| ἐχθρῶν κεκρατηκέναι , κινδυνευσάντων δὲ ἀμφοτέρων κἂν ἕνα ἑαυτὸν βασιλέα τετηρῆσθαι ὑπὸ τῆς τύχης . τοιαῦτα δή τινα πλαγίως ἐμφαίνων | ||
| ∠ ʹ διὰ τὸ τὴν ἑσπερίαν ἴσην οὖσαν τῇ ἑῴᾳ τετηρῆσθαι μοιρῶν κγ δʹ . Τούτων δὴ προεφωδευμένων λοιπὸν ἂν |
| χυλοῖσι καὶ ζωμοῖσιν ὑγιὴς ἐγένετο . Ξυνέβη δὲ τελευτῶντος τοῦ μετοπωρινοῦ καιροῦ . Ὁ παρὰ Ἁρπαλίδῃ ἀλείπτης , ἀκρατέστερος σκελέων | ||
| ἤδη ταῦτα γίγνηται πάνταἡ τοῦ καύματος ἐλάττωσις , ἡ τοῦ μετοπωρινοῦ ὄμβρου φορά , ἡ τῶν σωμάτων τῶν ἀνθρωπίνων ἀνάψυξις |
| τὰ ζητούμενα διὰ μεθόδων . Λαβόντες γὰρ τὴν πλευρὰν τοῦ πολυγώνου , ἀεὶ διπλασιάσαντες , ἀφελοῦμεν μονάδα , καὶ τὸν | ||
| ἀπὸ τοῦ Η κέντρου ἤχθω ἐπὶ μίαν πλευρὰν τοῦ ΑΒΓΔΕ πολυγώνου ἐπὶ τὴν ΓΔ κάθετος ἡ ΗΘ . ἐπεὶ οὖν |
| ἐφ ' ἡμέρας πλείους τῶν τριάκοντα , ἔπειτα σμύρνῃ καὶ κιναμώμῳ καὶ τοῖς δυναμένοις μὴ μόνον πολυχρόνιον τήρησιν , ἀλλὰ | ||
| δὲ μετὰ τὸ ἐξερᾶϲαι αὐτοὺϲ ποτίζειν μετὰ οἴνου ἀψινθίῳ καὶ κιναμώμῳ ἢ ϲμύρνῃ ἢ νάρδῳ Κιλικίᾳ , ἣν ἔνιοι ϲαίτιν |
| τοῦ ἰσημερινοῦ πρὸς βοῤῥᾶν μοιρῶν λξ : ἀπὸ δὲ τοῦ ἰσημερινοῦ πρὸς νότον μοιρῶν η ∠ ʹ ἢ θ γίνεται | ||
| τὸ Πράσον ὑπὸ τὸν παράλληλον τὸν ἀπέχοντα πρὸς μεσημβρίαν τοῦ ἰσημερινοῦ μοίρας ιϚʹ γʹʹ ιβʹʹ , διέστηκε δὲ τοῦ ἰσημερινοῦ |
| ἐννέα κοῦραι πολλαπλασιασθέντα δι ' ἀλλήλων δύνασθαι μυριάδων πλῆθος τρισκαιδεκαπλῶν ρϘϚʹ , δωδεκαπλῶν τξηʹ , ἑνδεκαπλῶν ͵δωʹ , συμφώνως τοῖς | ||
| τουτέστι τὰς προκειμένας μυριάδας ἐνναπλᾶς δέκα , ποιοῦσιν μυριάδας τρισκαιδεκαπλᾶς ρϘϚʹ , δωδεκαπλᾶς τξηʹ , ἑνδεκαπλᾶς ͵δωʹ . [ ἐνναπλαῖ |
| τομή ἐστι κυλίνδρου , οἵα καὶ ἐν τῷ πρὸ τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν | ||
| τὰς ἀποδείξεις ποιοῦνται , ὡς γεωμετρία ἀποδείκνυσιν ἐν τῷ πρώτῳ θεωρήματι καὶ δευτέρῳ καὶ τοῖς ἐφεξῆς , ἢ ἀναγκαιότερον , |
| λαμβάνει δὲ τὸν ἥλιον δὶς τοῦ ἔτους κατὰ κορυφὴν , ἀπέχοντα τῆς θερινῆς τροπῆς ἐφ ' ἑκάτερα μοίρας ξβ . | ||
| σκάφῃ κείμενα τῶν ὑπηρετῶν τινες ἔφερον ἐμβαλοῦντες εἰς τὸν ποταμὸν ἀπέχοντα τῆς πόλεως ἀμφὶ τοὺς ἑκατὸν εἴκοσι σταδίους . ἐπεὶ |
| ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
| ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
| . Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
| ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
| τριακοντάδα καὶ κατὰ τὴν τοῦ ἰσημερινοῦ πρόσθεσιν ἢ ἀφαίρεσιν σεληνιακὸν γνώμονα , ὃν ἐπισυνθέντας τῷ ἡλιακῷ καὶ τὴν ἡμίσειαν τῶν | ||
| αὐτὸ πρὸς ἀστρολογίαν οἰόμενος , ὀνομάζει δὲ τὴν κάθετον ἀρχαϊκῶς γνώμονα , διότι καὶ ὁ γνώμων πρὸς ὀρθάς ἐστι τῷ |
| ΚΕΛ μείζονά ἐστιν τοῦ ἐγγεγραμμένου ἑξαγώνου : πολλῷ ἄρα τοῦ ἐγγεγραμμένου πενταγώνου μείζονά ἐστιν : ἔλασσον ἄρα τὸ ΔΕΒ τοῦ | ||
| ὄφλημα καὶ ἐγγραφήσεσθαι Ἀπολλόδωρος τριάκοντα τάλαντα ὀφείλων τῷ δημοσίῳ : ἐγγεγραμμένου δὲ τῷ δημοσίῳ , ἀπογραφήσεσθαι ἔμελλεν ἡ ὑπάρχουσα οὐσία |
| καὶ θεωρία ἐκεῖνο . Ἡ ἄρα πρᾶξις ἕνεκα θεωρίας καὶ θεωρήματος : ὥστε καὶ τοῖς πράττουσιν ἡ θεωρία τέλος , | ||
| ἀνεκλείπτου περιφερείας δεδειγμέναις μοίραις ρνζ , ὡς ἐπὶ τοῦ προκειμένου θεωρήματος σελήνης , ἑκατέρα τῶν ΕΓΗ , ΖΑΘ περιφερειῶν [ |
| ἐστὶ τοιαύτη , ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν | ||
| ' αἵρεσιν ἐκπτώσεων ἢ μετοικισμῶν αἴτιος ἢ φυγῶν , πλὴν τροπικοῦ ὄντος τοῦ ζῳδίου ἢ δισώμου ἐπανέρχεται εἰς τὴν προτέραν |
| τὴν δὲ νύκτα ὡρῶν ιεʹ κατὰ τὸν αὐτὸν λόγον τῶι θερινῶι τροπικῶι δῆλον . . ὁ δὲ ἰσημερινὸς μεταξὺ τῶν | ||
| ἀκρότατον . ἴσος δὲ ὢν οὗτος ὁ χειμερινὸς τροπικὸς τῶι θερινῶι τροπικῶι ἐτμήθη εἰς μέρη ηʹ καθάπερ ἐκεῖνος . τοὐναντίον |
| ἑξῆς οὔτ ' ἐν τοῖς ἐλαχίστοις οὔτ ' ἐν τοῖς ἀνίσοις οὔτ ' ἐν τοῖς ἴσοις ἀεὶ ζητητέον διαστήμασιν , | ||
| : δισχιδὴς δ ' οὗτος κατὰ τὴν ἔκφυσιν γίνεται τοὐπίπαν ἀνίσοις μέρεσι , καὶ διεξέρχεταί γε αὐτὸν μέσος ὁ τὸν |
| μείζων ὁ ἰσημερινός ἐστι μέσος ὤν , ἰσομεγέθης ὢν τῶι ζωιδιακῶι καὶ τῶι γαλαξίαι . ἔστι δὲ ζώιδια τὰ κατὰ | ||
| δὲ μεσημβρινὸς καλεῖται μὲν οὕτως , ὅτι ἥλιος ἐν τῶι ζωιδιακῶι κύκλωι φερόμενος , ὅταν γένηται κατὰ μεσημβρίαν , τούτου |
| πρὸς τὸ μέγεθος τοῦ ἑαυτοῦ κύκλου , τὰς δὲ τῶν τροπικῶν μοίρας μείζους εἶναι τῶν μοιρῶν τοῦ ἀρκτικοῦ , ἐπειδήπερ | ||
| τῶν σχημάτων , προσώπων τε ἀποστροφαῖς καὶ χρόνων ἐναλλαγαῖς καὶ τροπικῶν σημειώσεων μεταφοραῖς ἐξηλλαγμένα καὶ σολοικισμῶν λαμβάνοντα φαντασίας : ὁπόσα |
| . Τέμνει δὲ τοῦτον Ἥλιος ἀφ ' ἑπτακαιδεκάτης Τυβὶ μηνὸς χειμερινοῦ , τοῦ τῶν Καλάνδων λέγω , ἕως Μεχὶρ τῶν | ||
| ἐν τῇ ἡμετέρᾳ εὐκράτῳ . Ὁπόταν δ ' ἐφαψάμενος τοῦ χειμερινοῦ πρὸς ἡμᾶς πάλιν ὑποστρέφῃ , ἐπὶ τὰ ὑψηλότερα τοῦ |
| δὲ οβʹ γίνεται σιϚʹ , τὰ δὲ ξδʹ τρὶς γίνεται ρϞβʹ . τούτων ἐπίτριτα τὰ σνϚʹ , ἅτινα πρὸς σμγʹ | ||
| τοῖς ποδαγρικοῖς : λιθαργύρου ⋖ ϞϚʹ , ἐλαίου παλαιοῦ ⋖ ρϞβʹ , οἴνου παλαιοῦ καὶ κιρροῦ διαυγοῦς καὶ ἠρέμα γλυκέος |
| δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε | ||
| πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ |
| οὕτω περιέχεσθε τῆς ἡγεμονίης , οἰκὸς καὶ ἐμὲ μᾶλλον ὑμέων περιέχεσθαι , στρατιῆς τε ἐόντα πολλαπλησίης ἡγεμόνα καὶ νεῶν πολλὸν | ||
| τέσσαρα , ἐν οἷς ἐλέγομεν καὶ τὴν τῆς ψυχῆς ἰδέαν περιέχεσθαι κατὰ τὸν ἐναρμόνιον λόγον , ὁ μὲν τέσσαρα τοῦ |
| διεζῶσθαι κύκλοις , ὧν ὀνόματα εἶναι τάδε : ἀρκτικόν , ἀνταρκτικόν , θερινὸν τροπικόν , χειμερινὸν τροπικόν , ἰσημερινόν , | ||
| δὲ τόν τε ἀρκτικὸν καὶ τὸν θερινὸν τροπικὸν καὶ τὸν ἀνταρκτικόν . ἀρκτικὸς δ ' ὁ αὐτὸς καὶ ἀεὶ φανερὸς |
| κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
| γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
| τὸ αὐτὸ συμβήσεται συμπροκοπτόντων τοῖς ἑξῆς ἐπὶ τὸ πλάτος λαμβανομένοις πολυγώνοις καὶ τῶν γνωμονικῶν τριγώνων . ὁ μὲν γὰρ ἐφεξῆς | ||
| τούτων ἀδύνατόν ἐστιν εὑρεῖν ἄλλα σχήματα ἴσοις καὶ ὁμοίοις ἰσοπλεύροις πολυγώνοις περιεχόμενα μάθοι τις ἂν καὶ οὕτως . Πᾶσαν στερεὰν |
| Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ | ||
| καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν |
| καταντήσει τὸ ἔτος εἰς τὸν ἕκτον τόπον εἴτε εἰς τὸν δωδέκατον εἴτε εἰς τὸν δʹ εἴτε εἰς τὸν ζʹ εἴτε | ||
| τοῦτο ἔρρευσε χρόνῳ : ἐν τοσούτῳ γὰρ ἔλεγον καὶ τὸ δωδέκατον μέρος ἀνεληλυθέναι τοῦ κύκλου , καὶ τοῦτον ἔχειν τὸν |
| Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως | ||
| ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ |
| Πολυφήμου δῆθεν . τὰ πράγματα ἐν Σικελίᾳ . τοῦ δὲ Ἀράτου , ᾧ προσφωνεῖ , καὶ ἐν τοῖς Θαλυσίοις [ | ||
| γόνατα τοῦ Ἡνιόχου καὶ τὰς κεφαλὰς τῶν Διδύμων ἔτι πρότερον Ἀράτου Εὔδοξος ἀναγέγραφεν , ᾧ καὶ νομίζομεν κατηκολουθηκέναι τὸν Ἄρατον |
| κεῖται μεταξὺ τοῦ ἀνταρκτικοῦ καὶ τοῦ ἰσημερινοῦ ἐναντίος τῶι θερινῶι τροπικῶι ἴσος αὐτῶι ὑπάρχων . ἐφάπτεται δὲ αὐτοῦ ὁ ζωιδιακὸς | ||
| δὲ νύκτα ὡρῶν ιεʹ κατὰ τὸν αὐτὸν λόγον τῶι θερινῶι τροπικῶι δῆλον . . ὁ δὲ ἰσημερινὸς μεταξὺ τῶν πέντε |
| πορθεῖσθαι ἀπὸ τῶν σῶν παίδων , ἁλωθήσεται δὲ ὑπὸ τῶν τετάρτων ἀπὸ σοῦ : ἔστι δὲ ὁ Πύρρος . ἅμα | ||
| πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ διπλασιεπιτετραμεροῦς πέμπτων ἐν ἐννάτῳ |
| , δεινὸν ἡγησάμενοί τινες , εἰ οἱ νόμοι παρὰ τῷ ἡμίσει τμήματι τοῦ γένους ἀνθρώπων ἐξετασθήσονται μόνῳ τῷ βαρβαρικῷ , | ||
| : οὐ γὰρ τὸ μὲν ἥμισυ τοῦ Σωκράτους ἐν τῷ ἡμίσει , τὸ δὲ ἥμισυ αὖθις ἐν τῷ ἡμίσει , |
| εἰς πάνδημον τῆς πατρίδος ὄλεθρον : ὁ δὲ βασιλεὺς ἐν τρισὶ ταῖς πάσαις ἡμέραις ἑτοιμασάμενος τὰ πρὸς τὴν πολιορκίαν τὰς | ||
| τὸ πρόσωπον ὕδωρ καὶ τὸ στόμα διακλυσάμενον οἴνῳ ἀκράτῳ χλιαρῷ τρισὶ κυάθοις ἀνακογχυλιάζεσθαι κατὰ μικρόν . Ἐμέτου δὲ τοῦ ἀπὸ |
| εʹ τούτων ἀδύνατόν ἐστιν εὑρεῖν ἄλλα σχήματα ἴσοις καὶ ὁμοίοις ἰσοπλεύροις πολυγώνοις περιλαμβανόμενα , καὶ ὑπὸ τοῦ Εὐκλείδου καὶ ὑπό | ||
| τὰ μὲν τῆς ἰσότητος τῶν γωνιῶν ἢ πλευρῶν δεικτικὰ τοῖς ἰσοπλεύροις καὶ ἰσοσκελέσιν ἐφήρμοσται , τὰ δὲ τῆς ἀνισότητος τοῖς |
| τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
| κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |
| , καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
| ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
| . ἅπαντα δὲ ταῦτα ϲυνεχῶϲ δεῖ ποιεῖν , ὡϲ μηδέποτε λείπειν τὸ φάρμακον τῷ πεπονθότι μορίῳ : ῥᾳδίωϲ γὰρ ὑπὸ | ||
| τοὺς Καρχηδονίους . καιρὸν εἰ φθέγξαιο : οἱ μέν φασι λείπειν τὴν κατά πρόθεσιν , ἵν ' ᾖ : κατὰ |
| ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
| τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
| παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
| εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
| τοῦ αὐτοῦ σημείου τοῦ ἰσημερινοῦ ἀπό τινος τμήματος ἤτοι τοῦ ὁρίζοντος ἢ τοῦ μεσημβρινοῦ ἐπὶ τὸ αὐτὸ ἀποκατάστασις , νυχθήμερον | ||
| αὐτὰ δειχθήσεται καὶ ὅταν ὁ πόλος τῶν παραλλήλων ἐπὶ τοῦ ὁρίζοντος ᾖ , καὶ γραφομένων διὰ τῶν Κ , Θ |
| κατὰ τὸ γʹ , ἄστρον τι τῶν ἀπλανῶν ἀνατελλέτω τὸ δʹ : τοῦ ἄρα δʹ ἄστρου ἐστὶν ἡ ἑσπερία ἀληθινὴ | ||
| , τουτέστιν τοῦ Ε [ τοῦ δοθέντος ] χωρίου . δʹ . Ἐὰν ᾖ τρίγωνον τὸ ΑΒΓ , καὶ διαχθῇ |
| καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ . | ||
| κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν |
| ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
| δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
| : υἱωνοὶ γὰρ πατέρων ἀποθανόντων ἐν υἱῶν τάξει παρὰ πάπποις καταριθμοῦνται . λέγεται δὲ ὅτι καὶ κελευσθεὶς αὐτοχειρίᾳ κτείνειν ἑαυτόν | ||
| , τὰ δὲ ἀσώματα , τῶν δὲ ἀσωμάτων τέσσαρα εἴδη καταριθμοῦνται ὡς λεκτὸν καὶ κενὸν καὶ τόπον καὶ χρόνον . |
| στοιχείων . ] Ἔχει δὲ τὰ ηʹ βιβλία τῶν Ἀπολλωνίου κωνικῶν θεωρήματα ἤτοι διαγράμματα υπζʹ , λήμματα δὲ [ ἤτοι | ||
| ' οὖν Ἀπολλώνιος οἷα περιέχει τὰ ὑπ ' αὐτοῦ γραφέντα κωνικῶν ηʹ βιβλία λέγει κεφαλαιώδη θεὶς προδήλωσιν ἐν τῷ προοιμίῳ |
| ἀποφαίνεται λέγων ὅτι τῶν ἑτερογενῶν καὶ μὴ ὑπ ' ἄλληλα τεταγμένων ἕτεραι τῷ εἴδει καὶ αἱ διαφοραί , τῶν δὲ | ||
| εἰ παραβάλλοιμεν αὐτὸ κριτηρίοις τισὶ τῶν ἰδίως ὑπ ' αὐτὸ τεταγμένων : ἐπὶ τὰ καθόλου πάντα προοδοποιεῖσθαι μάλιστα πέφυκε διὰ |
| καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
| τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
| τετάρτης ἴσον ἐστὶ τῷ ὑπὸ τῆς δευτέρας καὶ τρίτης , πολλαπλασιάζομεν τὴν τοῦ Ϛ πλευρὰν μετὰ τῆς εὑρεθείσης μέσης , | ||
| παραδείγματα τὰ καὶ ἐν τῷ προλαβόντι κεʹ ληφθέντα θεωρήματι : πολλαπλασιάζομεν αὐτὰς πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου |
| ἀσύνετον γὰρ τὸ δίχα τοῦ ἄρθρου : χρὴ γὰρ ἀμφότερα συναναφέρεσθαι , ἐπεί τοι , εἰ λείψει τὸ ἄρθρον τοῦ | ||
| ἀτονήσας περὶ τὴν ἑλκτικὴν τοῦ μελαγχολικοῦ ἐνέργειαν , ἐάσῃ τοῦτον συναναφέρεσθαι τῷ αἵματι . κἀντεῦθεν πλεονάσαντος αὐτοῦ καὶ σαπέντος , |
| , πάντα δὲ ἄρτιον ἀριθμὸν ἐνδέχεται ἢ ὑπὸ μόνου ἀρτίου μετρεῖσθαι ἢ ὑπὸ ἀρτίου καὶ περιττοῦ , τὸν δὲ περιττὸν | ||
| ποτὲ μὲν τοῖς παίωσι καθαροῖς , ποτὲ δὲ τοῖς κρητικοῖς μετρεῖσθαι : αὔξεται δὲ μέχρι τετραμέτρου : τινὲς δὲ καὶ |
| τὸ Κάσσιον καὶ τὸν Λίβανον καὶ τὸν Ἀντιλίβανον καὶ τὸ Βραθύ . ἐκ τούτων ἐγεννήθησαν Σαμημροῦμος , ὁ καὶ Ὑψουράνιος | ||
| , καὶ τὸν Λίβανον καὶ τὸν Ἀντιλίβανον , καὶ τὸ Βραθύ . Ἐκ τούτων , φησὶν , ἐγεννήθησαν Μημροῦμος καὶ |
| : ἦμεν γὰρ ἐν τῷ μεσομφάλῳ τῆς Γερμανίας καὶ τοῖς ὅροις αὐτῶν . Ἅμα δὲ τῷ τούτους ῥίψαι ἐπὶ τὴν | ||
| ταύτης παράδοσιν . ἔστιν οὖν ἡ μουσικὴ καλουμένη ἀναλογία ἐν ὅροις τέσσαρσι , δύο μὲν ἄκροις δύο δὲ μέσοις , |
| ἴσα τμήματα ἴσων κύκλων τὰ ΑΒΓ , ΔΕΖ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΒ , ΔΕ , καὶ κάθετοι | ||
| δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΔ , ΓΕ : κατὰ διάμετρον |
| τῷ Ϛ : ἑξάκις γὰρ ϘϚ φοϚ καὶ ἑξάκις ρν ἐννακόσιοι . ὥστε ἡ εἰκοσιτεσσαράπους καὶ ἡ τριακοντάπους μήκει μὲν | ||
| ] πάντες πεζοὶ μὲν μύριοι καὶ ἑξακισχίλιοι , ἱππεῖς δὲ ἐννακόσιοι , οἱ δ ' Ἀντιγόνου χωρὶς τῶν ἐλεφάντων πεζοὶ |
| ἐν Αἰγόκερῳ , καὶ τὸ ἄκρον τοῦ γνώμονος ἐν τοῖς ὡρολογίοις τὰς αὐτὰς γράφει γραμμάς . Καὶ ὑπὸ τῶν αὐτῶν | ||
| νυκτῶν ἴσα , καὶ τὰ ἄκρα τῶν γνωμόνων ἐν τοῖς ὡρολογίοις τὰς αὐτὰς γράφει γραμμάς . Τὰ κατεστηριγμένα ζῴδια διαιρεῖται |
| ἐν τῷ τρίτῳ Περὶ ὄψεως , εἴ τῳ πιθανὸς ὁ Σωσιγένης , μετέχειν καὶ ταῦτα φάσκων φύσεώς τινος ἐπ ' | ||
| , ἦρχον δ ' Ἀθήνησι | [ Λυκίσκος Πυθόδοτος ] Σωσιγένης | [ ] Νικόμαχος [ ] . ταύτης | |
| προτέροις τοῦ δ γεννᾶται τῇ αὐτῇ ἐφόδῳ : τὸ γὰρ συγκεφαλαίωμα τῶν τριῶν , τοῦ τε α καὶ β καὶ | ||
| ἥττονος : ἑκατὸν γὰρ ιϚ ἐν ἑκατέροις τὸ τοῦ ἀριθμοῦ συγκεφαλαίωμα . Ἔστω ἡ ΑΒ μονάδων ιβ . ἐτμήθη εἰς |
| πονηρὸς ἔδοξεν , ὥστε μηδ ' ἐκεῖ ⌈ ⌉ τῶν ἴσων ἀξιοῦσθαι τοῖς ἄλλοις , ἀλλὰ κλέπτην ὥς φασι ληφθέντα | ||
| δυσὶ πλευραῖς ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ καὶ τὰς ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένας γωνίας ἴσας : καὶ τὴν βάσιν ἄρα |
| τὰ πέρατα ἐπέχει μοίρας ιδʹ γοʹʹ μβʹ ∠ ʹʹ καὶ ιϚʹ μγʹ καὶ ἡ Ἰδουβέδα , ἧς τὰ πέρατα ἐπέχει | ||
| χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν καθαρὸν δίμετρον ἀκατάληκτον , καθαρὰν ἰαμβικὴν ἔχον τὴν |
| πᾶσαν τῆς μελῳδίας τάξιν , ἐν οἷς περὶ συστημάτων ὀκταχόρδων ἐναρμονίων μόνον ἔλεγον : περὶ δὲ τῶν ἄλλων μεγεθῶν τε | ||
| ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ τριῶν διέσεων ἐναρμονίων , τὸ δὲ λιχανοῦ καὶ μέσης πέντε διέσεων : |
| διαλείμματι τοῦ τε κατὰ τὸν ἰσημερινὸν καὶ τοῦ κατὰ τὸν θερινὸν τροπικὸν ὅλον διαφαίνεσθαι τὸ ἐγνωσμένον μέρος τῆς γῆς , | ||
| τέσσαρα , Ἄρκτοι δύο Κηφεὺς ἀπὸ τῶν στηθῶν Δράκων , θερινὸν τροπικὸν πλεῖον ἔχοντα τὸ ὑπὲρ γῆν , ἧσσον δὲ |
| ὡρῶν ἰσημερινῶν ἐστι τρισκαίδεκα καὶ ἡμιωρίου , ἐν δὲ τῷ ἀρκτικῷ φαίνεται καὶ ἡ μεγάλη ἄρκτος ὅλη σχεδόν τι πλὴν | ||
| Πωγωνίαι μετὰ τῶν ἄλλων ἐκτὸς τοῦ ζῳδιακοῦ συνίστανται ἐν τῷ ἀρκτικῷ μέρει . Περὶ δὲ τὰς κατὰ μέρος τῶν ἐπισημασιῶν |
| κατὰ τὴν μονάδα ἔμπαλιν τὰ ρκηʹ . ἐὰν δὲ ἐν περισσοῖς ὅροις ἡ ἔκθεσις γένηται , οἷον ἐν ἑπτά , | ||
| γὰρ βʹ βʹ : διὸ καὶ περισσοειδὴς εἴρηται ταὐτὸ τοῖς περισσοῖς πεπονθυῖα . πρὸς ἀλλήλους δὲ λέγονται πρῶτοι ἀριθμοὶ καὶ |
| ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
| τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
| καὶ τὸν ἐπιστήμονα εἴρηται , ἀλλὰ πρὸς Χρυσαόριον , ἀκροατὴν εἰσαγόμενον . Εἰπὼν ὁ Πορφύριος ὅτι τῶν μὲν βαθυτέρων ἀπέχομαι | ||
| γὰρ ἐξαρκεῖ τῶν ἀγωνιζομένων ἑκατέρῳ τὸ ὑφ ' ἑαυτοῦ μόνον εἰσαγόμενον ὄνομα κατασκευάσαι , οὐδ ' αὖ τοὐναντίον ἐκβαλεῖν , |
| σμζ : ἅπερ προέκειτο δεῖξαι . ►αἱ ἐπίπεδοι γωνίαι περιέχονται ►τῶν τριπλεύρων ἰσόπλευρον ἰσοσκελές σκαληνόν◄ ► τῶν τριγώνων ἀμβλυγώνιον ὀρθογώνιον | ||
| , οὐχ ὁ ἐρωτῶν . ἐάν σε ἔρωμαι κτλ . ►τῶν ἐρωτήσεων αἱ μὲν πευστικαὶ πλείονος λόγου δέονται αἱ δὲ |
| ἀνθρακωδῶν ἑλκῶν ρδʹ . Πρὸς τὰ ἐν μήτρᾳ ἀκάθαρτα ἕλκη ρεʹ . Πρὸς ὑγρὸν φερόμενον ἀπὸ τοῦ γυναικείου αἰδοίου ρϚʹ | ||
| ἐστὶν ] τὴν Ψυττάλειάν φησιν , ἥτις ἀπέχει τῆς Σαλαμῖνος ρεʹ σταδίους , ὅπου εὑρεθέντες οἱ ἡγεμόνες τῶν Περσῶν ὑπὸ |
| ἀνατολὴν πεποιήσθω κατὰ τὸ Θ καὶ διελθὼν τὴν ΘΑΗΓΘ ἐν ὅλαις περιφοραῖς πάλιν ἀνατολὴν πεποιήσθω κατὰ τὸ Θ . Λέγω | ||
| ἀνατείλας κατὰ τὸ Ε καὶ διελθὼν τὴν ΕΔΖΗ περιφέρειαν ἐν ὅλαις περιφοραῖς [ τξε ] τὴν λοιπὴν τὴν ΗΕ διερχέσθω |
| . Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς | ||
| ͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα |
| σταδίων : τὸ δὲ τῆς παραλίας ἔτι πλεῖον καὶ δισχιλίοις σταδίοις εἴρηται . φασὶ δὲ ἀπὸ μὲν Κάλπης τοῦ κατὰ | ||
| ἀρυομένοις τὸ ὕδωρ : ὄνομα δέ ἐστιν αὐτῷ Καχάλης . σταδίοις δὲ ἀπωτέρω Τιθορέας ἑβδομήκοντα ναός ἐστιν Ἀσκληπιοῦ , καλεῖται |
| καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος | ||
| κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος |
| λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
| μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
| ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
| ' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
| κατὰ τέτταρα ἥμισυ καὶ δϲʹʹ καὶ κα , τὸ δὲ τονιαῖον χρῶμα κατὰ Ϛ καὶ Ϛ καὶ ιη , τὸ | ||
| , πλείω δ ' οὔ : ὁ γὰρ τὸ τέταρτον τονιαῖον ὁρίζων φθόγγος οὔτε τῷ τετάρτῳ διὰ τεσσάρων οὔτε τῷ |
| , καί ἐστιν ἡ ὑποτείνουσα ε . δείκνυται οὖν τὸ θεώρημα οὕτως ὡς ἐν τῷ διαγράμματι . Πυθαγόρας ἀπὸ τῶν | ||
| τέχνη : ὁ γὰρ μηδὲν ὅλως εἰδώς , εἰ ἓν θεώρημα διδαχθείη τέχνης , τεχνίτης ἂν οὕτω λέγοιτο εἶναι . |
| οὐκ ἂν εἴη αὐτῶι παράλογον ἀντιποιουμένωι τῶν πρωτείων , οὐκ ἐλαττόνων μὲν ἢ δισμυρίων ἐπῶν τοὺς ἐπιδεικτικοὺς τῶν λόγων συγγραψαμένωι | ||
| προσφερομένων . τὸ δὲ ῥᾴδιον συνίσταται ἐκ τούτων , τοῦ ἐλαττόνων πόνων ἢ δαπάνης ἢ κινδύνων ἤ τινος ἄλλου τῶν |
| τῶν μεταξὺ τῶν Β , Γ σημείων τὰς βάσεις ἐχόντων ἰσοσκελῶν . Ἐὰν ἐπὶ τῆς αὐτῆς βάσεως δύο τρίγωνα συστῇ | ||
| . Ἰστέον , ὡς τὸ θεώρημα τοῦτο ἐπὶ μὲν τῶν ἰσοσκελῶν καὶ ἰσοπλεύρων τριγώνων σῴζει τὸ οἰκεῖον , ἐπὶ δὲ |
| ἕν τι αὐτὴν σημαίνειν , τὸ ἕτερον τῶν λοιπῶν δύο καταλείπεσθαι ἀνάγκη . ἀλλὰ μὴν τὸ μηδὲν σημαίνειν αὐτὴν ἄλογον | ||
| ' αὐτῶν τὰ ΖΑ καὶ ΒΕ , συναμφότερα μὲν ταῦτα καταλείπεσθαι τόνου , ἑκάτερον δ ' αὐτῶν , τουτέστιν ἑκάτερον |
| ἐστιν ὁμοῦ πέντε , τετράκις ποιῶ τὰ ρκʹ , γίνεται υπʹ , μερίζω παρὰ τὸν εʹ καὶ ἔχω μέρος ἓν | ||
| . Σικύου ἀγρίου ῥίζης ⋖ φοϚʹ , σκίλλης καθαρᾶς ⋖ υπʹ , ἀσφοδέλου ῥίζης ⋖ ρμδʹ , ἐλαίου ῥαφανίνου ⋖ |
| μέλανες τὰς χρόας Αἰθίοπες , καὶ μάλιστα οἱ ὑπὸ τὸν ἰσημερινὸν κύκλον οἰκοῦντες , κατακόρως εἰσὶ μέλανες . Οἱ δ | ||
| καὶ αἱ ἀπεναντίον περιφέρειαι . Ἔστω γὰρ τοῖς ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν ὁρίζων ὁ ΑΒΓΔ : ὁ ΑΒΓΔ ἄρα διὰ |
| : ἄνιε δὲ τὸ φάρμακον ὕδατι θερμῷ ἑνὶ καὶ ἡμίσει κυάθῳ . πιόντα δέ , εἰ μηδὲν κωλύοι , χρὴ | ||
| συνταράξας * μιξάμενος : ἐνώσας κυάθῳ : τουτέστι τρίτον τῷ κυάθῳ ἀντλούμενον , οἷον τρεῖς κυάθους . * ἀφύξιμον : |
| γὰρ ἀπέχει τοῦ ἰσημερινοῦ . τὸ μὲν ἄρα δη τεταρτημόριον ἀνενεχθήσεται ἐν μοίραις χρονικαῖς ρεʹ , τὸ δὲ δα τεταρτημόριον | ||
| , τὸ ἕκτον γίνεται λεʹ : ἐν τούτοις ὁ Λέων ἀνενεχθήσεται . καὶ ὁμοίως κατὰ τὴν προκειμένην ἔφοδον , ἐὰν |
| πλατυνομένης , καὶ τοῦ μὲν μήκους ἐπὶ παραλλήλου τινὸς τῷ ἰσημερινῷ γραφομένου , τοῦ δὲ πλάτους ἐπὶ μεσημβρινοῦ , δεῖ | ||
| ἡμέραν , μείζονα μέντοι τῆς νυκτός , μέχρι πελάσῃ τῷ ἰσημερινῷ , διαμένουσαν . Ἐπὰν δὲ τούτου ἐφαψάμενος φθινοπωρινὴν ἰσημερίαν |
| , τὸ ΜΛΓ πρὸς τὸ ΜΑΓ , καὶ τὸ διπλάσιον ΒΛΓ πρὸς τὸ ΒΑΓ : καὶ συνθέντι ἄρα πρὸς συγκείμενον | ||
| δὲ τὸ ΔΛ τετράπλευρον τῷ ΑΕΗ τριγώνῳ , τὸ δὲ ΒΛΓ τῷ ΑΓΘ : ὡς ἄρα τὸ ὑπὸ ΖΕΔ πρὸς |
| - δὲ κύκλος ὁ ΕΖΜ , καὶ ὁ ἥλιος ἀπὸ χειμερινῶν τροπῶν πορευόμενος ἔν τινι ἡμέρᾳ ἀνατολὴν πεποιήσθω κατὰ τὸ | ||
| τοῦ μεσημβρινοῦ ὑπὸ γῆν . ιαʹ Ὅταν ὁ ἥλιος ἀπὸ χειμερινῶν τροπῶν ἐπὶ θερινὰς τροπὰς πορεύηται , ἐν τῷ μεταξὺ |
| : βάσις δὲ ἥ τε τῶν κατ ' ἀρχὰς τριγώνων ὑποτεθέντων ἀσφαλεστέρα κατὰ φύσιν ἡ τῶν ἴσων πλευρῶν τῆς τῶν | ||
| σημαίνοντος μὴ ᾖ ἐκ τῶν πολλῶν τῶν κατηγορηθέντων αὐτοῦ ἢ ὑποτεθέντων αὐτῷ ἕν τι συγκείμενον , οὐκέτι μία ἡ πρότασις |
| λέγομεν μετρεῖσθαι τὸν ἀριθμόν . ἰστέον δέ , ὅτι τὸν περισσάρτιον τὸν ὑπὸ τῶν Πυθαγορείων οὕτως καλούμενον τὸν πλείονας διαιρέσεις | ||
| μὲν ἀρτίου τὸ ἀρτιάκις ἄρτιον καὶ τὸ ἀρτιοπέριττον καὶ τὸ περισσάρτιον , τοῦ δὲ περιττοῦ τὸ πρῶτον καὶ ἀσύνθετον , |
| τῷ γʹ : τὸ θʹ ὅμοιον τῷ δʹ : τὸ ιʹ ὅμοιον τῷ γʹ : τὸ ιαʹ τροχαικὸν μονόμετρον : | ||
| πέντε δίμετρα ἀκατάληκτα , τὸ ἔννατον μονόμετρον , τὸ δὲ ιʹ δίμετρον καταληκτικόν , ἤτοι ἑφθημιμερές , ὃ καλεῖται παροιμιακόν |
| , ὥστε παραλλάξει τυχούσῃ ἅμα ἓξ ζῴδια καὶ δύσεται καὶ ἀνατελεῖ . Τοῖς ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν ὁ μεσημβρινὸς δίχα | ||
| πρὸς τῷ Ε οἰκοῦσι πάντα τὰ ἄστρα καὶ δύσεται καὶ ἀνατελεῖ καὶ τὸν ἴσον χρόνον ἐνεχθήσεται ὑπέρ τε τὸν ὁρίζοντα |
| τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
| προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
| Ἡρακλείων στηλῶν κύρτωμα τῆς Εὐρώπης , ἀντικείμενον μὲν τοῖς Ἴβηρσι προπεπτωκὸς δὲ πρὸς τὴν ἑσπέραν , οὐκ ἔλαττον σταδίων τρισχιλίων | ||
| διημένης , καὶ προστιθέναι τῇ ὑστέρᾳ καὶ διαβιβάζειν πᾶν τὸ προπεπτωκὸς ἠρέμα ἀναθλίβοντας , ἄχρις οὗ ἡ μήτρα ἐπὶ τὸν |
| , ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
| γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
| : πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
| τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
| . πρὸς μὲν οὖν Καίσαρα περί τε Γεργοουίαν πόλιν τῶν Ἀρουέρνων ἐφ ' ὑψηλοῦ ὄρους κειμένην συνέστησαν οἱ ἀγῶνες , | ||
| εἴρηται δὲ καὶ τὸ τῶν Ἐλουηττίων πλῆθος καὶ τὸ τῶν Ἀρουέρνων καὶ τὸ τῶν συμμάχων , ἐξ ὧν ἡ πολυανθρωπία |
| ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται , | ||
| : ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ |
| Κριοῦ ἐστιν ἀρχή , κατὰ δὲ τὸ ἕτερον ἡ τῶν Χηλῶν . τοῦ μέντοι θερινοῦ τροπικοῦ πλέον ἢ τὸ ἥμισυ | ||
| τοῦ ἐπικύκλου , ὅταν ὑπὸ τὴν ιʹ μοῖραν ᾖ τῶν Χηλῶν , τὸ δὲ Γ , καθ ' οὗ γίνεται |
| τὸ πρῶτον αʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ ιηʹ ἐκ τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ ιεʹ | ||
| τρίγωνον τὸν γʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ λδʹ σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ |
| τὴν τούτων ἀποτροφήν . Τάσσεται δὲ ἐπὶ μάχην ἐν τρισὶν ἴσοις μέρεσι , τουτέστι ἐν μέσῳ , δεξιῷ , ἀριστερῷ | ||
| τῶν ὁμογενῶν τάχα ἄν τις ἀπορήσειε τίποτ ' οὐκ ἐν ἴσοις χρόνοις ἅπαντα τελειοῦται ἀλλ ' οἱ μὲν τρίμηνοι τῶν |
| . Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
| ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
| οὖν ἰσόπλευρα τρίγωνα καὶ τετράγωνα καὶ τὰ ἑξάγωνα χωρὶς ἀνομοίων παραπληρωμάτων ἀλλήλοις δύναται παρακείμενα τὰς πλευρὰς κοινὰς ἔχειν [ ταῦτα | ||
| ὁ γνώμων τετράγωνον μετὰ τῶν περὶ τὴν διάμετρον αὐτοῦ δύο παραπληρωμάτων . Καὶ περὶ τῶν ὄντων τοσαῦτα εἰρήσθω : ὡς |
| μέγιστον κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ | ||
| , ΒΕΖ τρίγωνα ἴσα ἀλλήλοις ἐστίν . ἔστω τῷ ΑΗΓΔ κώνῳ ἰσοϋψὴς ὁ ΚΘΕΖ κῶνος . ἐπεὶ οὖν , ὡς |