνῶν μεσόγειοι Φόρος Ἰούλιος κολωνία λβʹ ∠ ʹʹγʹʹ μδʹ ∠ |
| βάσιν . λέγω , ὅτι τὸ ΑΓΔ τρίγωνον πρὸς τὸ ΒΕΖ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ πρὸς τὴν ΓΔ | ||
| τὴν ΕΖ , οὕτως τὸ ΚΓΔ τρίγωνον , τουτέστι τὸ ΒΕΖ τρίγωνον , πρὸς τὸ ΑΓΔ τρίγωνον : καὶ ὡς |
| : καὶ ἔστω τὰ ὑπὲρ γῆν τμήματα τὰ ΑΗΒ , ΕΗΖ : κατὰ διάμετρον ἄρα ἐστὶ τὸ μὲν Α σημεῖον | ||
| τὰ ΕΑΔ μέρη , καὶ διὰ τοῦτο ὁμοία ἐστὶν ἡ ΕΗΖ περιφέρεια τῇ ΔΚ περιφερείᾳ : πάλιν ἐπεὶ ἀσύμπτωτόν ἐστι |
| , ὥς φησι Τζέτζης , ἡ ἀερσιπότητος εὐθεῖα . . ΤΩΝ Ὁ Γ ' ΟΠΙΖΕΤΟ . Τούτων τῶν θεῶν ἐφοβεῖτο | ||
| ΛΕΞΙΣ ] ΟΙΚΕΙΑ ΜΕΝ [ ΕΣΤΙ [ ΚΑΤΑ ΤΗΝ ] ΤΩΝ ΡΥΘΜΩΝ [ ΦΥΣΙΝ ΟΥΣΑ ΙΑΜΒΙΚΗ ] ΤΟΥ ΙΑΜΒΟΥ [ |
| ποίει καὶ ἐντίθει , ἢ ϲιλφίου ῥίζηϲ χυλῷ ἐγχυμάτιζε . ὑπεκτήκει δὲ τοῦτο : ἰοῦ ⋖ ιβ , ἀμμωνιακοῦ ⋖ | ||
| διαθέσεις ἰᾶται . λειοτριβηθεῖσα δὲ καὶ καταπλασθεῖσα ἐπὶ σπληνὸς τοῦτο ὑπεκτήκει . [ Πρὸς συνάγχην καὶ πόνον τραχήλου . ] |
| ΒΕ , ΓΖ : ὅμοια ἄρα ἐστὶ τὰ ΕΒΔ , ΓΖΔ ὀρθογώνια διὰ τὸ παραλλήλους εἶναι τὰς ΒΕ , ΖΓ | ||
| καὶ θερινὸς μὲν τροπικὸς ὁ ΒΕΑ , χειμερινὸς δὲ ὁ ΓΖΔ , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς |
| ΚΘ περιφερειῶν τοιούτων ἐστὶν Ϙ , οἵων ὁ περὶ τὸ ΒΘΚ ὀρθογώνιον κύκλος τξ . καὶ τῶν ὑπ ' αὐτὰς | ||
| τῷ ἀπὸ τῆς ΑΜ . διὰ γὰρ τὴν ὁμοιότητα τῶν ΒΘΚ ΖΛΓ τριγώνων ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΘ , |
| παράλληλος αὐτῇ ἡ ΓΟ . ἐπεὶ οὖν ἰσογώνιόν ἐστιν τὸ ΑΛΒ τρίγωνον τῷ ΓΟΒ τριγώνῳ καὶ διπλῆ ἐστιν ἡ μὲν | ||
| πρὸς ὅλον τὸ ἀπὸ ΛΗ , οὕτως ἀφαιρεθὲν τὸ ὑπὸ ΑΛΒ πρὸς ἀφαιρεθὲν τὸ ἀπὸ ΛΚ , καὶ λοιπὸν ἄρα |
| ΑΒ μείζονα λόγον ἔχει ἢ ὃν μγ πρὸς λζ : ἀναστρέψαντι ἄρα ἡ ΑΜ πρὸς τὴν ΜΒ ἐλάσσονα λόγον ἔχει | ||
| τῆς ΗΖ ἴσα τὰ ἀπὸ τῶν ΕΖ , Θ : ἀναστρέψαντι ἄρα ἐστὶν ὡς ὁ ΑΒ ἀριθμὸς πρὸς τὸν ΒΓ |
| δέ εἰσιν ἄνισοι , ὥς φησιν , αἱ ΑΔ , ΛΔ . τὸ γὰρ ἀπὸ ΑΛ , τῶν # λ | ||
| ἄρα οὐκ ἐφάπτεται τοῦ ΕΖΗΘ κύκλου : πολλῷ ἄρα αἱ ΛΔ , ΔΝ οὐκ ἐφάπτονται τοῦ ΕΖΗΘ κύκλου . ἐὰν |
| ΒΗΘ : αἱ ἄρα ὑπὸ ΑΗΘ , ΒΗΘ τῶν ὑπὸ ΒΗΘ , ΗΘΔ μείζονές εἰσιν . ἀλλὰ αἱ ὑπὸ ΑΗΘ | ||
| τῇ ὑπὸ ΗΘΔ ἐστιν ἴση . κοινὴ προσκείσθω ἡ ὑπὸ ΒΗΘ : αἱ ἄρα ὑπὸ ΕΗΒ , ΒΗΘ ταῖς ὑπὸ |
| καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει | ||
| δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία |
| . . . . . . . . Τὰ εἰς ΤΙΣ πρὸ αὐτοῦ ψιλὸν ἔχοντα . . . . βαρύνεται | ||
| . τὰ δὲ ὀξύνεται : νοκτίς πηκτίς . Τὰ εἰς ΤΙΣ πρὸ τοῦ ΤΙΣ Υ ἔχοντα σπάνια ὄντα τὰ μὲν |
| ὡς συναμφότερος ἡ ΕΛΒ πρὸς ΒΛ , οὕτως συναμφότερος ἡ ΕΑΒ πρὸς ΒΑ , καὶ ἐναλλάξ : μείζων δὲ συναμφότερος | ||
| ἔχει ἢ πρὸς τὸ ΑΒΓ τρίγωνον : πολλῷ ἄρα ὁ ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα μείζονα λόγον ἔχει ἢ |
| , Μ , Ν σημεῖα παράλληλοι κύκλοι οἱ ΟΠ , ΡΣ , ΤΥ , ΦΧ , καὶ γεγράφθωσαν διὰ τῶν | ||
| λόγον τέτμηται , καὶ τὸ μεῖζον αὐτῆς τμῆμά ἐστιν ἡ ΡΣ . ἴση δὲ ἡ ΡΣ τῇ ΥΦ : τῆς |
| ἀναρριχᾶσθαι διὰ σχοινίου καὶ πλεῖστα ἄλλα ὁμοιότροπα . τὰ δὲ ταχέα χωρὶς εὐτονίας καὶ βίας ἐστίν : δρόμοι δ ' | ||
| ἀμφότερον βασιλεὺς ἀγαθὸς κρατερός τ ' αἰχμήτης . κραιπνά : ταχέα , ταχύτατα . ἄλκιμα : ἰσχυρὰ , καὶ στερεὰ |
| ἐστὶν τῇ ΜΒ περιφερείᾳ . καὶ βέβηκεν ἐπὶ μὲν τῆς ΟΓ περιφερείας γωνία ἡ ὑπὸ ΔΑΟ , ἐπὶ δὲ τῆς | ||
| ἀπὸ τῆς ΟΓ τετραγώνῳ . ἀλλὰ τῷ μὲν ἀπὸ τῆς ΟΓ ἴσον ἐστὶ τὸ ὑπὸ τῶν ΔΓΦ , τῷ δὲ |
| . πρὸς ὃν Οὐλπιανὸς ἔφη : ὄρς ' Ἀσκληπιάδη , καλέει κρείων σε Χαρωνεύς . οὐ γὰρ κακῶς τινι τῶν | ||
| ' ἱσταμένη προσέφη πόδας ὠκέα Ἶρις : ὄρσο Θέτι : καλέει Ζεὺς ἄφθιτα μήδεα εἰδώς . τὴν δ ' ἠμείβετ |
| : ἴση ἄρα ἐστὶν ἡ ὑπὸ ΑΒΕ γωνία τῇ ὑπὸ ΖΗΛ . ἔστι δὲ καὶ ὅλη ἡ ὑπὸ ΑΒΓ ὅλῃ | ||
| ΑΒΕ , ΕΒΓ , ΕΓΔ , ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ , ΛΗΘ , ΛΘΚ , καὶ ὅτι τὸ ΑΒΓΔΕ |
| βούλεται δὲ τῶν ὄμβρων μιμεῖσθαι τὰς σταγόνας ὁ κόραξ . Σκορπίων μὲν ὁ ἄρρην ἐστὶ χαλεπώτατος , ὁ δὲ θῆλυς | ||
| δυνάμενα καὶ αὐτὰ ἀπὸ τῶν προτέρων παράγεσθαι τοπικῶν , Ζυγίων Σκορπίων Ταυρίων . πρόσκειται οὐκ ἀναστρέφοντος τοῦ λόγου , διὰ |
| τὰ δυσίατα καὶ τὰ νομώδη καὶ πρὸς νεῦρα διακεκομμένα καὶ θλάσματα καὶ σηπεδόνας καὶ ἀποσκήμματα καὶ χείμεθλα καὶ ἄνθρακας καὶ | ||
| κόστος , βδέλλιον σὺν ὀξυμέλιτι πινόμενον . Πρὸς στρέμματα καὶ θλάσματα ποιεῖ ἔρια οἰσυπηρά , σπόγγος , ὀξελαίῳ βρεχόμενα καὶ |
| ὥστε καὶ ὡς ἡ ΑΞ πρὸς ΞΗ , οὕτως ἡ ΔΠ πρὸς ΠΘ . ἐπεζεύχθωσαν αἱ ΑΜ ΔΝ . ἀλλ | ||
| , οὕτως ἡ ΑΜ πρὸς ΜΣ , ὡς δὲ ἡ ΔΠ πρὸς ΠΘ , οὕτως ἡ ΔΝ πρὸς ΝΤ : |
| δὴ καὶ ἑκάστη τῶν ΠΡ , ΡΣ , ΣΤ , ΤΥ πενταγώνου ἐστὶν ἰσοπλεύρου τοῦ εἰς τὸν ΕΖΗΘΚ κύκλον ἐγγραφομένου | ||
| ταῖς βάσεσι τοῦ ΟΧ κυλίνδρου καὶ ποιείτωσαν τοὺς ΡΣ , ΤΥ κύκλους περὶ τὰ Ν , Ξ κέντρα . καὶ |
| ἡ ἐνεργοῦσα καὶ διαρθρουμένη καὶ οὐχ ἡ περόνη . [ ΠΕΡΙ ΜΗΡΟΥ ] , , . = , , . | ||
| ΙϚʹ . Περὶ μανδάτων διδομένων τοῖς εἰς ἐνέδραν ἐπερχομένοις . ΠΕΡΙ ΕΝΕΔΡΑΣ ΚΕΦΑΛΑΙΑ ΤΟΥ ΤΕΤΑΡΤΟΥ ΛΟΓΟΥ Αʹ . Περὶ ἐνέδρας |
| τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ ΞΜΕ . τὸ δὲ ὑπὸ ΠΜΡ ἴσον ἐδείχθη τῷ ἀπὸ τῆς ΛΜ : καὶ τὸ | ||
| ἄρα ὡς τὸ ὑπὸ τῶν ΕΜΔ πρὸς τὸ ὑπὸ τῶν ΠΜΡ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΘ , τουτέστιν |
| σοι μοιχείας ἔχειν γραφὴν , ἀλλὰ καὶ φόνου κρίνεσθαι . ΤΗ ΜΕΤΑΘΕΣΕΙ ΤΗΣ ΑΙΤΙΑΣ , Ο ΚΑΛΕΙΤΑΙ ΧΡΩΜΑ . Ἀλλ | ||
| Βατή τὸ τοῦ δήμου . . . . Τὰ εἰς ΤΗ παραληγόμενα τῷ Ε κύρια ὄντα βαρύνεται : Βρεμέτη Ὠκυπέτη |
| ἄρα ἡ ΕΗ πρὸς ΗΒ , οὕτως ἡ ΑΒ πρὸς ΗΒ : ἴση ἄρα ἡ ΑΒ τῇ ΕΗ . ἐλάττων | ||
| τὸ Η , καὶ ἐπεζεύχθωσαν αἱ ΗΑ , ΗΔ , ΗΒ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΔ τῇ ΔΒ |
| τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν | ||
| , ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ |
| ἐστιν ὡς ἡ ΑΗ πρὸς τὴν ΗΒ , οὕτως ἡ ΘΕ πρὸς τὴν ΕΒ , ὡς δὲ ἡ ΘΕ πρὸς | ||
| ΖΕ συνῆπται λόγος ἔκ τε τοῦ , ὃν ἔχει ἡ ΘΕ πρὸς τὴν ΕΖ , καὶ τοῦ , ὃν ἔχει |
| ΚΕΔ . ἀλλ ' ἡ μὲν ὑπὸ ΚΔΕ τῇ ὑπὸ ΔΚΛ ἐστὶν ἴση , ἡ δὲ ὑπὸ ΚΕΔ τῇ ὑπὸ | ||
| τῷ Ζ , διαστήματι δὲ τῷ ΖΔ κύκλος γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ |
| ἡ φλὸξ ἅτε καὶ οὐ κωλυομένη τῷ πνεύματι , ὅπερ διακωλύει τὴν ἐπ ' ὀρθὸν φορὰν ἀλλὰ περικλᾷ καὶ μεταρρίπτει | ||
| Δία , ἔφη , ὦ Σώκρατες , οὐ μόνον γε διακωλύει , ἀλλὰ καὶ τυπτοίμην ἂν εἰ ἁπτοίμην . Ἡράκλεις |
| δυσὶ ταῖς ὑπὸ ΖΒΓ , ΖΓΒ , τουτέστι τῇ ὑπὸ ΔΖΒ . Ὡς ἄρα συναμφότερος ἡ ΑΓΒ . , ] | ||
| αὐτοῖς , μείζονά ἐστιν . Ἔστω ὅμοια ἰσοσκελῆ τρίγωνα τὰ ΔΖΒ ΒΑΓ , καὶ ἐπὶ τῶν αὐτῶν βάσεων ἄλλα ἰσοσκελῆ |
| τὸ ὑπὸ ΔΒΕ , τὸ ἀπὸ ΗΘ πρὸς τὸ ὑπὸ ΓΒΘ . ἐναλλάξ , ὡς τὸ ἀπὸ ΔΒ πρὸς τὸ | ||
| ΔΒΕ τρίγωνον πρὸς τὸ ΗΘΙ , τὸ ΔΒΕ πρὸς τὸ ΓΒΘ . ἴσον ἄρα ἐστὶ τὸ ΗΘΙ τῷ ΓΒΘ [ |
| ἡ ΒΚΑ περιφέρεια τῇ ΘΖΕ περιφερείᾳ . Ἀλλ ' ἡ ΒΚΑ τῆς ΗΘΖ μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ | ||
| τῶν ΒΘΑ : ἡμίσους ἄρα ἐστὶν καὶ ἡ ὑπὸ τῶν ΒΚΑ . ὀρθὴ δέ ἐστιν ἡ ὑπὸ τῶν ΒΕΚ : |
| , τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ | ||
| , ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ |
| , τὴν δὲ ΡΛ μοιρῶν νζ λ , τὴν δὲ ΡΚ μοιρῶν νε μ , τὴν δὲ ΡΘ , μοιρῶν | ||
| τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ , ΝΣ , ΣΚ . οὐκοῦν αἱ ἀπὸ τοῦ |
| τῇ δοθείσῃ . τετμήσθω γὰρ ἡ ΦΧ δίχα κατὰ τὸ Αʹ . καὶ ἐπεὶ εὐθεῖα γραμμὴ ἡ ΦΩ ἄκρον καὶ | ||
| διπλῶν βάνδων . ΠΕΡΙ ΣΤΑΣΕΩΣ ΤΑΓΜΑΤΟΣ ΚΕΦΑΛΑΙΑ ΤΟΥ ΤΡΙΤΟΥ ΛΟΓΟΥ Αʹ . Γνῶσις σημείων δηλούντων τινὶ τοῦ τάγματος στάσιν . |