| ἕν τι αὐτὴν σημαίνειν , τὸ ἕτερον τῶν λοιπῶν δύο καταλείπεσθαι ἀνάγκη . ἀλλὰ μὴν τὸ μηδὲν σημαίνειν αὐτὴν ἄλογον | ||
| ' αὐτῶν τὰ ΖΑ καὶ ΒΕ , συναμφότερα μὲν ταῦτα καταλείπεσθαι τόνου , ἑκάτερον δ ' αὐτῶν , τουτέστιν ἑκάτερον |
| ٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ | ||
| ٤ ἡ ΑΒ ٢ ٥٩ ٢٨ ἡ ΓΖ ٢ ١٤ ١٢ ٤ ١٢ ἡ ΒΗ ٢ ١٣ ٤٣ ἡ ΑΗ |
| ٤٢ τὸ ΒΔ ٣ ٢٧ ٥٠ ٧ ١٨ τὸ ΛΘ ٣٢ ٣٢ ٩ ٥٢ ٤٢ ἡ ΖΘ ٩ ἡ ΚΘ | ||
| ἤτοι τῆς ἡμισείας τῆς ΑΗ ٢٧ ٢٦ ٣ ٣٨ ٥٨ ٣٢ ١٥ ἡ ΑΖ ٥ ١٧ ٢٨ ٢١ ١٧ ἡ |
| κέντρου δύναται τὸ ὑπὸ ΟΓ ΚΑ ἢ τὸ ὑπὸ Θ ΚΑ ἐλάσσων ἐστὶν τῆς σφαιρικῆς τοῦ τμήματος ἐπιφανείας . ἀλλὰ | ||
| , οἵων ἐστὶν ἡ ΑΖ διάμετρος ρκ , ἡ δὲ ΚΑ τῶν αὐτῶν ργ νε : ὥστε καί , οἵων |
| ' ὀργανικὴν βλάβην ἢ δι ' ἐπιτεταμένην ὀδύνην . καὶ ὀργανικῶς μὲν οὕτως : φλεγμαίνοντος τοῦ τραχήλου τῆς κύστεως , | ||
| ἡ ΛΓΜ γραμμὴ κοχλοειδὴς πρώτη . κζʹ . Ὅτι δὲ ὀργανικῶς δύναται γράφεσθαι ἡ γραμμὴ καὶ ἐπ ' ἔλαττον ἀεὶ |
| ΑΒΓ ὅλῳ τῷ ΔΕΖ ἐστὶν ὅμοιον . ηʹ . Θέσει δεδομένων τῶν ΑΒ ΑΓ , ἀγαγεῖν παρὰ θέσει τὴν ΔΕ | ||
| Ἕρμαρχος ζῇ . “ Ἐκ δὲ τῶν γινομένων προσόδων τῶν δεδομένων ἀφ ' ἡμῶν Ἀμυνομάχῳ καὶ Τιμοκράτει κατὰ τὸ δυνατὸν |
| ΘΖ ٢ ١٨ ٩ ٣٦ ἡ ΖΚ ٢ ٣٢ ٣٠ ٥٦ ἡ ΚΕ ١ ١٣ ٣١ ٥٥ γεγονέτω ὡς . | ||
| τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ ΑΙ παραλληλόγραμμον ١١٧ ٣٥ ٤٧ ٢٠ |
| αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς ΕΔ : καὶ τοῦ ΔΑ ἄρα πρὸς ΕΔ λόγος ἐστὶ δοθείς : καὶ ἀναστρέψαντι | ||
| , κοινὴ δὲ ἡ ΒΑ , καὶ ἔστιν βάσις ἡ ΔΑ βάσει τῇ ΑΖ ἴση , γωνία ἄρα ἡ ὑπὸ |
| ΕΔ οὐδέν ٤٣ ٢ ٣٣ ٢ ١٥ ἡ ΘΚ οὐδέν ٤١ ٥٣ ٢١ ٤ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ | ||
| ἡ ΓΚ ٢ ٤٧ ٥١ ٤٧ ٤٢ ἡ ΚΜ οὐδέν ٤١ ٥٣ ٢١ ٤ Ἡ ΑΒ ٢٠ ἡ ΓΔ ٢٥ |
| ] Κ [ ] Κ ! ! ! [ ] ΤΑ ! [ ] ΠΙ [ ] ΡΙΤ [ ] | ||
| λευκοπώλῳ φέγγος ἡμέρᾳ φλέγειν . Καὶ τὰ λοιπά . . ΤΑ ΔΕ ΛΕΙΨΕΤΑΙ . Τουτέστι , τὸ τῶν κακῶν ἔσχατον |
| πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ | ||
| ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ |
| δὲ μιᾷ ἀδύνατον . πῶς οὖν διὰ τῶν προειρημένων τοῦτο συνάγεσθαι φήσομεν ; ἢ ὅτι τῇ καθόλου ὡς καθόλου καταφάσει | ||
| ἡ ΖΓ εὐθεῖα , ὥστε καὶ τὴν μὲν ΕΓ ὅλην συνάγεσθαι λ κε μϚ , τὸ δὲ ὑπὸ τῶν ΕΓ |
| εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς | ||
| μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ |
| ἡ δὲ ΦΩ τῆς παραλλάξεως τοῦ ἡλίου , καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν | ||
| ἀνακειμένου , ὄτι μέγιστός ἐστιν ὁ ἀνδριὰς καὶ ἀξιοθαύμαστος . ΤΩ δεσπότῃ μου καὶ σοφῷ στεφηφόρῳ Λέοντι , τῷ κρατοῦντι |
| ٤٢ ἡ ΓΔ ٤ ἡ ΓΖ ٣ ٣٩ ٥٠ ٣١ ٢١ ἡ ΒΗ ١ ٩ ٣٢ ἡ ΑΗ ٤ ٥٩ | ||
| ἡ ΖΗ ٢ ٣٠ ١٩ ٣٦ ἡ ΑΖ ١٠ ٣٥ ٢١ ٤ Ταύτην τὴν ῥητὴν λάμβανε , ἣν ἐξέθου ἐν |
| δέ . ἄσπετον : πολύ , ἄφθονον . ἀρωγέ : βοηθέ , λυτρωτά . ἀνθοποιόν : ἄνθη ἐκφέρουσαν . ἀμφ | ||
| θ πρόμαχε ] βοηθέ . πρόμαχ ' ] ὑπέρμαχε , βοηθέ . Ξ δόμων ] οἴκων . τοῖσι ] τοῖς |
| καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ | ||
| ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ ' |
| ἔμπροσθεν ἀσεβῶς πεπραγμένων . ἀλλὰ περιττὸς ὁ Φθιώτης τῇ Τροίᾳ δειχθήσεται συλλαμβανόντων αὐτῇ τῶν Ὀλυμπίων τῷ περὶ τὴν Ἕκτορος ἀτιμίαν | ||
| δὲ ἡ ὑπὸ ΠΡΑ γωνία ἀμβλεῖά ἐστιν , ἐκδηλότερον οὕτω δειχθήσεται : ἐπεὶ τὸ ΑΒΡ τρίγωνον ὀρθογώνιόν ἐστιν : ὀρθὴ |
| Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
| τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
| ٥٦ ٥٢ ١٥ ἡ αὐτῆς ἡμίσεια ٥ ١١ ٥ ⸎ ١٦ ٣٠ τὸ ἀπὸ ταύτης ἤτοι τῆς ἡμισείας τῆς ΑΗ | ||
| ٤٣ ἡ ΖΒ ١ ١٠ ٢١ ἡ ΑΖ ١ ١١ ١٦ τὸ ὑπὸ τῶν ΒΑ , ΑΖ ٢ ٤٨ ١٠ |
| ٣ ١٢ ٢٥ τὸ ἀπὸ τῆς Θ ٢٥ ٤٢ ٥١ ٢٥ ٤٢ ٥٢ Ἡ Α μονάδων τεσσάρων , ἡ ΓΗ | ||
| ٤٦ τὸ ἅπαξ ὑπὸ τῶν ΑΒ , ΒΓ ٥ ٣٥ ٢٥ ١١ ٢٨ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ |
| ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ | ||
| ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν |
| ἡμίσεια τῆς ΑΗ ٦ ٥٢ ٥٨ ٥٠ τὸ ἀπὸ ταύτης ٤٧ ٢٢ ١٩ ١٠ ٢٤ τὸ ΑΒ χωρίον ١٣ ٥١ | ||
| τῆς ΗΓ ١٠ ١٧ ٨ ٣٤ ١٧ ἡ ΒΓ ٢ ٤٧ ٣٥ ἡ ΗΓ ٣ ١٢ ٢٥ τὸ ἀπὸ τῆς |
| ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς | ||
| ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον |
| ٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ ٣ ٣٦ ٣٥ ٢٠ ὑπὸ ῥητῆς . , ] ταύτης δηλονότι | ||
| ٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ ٣٦ ἡ ΖΗ ٤ τὸ ΕΓ ٣٢ ٣٢ ٩ ٥٢ |
| ١١ ٤٣ ἡ αὐτῶν πλευρὰ ἢ καὶ ΔΖ ٠ ٥ ٣٠ ٤ ٤٧ καὶ ἀσύμμετρος τῇ ΑΓ . , ] | ||
| καὶ δεύτερα σοϚ . καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι |
| ٢٥ τὸ ἀπὸ τῆς Θ ٢٥ ٤٢ ٥١ ٢٥ ٤٢ ٥٢ Ἡ Α μονάδων τεσσάρων , ἡ ΓΗ Ϛ , | ||
| πλευρὰ τοῦ ϘϚ ٣ ٤٧ ٥٢ ἡ ΓΒ ٩ ٤٧ ٥٢ τὰ ἀπὸ τῆς Θ ξ , ἡ Θ ἡ |
| , ἐκεῖνα τὰ τετράπλευρα παραλληλόγραμμά ἐστιν , καὶ ἔτι ὧν τετραπλεύρων αἱ ἐπιζευγνύμεναι διαγώνιοι ἀμφότεραι δίχα τέμνουσιν τὰ τετράπλευρα , | ||
| αἱ ἀπεναντίον πλευραὶ ἴσαι ἀλλήλαις εἰσίν , ἢ πάλιν ὧν τετραπλεύρων αἱ ἀπεναντίον γωνίαι ἴσαι ἀλλήλαις εἰσίν , ἐκεῖνα τὰ |
| ἐδύναντο παρεῖχον , φίλους τε ἐνομίζομεν εἶναι καὶ βίᾳ οὐδὲν ἐλαμβάνομεν τῶν ἐκείνων . Κοτυωρίτας δέ , οὓς ὑμετέρους φατὲ | ||
| σκεψάμενος . καὶ πεῖράν γε τῆς ἐπικουρίας εὐθὺς ἐν προοιμίοις ἐλαμβάνομεν οὐκ ἀγεννῆ : ὡς δὲ ἐπῄνουν τε καὶ χάριν |
| τὸ σύναμα ὑπὸ τῶν ΑΒ , ΒΓ ٣ ٥٩ οὐδέν ٣٥ ٥ ἡ ΔΗ ἤτοι τὸ πλάτος τοῦ ἀπό ٣ | ||
| ΑΙ παραλληλόγραμμον ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΚΖ ٣ ٣٦ ٣٥ ٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ |
| αἰτιατικὴ : ἔλαβέν αὐτον . ἐγκλίνεται δὲ ἀεὶ καὶ ἡ ΜΙΝ : καί μιν φωνήσας , καὶ ἡ ΕΘΕΝ παραλόγως | ||
| , τιμὴ τιμήεις , αἴγλη αἰγλήεις . . ΩΜΟΙΣΙΝ ΔΕ ΜΙΝ . Οὕτω συντάσσεται : ἀμφιέκειτο δέ μιν , ἤγουν |
| κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ : | ||
| αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται |
| ٢٢ ٥٦ τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢ ٤٧ ٤٢ ٣٥ ٤٤ Ἐκ τῆς εἰς ἄτοπον ἀπαγωγῆς . Ἡ | ||
| ٢١ ἡ ΒΕ ١ ٤٠ ١٦ ἡ ΔΖ ٥ οὐδέν ٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ |
| τὸ ΘΚ ٥ ٣٥ ٤٣ ٣٤ ٢٤ ἡ ΚΗ οὐδέν ٣٣ ٢٤ ٢١ ١٦ ἡ ΑΓ ١ ٤٠ ٢٧ ἡ | ||
| ١١ ٢٧ ١٥ ٤٩ τὸ ἀπὸ τῆς ΑΒ ٢ ٤٧ ٣٣ ٢٤ ١٦ τὸ σύναμα ١٣ ٥٩ ٠ ٣٥ ٥ |
| ٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ | ||
| τὸ ἀπὸ τῆς ἡμισείας τῆς ΔΗ ἤτοι τῆς ΕΗ ٢٦ ٣١ ٥٠ ١١ ٨ ١ ٤٠ ἡ ἡμίσεια τῆς ΑΗ |
| ٥٠ ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] | ||
| ٥ ٣٣ ١٨ ٤٠ ٢٥ τὸ ἀπὸ τῆς ΒΕ ١ ١٤ ٣ ٢ ١٢ ١٥ τὸ ὑπὸ τῶν ΑΒ , |
| ΖΒ , τὸ δὲ ὑπὸ ΕΖΓ μετὰ τοῦ ὑπὸ ΑΕ ΖΓ ὅλον ἐστὶν τὸ ὑπὸ ΑΖΓ . εἴχομεν δὲ καὶ | ||
| ΖΓ πρὸς τὸ ἀπὸ τῆς ΓΑ ἐστι τὸ ἀπὸ τῆς ΖΓ διαμέτρου τῆς τομῆς πρὸς τὸ ἀπὸ τῆς συζυγοῦς ἑαυτῇ |
| , ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
| γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
| ἡ ΔΚ τεσσάρων μονάδων τὸ ἀπὸ τῆς ΑΒ ١١٠ ١١٠ ٢٧ ١٠ ٤٩ τὸ ἀπὸ τῆς ΓΒ ٢ ٤٧ ٣٣ | ||
| . ἡ ΑΒ ٢ ٢١ ٣٥ ἡ ΑΔ ١ ٤٠ ٢٧ τὸ ἀπὸ τῆς ΑΒ ٥ ٣٣ ١٨ ٤٠ ٢٥ |
| ΟΔ κατὰ τὸ ͵α , καὶ συμπεπληρώσθω τὰ ΩΨ , ΡΙ στερεά . ἴσον δή ἐστι τὸ ΨΩ στερεόν , | ||
| τὴν ΤΔ βάσιν , οὕτως τὸ ΩΨ στερεὸν πρὸς τὸ ΡΙ . ἀλλ ' ὡς ἡ ΓΔ βάσις πρὸς τὴν |
| ٢٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢ ٥٠ ٢٨ ٥٩ ἡ αὐτοῦ πλευρά ١ ٤١ ٨ ἡ ΖΗ ٥ | ||
| ٢٤ ١٦ τὸ σύναμα ὑπὸ τῶν ΑΒ , ΒΓ ٣ ٥٩ οὐδέν ٣٥ ٥ ἡ ΔΗ ἤτοι τὸ πλάτος τοῦ |
| ٤٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ | ||
| ٢٢ ١٠ ٢٠ τὸ ὑπὸ ῥητῆς καὶ τῆς ΑΔ ١ ٤٥ ἡ ΔΗ ١٠ ١٨ ٥ ٤٠ ἡ ταύτης ἡμίσεια |
| ἡ ΛΜ μείζων ἐστίν : πολλῷ ἄρα ἡ ΜΛ τῆς ΝΟ μείζων ἐστίν . ἀλλὰ καὶ ἴση : ὅπερ ἐστὶν | ||
| ἐστὶν ὡς ἡ ΒΚ πρὸς ΝΞ , ἡ ΚΜ πρὸς ΝΟ . καὶ τὰ τετράγωνα . καὶ ὡς ἓν πρὸς |
| κύλινδρος πρὸς τὸν ΖΔ κύλινδρον . Τῶν ἴσων κώνων καὶ κυλίνδρων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσι , καὶ ὧν κώνων | ||
| . αἱ μὲν οὖν τοῦ στέγους πλευραὶ κατὰ μέσον ἑκάστη κυλίνδρων ὡραΐζονται τμήμασιν , ὁ δὲ κύκλος ἀνειμένος ταῖς αὔραις |
| ١١ ٨ ١ ٤٠ τὸ πλάτος τὸ ΓΚ ٢٢٩ ٣٢ ٤٦ ٥١ ⸎ ١ ٤٠ ἡ ΓΜ ٢٥٦ ٤ ٣٧ | ||
| Ἡ ΑΒ ٤ ἡ ΒΗ ٦ ἡ ΗΓ ٥ ١١ ٤٦ ἡ ΒΓ οὐδέν ٤٨ ١٤ ἡ Θ ٣ ὁ |
| τὸ ΑΒ ١ ١٩ ٢١ ἡ ΑΖ ٦ ٥٣ ١١ ٣٤ ἡ ΖΗ ٣ ٥١ ٩ ٦ Ἠπορήθη τῷ πρὸς | ||
| ١٢ ١٥ τὸ ὑπὸ τῶν ΑΒ , ΒΖ ٢ ٤٧ ٣٤ ٤٣ ٣ ἡ ΔΒ ١ ٤ ١٦ ἡ ΒΕ |
| ٩ ٢ ٥٠ τὸ ἀπὸ τῆς ΕΗ ٢٦ ٣ ٥٠ ١١ ٨ ١ ٤٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν | ||
| ١٢ ἡ ΒΗ ١ ٤٤ ٣٠ ἡ ΑΒ ٢ ٢٥ ١١ ἡ ΓΔ ٤ ἡ ΓΖ ١ ٢٧ ٤٩ ٣٣ |
| Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ | ||
| : λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ |
| πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ . | ||
| ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ : |
| τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢ ٤٧ ٤٢ ٣٥ ٤٤ Ἐκ τῆς εἰς ἄτοπον ἀπαγωγῆς . Ἡ ΑΒ ٢٠ | ||
| ἴσον εἶναι τῷ ΖΛ . Ἡ ΑΒ ٢ ٥ ⸎ ٤٤ ἡ ΓΔ ٤ ἡ ΒΗ ١ ٣٩ ٩ ἡ |
| αὐτῆς ἡμίσεια ٧ ٢ ٥٨ ٥٠ τὸ ἀπὸ τῆς ἡμισείας ٤٩ ٤١ ٥٣ ٢٣ ١ ٢١ ٤٠ τὸ ΑΒ ١٤ | ||
| τεσσάρων μονάδων τὸ ἀπὸ τῆς ΑΒ ١١٠ ١١٠ ٢٧ ١٠ ٤٩ τὸ ἀπὸ τῆς ΓΒ ٢ ٤٧ ٣٣ ٢٤ ١٦ |
| ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ . | ||
| περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ |
| καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει | ||
| δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία |
| ΛΗ μοιρῶν κγ να ἔγγιστα . ἔστιν δὲ καὶ ἡ ΞΔ μοιρῶν κγ μθ . ἀλλὰ καὶ ἡ ΜΞ τῇ | ||
| . ἔσται τοίνυν διὰ τοῦ τῆς λοξώσεως κανονίου δοθεῖσα ἡ ΞΔ περιφέρεια μοιρῶν οὖσα κγ μθ : τοσαῦται γὰρ ἐπιβάλλουσιν |
| , Ζ ἴσα εἰσίν . ὡσαύτως καὶ τὰ ΗΒ , ΘΔ ἴσα τοῖς Ε , Ζ . ὅσα ἄρα ἐστὶν | ||
| πλῆθος τῶν ΑΗ , ΗΒ τῷ πλήθει τῶν ΓΘ , ΘΔ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ μὲν ΑΗ τῷ |
| Ζ ἐπὶ τὸ Ε ἐπιζεύξαντες τὴν ΖΓΕ , ἕξομεν τὴν ΓΒ μέσην τῶν ΑΒ ΒΗ . καὶ ἡ ἀπόδειξις φανερά | ||
| , ὅτι καὶ λοιπὸν τὸ ΑΒ πρὸς τὸ αὐτὸ τὸ ΓΒ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ . μετὰ γὰρ |
| ΒΓ ٥ ٣٥ ٢٥ ١١ ٢٨ τὸ δίς ١١ ١٠ ٥٠ ٢٢ ٥٦ τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢ | ||
| ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ ١٢ ٣٠ Ἐκ |
| ἄρα ἐστὶ καὶ τῆς ὑπὸ ΓΕΔ ἡ ὑπὸ ΓΕΑ . ἐκκείσθω τῷ τοῦ κύκλου ἡμικυκλίῳ ἴσον τὸ ΚΑΛ , καὶ | ||
| γραμμὴ ἡ ΓΔ , καὶ ἐπεζεύχθω ἡ ΔΒ , καὶ ἐκκείσθω κύκλος ὁ ΕΖΗΘΚ , οὗ ἡ ἐκ τοῦ κέντρου |
| ٤ ٤٨ ٤٨ ٣٦ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢٣ ١٠ ٣ ١١ ٥٣ ٢٠ ἡ ΑΖ ١١ ٥١ | ||
| τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ ٠ ٨ |
| ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων | ||
| ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ |
| , τὸ ΔΖ ιζ ιδ β λ κ . ٦ ٢٤ ٢٠ ٠ ٥٥ ٢٥ ٤ ١٠ Πόθεν δῆλον , | ||
| ٢ ٤٨ ١٠ ١٢ ٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη |
| , ἡ δὲ ΜΓ ὁμοίως # ιϚ , ἡ δὲ ΜΖ ὅλη ξ ιϚ , διὰ τοῦτο δὲ καὶ ἡ | ||
| . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ |
| Δ , καὶ ἀπ ' αὐτοῦ πρὸς ὀρθὰς ἀγαγὼν τῇ ΕΓ τὴν ΔΒ , καὶ ἐπιζεύξας τὴν ΕΒ , καὶ | ||
| ἡ ΑΕ τῇ ΕΒ : ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ : τὰ Γ , Δ ἄρα σημεῖα οὐκ ἴσον |
| τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
| διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
| ὡς ἡ ΒΞ πρὸς ΞΗ , οὕτως ἡ ΕΟ πρὸς ΟΘ . ἀλλὰ καὶ ὡς ἡ ΗΞ πρὸς ΞΚ , | ||
| κύκλων ἐπιπέδῳ οὖσα , καὶ ἤχθω διὰ τῶν ΟΠ , ΟΘ εὐθειῶν ἐπίπεδον : ποιήσει δὴ τομὴν ἐν τῷ κώνῳ |
| τῆς ΑΒ ⸎ ٥٢ ٢٥ ٣٦ ١٦ ἡ ΓΖ ٢ ١٣ ٦ ٢٤ ٤ ἡ ΑΗ ٤ ٣٧ ٥٣ λοιπὸν | ||
| ٤٤ ٣ ἡ ΓΔ ٧ ١٥ ٣٣ ἡ ΔΖ ٥ ١٣ ٣٠ Ἡ ΓΖ ١ ٢٧ ٤٩ ٣٣ ἡ ΖΘ |
| Ἐκ τῆς εἰς ἀδύνατον ἀπαγωγῆς . Ἡ ἀποτομή ἡ ΕΖ ١٠ ١٨ ٥ ٤٠ ἐκ δύο ὀνομάτων ٥ ٦ ٣٢ | ||
| πρὸς τὸ ἀπὸ τῆς ΘΗ παραβληθῆναι τὸ ΑΒ χωρίον ١١ ١٠ ٢٠ ἡ αὐτοῦ πλευρὰ ἡ ΑΓ ٣ ٢٠ ٣٢ |
| , ἀμβλύνει τὸ αἰθαλῶδες τοῦ πνεύματος , καὶ τῶν ὑγρῶν ἀφοριζομένων , διαυγεστέραν ἀποδείκνυσι τὴν ἀπὸ τοῦ αἵματος ἀναθυμίασιν : | ||
| πεζικὸς στρατός , δηλονότι σὺν αὐτῷ μετὰ τῶν ἐπὶ τοῦτο ἀφοριζομένων , εἴτε ἐν τῇ ἰδίᾳ , εἴτε ἐν ἀλλοτρίᾳ |
| ἐστιν ἴσον τὸ ΔΚ τῷ δὶς ὑπὸ τῶν ΛΟ , ΟΝ , τὸ ἄρα δὶς ὑπὸ τῶν ΛΟ , ΟΝ | ||
| ΛΟ , ΟΝ , καὶ τὰ ἀπὸ τῶν ΛΟ , ΟΝ [ ἄρα ] μέσα ἐστίν : καὶ αἱ ΛΟ |
| μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
| ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
| ἤδη ἔσωζεν ὑπὸ λεπτῇ κάμακι τὰ τηλικαῦτα πηδάλια περιστρέφων : ἐδείχθη γάρ μοι ἀναφαλαντίας τις , οὖλος , Ἥρων , | ||
| ἐστι πάντων τῶν , ὡς εἴρηται , συνισταμένων ἰσοσκελῶν . ἐδείχθη δέ , ὅτι οὐδὲ ἐλάχιστον : οὔτε ἄρα μέγιστόν |
| τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
| ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
| ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ | ||
| ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς |
| ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ | ||
| μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι |
| οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν | ||
| ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς |
| περιφέρειαι αἱ ΑΒ , ΒΓ , ΓΔ , ΔΕ , ΕΑ ἴσαι ἀλλήλαις εἰσίν . ὑπὸ δὲ τὰς ἴσας περιφερείας | ||
| ΓΒ , τουτέστιν ὡς τὸ ὑπὸ ΕΑΓ πρὸς τὸ ὑπὸ ΕΑ ΓΒ , οὕτως τὸ ὑπὸ ΓΑΕ πρὸς τὸ ὑπὸ |
| εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ | ||
| ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ |
| ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ . | ||
| ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί |
| τῇ Β ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ | ||
| ἡ ΑΒ , καὶ ἔστω ῥητὴ ἡ ΑΒ , καὶ συμπεπληρώσθω τὸ ΒΓ : ἄλογον ἄρα ἐστὶ τὸ ΒΓ , |
| τὸ ΝΓ πρὸς τὸ ΓΘ , τὸ ΓΡ πρὸς τὸ ΡΗ . καὶ ὡς ἓν πρὸς ἕν , οὕτως ἅπαντα | ||
| ὡς δὲ ἡ ΓΣ πρὸς ΣΗ , τὸ ΡΓ πρὸς ΡΗ : καὶ ὡς ἄρα τὸ ΝΓ πρὸς τὸ ΓΘ |
| ٥ ٢١ ٤٤ ٤٧ ١٢ ἡ ΚΜ οὐδέν ٤٠ ٥٧ ٤٠ ٥٠ τὸ ἀπὸ τῆς ΑΒ ⸎ ٥٢ ٢٥ ٣٦ | ||
| ٤٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢٠٣ ٩ ٥٦ ٤٠ ἡ ΑΖ ٢٩ ٢٣ ٥٦ ٥٠ ἡ ΖΗ ٠ |
| ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
| ' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
| ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ | ||
| ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ , |
| ٤ ἡ ΑΔ οὐδέν ٢٦ ١٥ ἡ ΑΗ ١٠ ٤٤ ٢٠ ٤٠ ἡ αὐτῆς ἡμίσεια ٥ ٢٢ ١٠ ٢٠ τὸ | ||
| ٤٧ ٢٢ ١٩ ١٠ ٢٤ τὸ ΑΒ χωρίον ١٣ ٥١ ٢٠ ἡ ΛΝ ἡ αὐτοῦ πλευρά ٣ ٤٣ ٢٠ τὸ |
| δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
| δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
| . Ποιείσθω οὖν κατὰ τὸ Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ | ||
| καὶ ἡμέρας χρόνος ἐστίν , ἐν ᾧ ὁ ἥλιος τὴν ΛΖ περιφέρειαν διαπορεύεται , καὶ ἔστιν ἴση ἡ ΛΖ τῇ |
| πρὸς ἀλλήλους δὲ ὑπεροχὴ ἔλλειψις , συμμετρία ἰσότης , ὡς ἐδείξαμεν ἐν τῇ θεωρίᾳ , ὁμοίως δὲ καὶ στερεῷ σώματι | ||
| ὄγκος ἐστίν . ὅπερ ἦν ληρῶδες . πρῶτον μὲν γὰρ ἐδείξαμεν ὅτι οὐδὲ ἡ κοινὴ σύνοδος τῶν τινι συμβεβηκότων ἐκεῖνό |
| τὸ θεώρημα τῆς δὲ ΑΒ ἐξ ἑτέρας παραλλήλους διὰ τὸ ΝΕ , ΖΔ σημεῖον . Ἡ ΑΒ Ϛ , ἡ | ||
| τομέως . διὰ τὰ αὐτὰ δὴ καὶ ὁσαπλασίων ἐστὶν ἡ ΝΕ περιφέρεια τῆς ΕΖ περιφερείας , τοσαυταπλασίων ἐστὶ καὶ ὁ |
| ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου , | ||
| γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ |
| καὶ συμπίπτει αὐτῇ ἡ ΕΤ , τὸ ἄρα ὑπὸ τῆς ΤΧ καὶ τῆς ΕΚ ἴσον ἐστὶ τῷ ἀπὸ ΓΧ : | ||
| ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ πρὸς ΕΚ , τὸ ἀπὸ ΤΧ πρὸς τὸ ἀπὸ |
| καὶ ἡ ὑπὸ ΑΕΒ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων Ϙθ νε , οἵων εἰσὶν αἱ β ὀρθαὶ τξ : | ||
| , οἵων δ ' αἱ δύο ὀρθαὶ τξ , τοιούτων Ϙθ λϚ : ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΑΛ |
| ] [ ] ΠΑ ? [ ] [ ] ! ΩΝ ? [ ] [ ] ! Η ! [ | ||
| τόνον , οἷον : βαθυλείμων ἀχίτων αὐτόχθων . Αἱ εἰς ΩΝ λήγουσαι μετοχαὶ δισύλλαβοι ὀξυτονούμεναι ὡς ὀνόματα κλινόμενα μετατιθέασι τὸν |
| ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
| ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
| κέντρου οὖσαν δίχα τέμνουσα : ὥστε καὶ πρὸς ὀρθὰς αὐτὴν τεμεῖ , καὶ ἐὰν πρὸς ὀρθὰς αὐτὴν τέμνῃ , καὶ | ||
| τῶν πόλων τέμνει , δίχα τε αὐτὸν καὶ πρὸς ὀρθὰς τεμεῖ . καί ἐστι κοινὴ τομὴ αὐτῶν ἡ ΒΓ : |
| ἡ ΔΗ ١٠ ١٨ ٥ ٤٠ ἡ ΑΗ ١٣ ٤٥ ٥٥ ٤٠ ἡ ἡμίσεια τῆς ΑΗ ٦ ٥٢ ٥٨ ٥٠ | ||
| ١ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ ٠ |
| κύκλου καὶ τοῦ ἰσημερινοῦ , πλείονα χρόνον ὑπὲρ τὸν ὁρίζοντα ἐνεχθήσεται τοῖς πρὸς μεσημβρίαν ἢ τοῖς πρὸς ἄρκτον οἰκοῦσιν . | ||
| ἄνωθεν ἀρχὴν μόνην ἀποτέμοις τοῦ μυός , ἐπὶ τὸ πέρας ἐνεχθήσεται , καὶ εἰ τὴν κάτω τελευτήν , ἐπὶ τὴν |
| τὸ πολλὰ καρτερεῖν καὶ πάσχειν τοὺς συγκροτοῦντας πόλεμον . . ΑΙΨΑ ΚΕ ΠΗΔΑΛΙΟΝ . Ἤγουν ταχέως ἂν τὸ πηδάλιον μὲν | ||
| ΧΑΛΕΠΟΙΣ ΒΑΖΟΝΤ ' ΕΠΕΕΣΣΙ ΣΧΕΤΛΙΟΙ , ἤγουν ἄθλιοι . . ΑΙΨΑ ΔΕ ΓΗΡΑΣΚΟΝΤΑΣ ΑΤΙΜΗΣΟΥΣΙ ΤΟ - ΚΗΑΣ . Οἱ παῖδες |
| ΕΛ ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ | ||
| καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ ٢ τὸ ΕΓ ٨ ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ |
| δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ : | ||
| τὸ Ξ κέντρον γεγραμμένου κύκλου τοῦ ΜΝΠΦ αἱ ΡΟ ΥΟ ΤΟ , καὶ ἀπὸ τῶν διχοτομούντων τὰς ΟΟ περιφερείας σημείων |
| πρὸς τὴν ΓΔ . διὰ τὰ αὐτὰ δὴ καὶ τὸ ΜΕ πρὸς τὸ ΝΗ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ | ||
| τὴν ΖΕ , συνθέντι καὶ ἐναλλάξ ἐστιν , ὡς ἡ ΜΕ πρὸς τὴν ΕΗ , οὕτως ἡ ΘΕ πρὸς τὴν |
| τὰ τρίγωνα . διπλάσιόν ἐστι τὸ ΕΒΖΗ . , ] δέδεικται ἐν τῷ μαʹ θεωρήματι τοῦ αʹ βιβλίου , ὅτι | ||
| τὴν ἐκπνοὴν καὶ τὴν φύσην ἐργαζόμεναι τὴν ἐξ ἐγκεφάλου . δέδεικται γὰρ ἑτέρωθι περὶ τούτων : ἀποδέδεικται δὲ καὶ ὅτι |