μείζων [ προανατέλλει , καὶ ὅτι τὸ Δ τοῦ Ε προδύνει κατὰ τὸ Β ἀρξάμενον ἀπὸ τοῦ Δ καὶ τὸ | ||
πρὸς τῷ κʹ τὸ εʹ ἄστρον οὐ φαίνεται δῦνον : προδύνει γὰρ τὸ εʹ τοῦ κʹ [ τουτέστιν τοῦ ἡλίου |
ἐπίτασιν ἀναλόγως τοῖς βάρεσιν εἰς τὴν τῶν κολλάβων ἄνωθεν σύμμετρον περιστροφήν . ἐπιβάθρᾳ τε ταύτῃ χρώμενος καὶ οἷον ἀνεξαπατήτῳ γνώμονι | ||
ὑπὸ τοῦ ἡλίου γραφομένων κύκλων κατὰ τὴν τοῦ κόσμου γινομένην περιστροφήν , ἐφ ' οὗ γενόμενος ὁ ἥλιος τὴν θερινὴν |
ἐφύλαξε τὸ ο , οἷον υἱέος : εἰκότως οὖν ὡς παραλλάξαν παρ ' αὐτοῖς κατὰ τὴν γενικὴν τῶν ἑνικῶν παρήλλαξε | ||
δηλοῖ δὲ περὶ αὐτοῦ τὸν τρόπον τοῦτον : ἀγκῶνος ἄρθρον παραλλάξαν μὲν ἢ πρὸς πλευρὴν ἢ ἔξω , μένοντος τοῦ |
λέγῃς λέγῃ , ἐὰν βοῶ βοᾷς βοᾷ . Τὰ εἰς ΜΙ λήγοντα ὁριστικὰ ἀποστρέφονται τὴν ὀξεῖαν τάσιν , καὶ τὰ | ||
εἰρημένους . Τὸ ἑκκαιδέκατον περιέχει τὰ εἰς Ω καὶ εἰς ΜΙ ῥήματα κατὰ πᾶν πρόσωπον . Τὸ δέκατον ἕβδομον περιέχει |
ἀπέχοντος ἡμίσους ζῳδίου περιφέρειαν τὴν γζʹ , τὸ δʹ ἄστρον ἑσπερίαν ἐπιτολὴν ποιεῖται : τὸ ἄρα δʹ ἄστρον ἀπὸ ἑῴας | ||
Ὑδροχόου μοίρας κε ∠ ʹ , ὡς καὶ ἐνθάδε τὴν ἑσπερίαν τῆς μέσης μεγίστην ἀπόστασιν γεγονέναι μοιρῶν μη γʹ . |
ΝΘ ἄρα πρὸς τὴν ΛΖ ἐλάττονα λόγον ἔχει ἤπερ ἡ ΘΞ πρὸς τὴν ΖΜ . ἐὰν ἄρα ποιῶμεν , ὡς | ||
ΞΔ μοιρῶν κγ μθ . μείζων ἄρα ἡ ΞΔ τῆς ΘΞ δευτέροις ἑξηκοστοῖς λ ἀνεπαισθήτοις . Πάλιν ὁ τῆς ὑπὸ |
πολὺν Ἀριστάρχῳ χρόνον , συνετάξατ ' ἀπὸ τῆς Τρωϊκῆς ἁλώσεως χρονογραφίαν στοιχοῦσαν ἄχρι τοῦ νῦν βίου . Ἔτη δὲ τετταράκοντα | ||
ζῳδίῳ ὑπάρχων καὶ συντελέσας ἰδίαν περίοδον ἢ τὴν τοῦ ζῳδίου χρονογραφίαν καὶ δοκῶν ἀπολείπειν τοὺς χρόνους * * * συναρμοζόμενος |
ἐπὶ τὰ διὰ τῶν ΕΘ , ΝΠ ἐπίπεδα κάθετοι καὶ συμβαλλέτωσαν τοῖς ἐπιπέδοις κατὰ τὰ Σ , Τ , Υ | ||
, ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν τῷ ἐπιπέδῳ κατὰ τὰ Ξ , Τ , Υ |
ἁρμόϲαντεϲ ἐπὶ τὸν ὦμον ἀναγάγωμεν , ἔμπροϲθεν μὲν διὰ τοῦ βουβῶνοϲ καὶ τῆϲ κλειδόϲ , ὄπιϲθεν δὲ διὰ τοῦ νώτου | ||
ὅϲον δακτύλων τὸ μῆκοϲ τριῶν ἐγκαρϲίαν κατὰ τὸ ἐξογκούμενον τοῦ βουβῶνοϲ τοὺϲ ὑμέναϲ τε καὶ τὴν πιμελὴν ἐκλαβεῖν κατὰ τὸ |
τὸ ἱστίον , μέσουροι λέγονται , οἱ δὲ ἑλκόμενοι εἰς πρώραν καὶ πρύμναν ἐξ ἑκατέρου μέρους τοῦ ἱστοῦ πρότονοι , | ||
ἀκάτιον , ἤτοι ἀμφοτέρωθεν ὑπὸ ἑνὸς ἐρεττόμενον , ἤτοι μήτε πρώραν μήτε πρύμναν ἔχον ἀνηγμένην , ἀλλὰ στρογγύλον καὶ περιφερὲς |
ΑΕ : γωνία ἄρα ἡ ὑπὸ ΑΒΕ γωνίᾳ τῇ ὑπὸ ΕΔΑ ἐστιν ἴση . ὀρθὴ δὲ ἡ ὑπὸ ΑΒΕ : | ||
ὀρθάς ἐστιν , ἡ ΒΓ ἄρα καὶ τῷ διὰ τῶν ΕΔΑ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν . καί ἐστιν αὐτῇ παράλληλος |
ὧν νοεῖται , οἷον ἀπὸ τοῦ κοινοῦ μεγέθους ἀνθρώπου κατὰ παραύξησιν ἐνοήσαμεν τὸν Κύκλωπα καὶ ἀπὸ τοῦ αὐτοῦ πάλιν κατὰ | ||
: τὴν μέντοι τῶν μεταξὺ τμημάτων παράθεσιν καθ ' ὁμαλὴν παραύξησιν τῆς τῶν ἑξαμοιριαίων ὑπεροχῆς πεποιήμεθα μηδεμιᾶς ἐν αὐτοῖς ἀξιολόγου |
φαινόμενα . οἷον ἐνηνέχθω τὸ μὲν κέντρον τοῦ ἐπικύκλου τεταρτημοριαίαν περιφέρειαν περὶ ἔγκεντρον κύκλον τὴν μο , καὶ μετενηνοχέτω τὸν | ||
ἴσαι εὐθεῖαι ὑποτείνουσιν : ὅπερ ἔδει δεῖξαι . Τὴν δοθεῖσαν περιφέρειαν δίχα τεμεῖν . Ἔστω ἡ δοθεῖσα περιφέρεια ἡ ΑΔΒ |
. ἐπειδὴ οὖν οἱ αὐτοὶ γίνονται λόγοι τοῖς περὶ τὴν ἑῴαν φάσιν τῶν Ἰχθύων , καὶ τῆς κατὰ τὸ πλάτος | ||
τὸν ἰσθμὸν οἱ μὲν τὸν Καύκασον , οἱ δὲ τὴν ἑῴαν Ἰβηρίαν φασίν : ἄμεινον δὲ αὐτὴν ἀκούειν ἢ μεταξὺ |
: ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ μέσον ἐστίν . Κείσθω δὴ τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ , | ||
ΑΒ , Ζ τῶν ΓΔ , Ε μείζονά ἐστιν . Κείσθω γὰρ τῷ μὲν Ε ἴσον τὸ ΑΗ , τῷ |
ἐν τριγώνῳ οὖν τῷ ΚΛΡ μείζων ἐστὶν ἡ ΛΚ τῆς ΛΡ : αὕτη δὲ τῆς ΛΠ μείζων . ὥστε καὶ | ||
ἀρχόμεναι ἀπὸ μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων |
ἡ ΞΤ πρὸς ΤΣ , ὡς δὲ ἡ ΘΥ πρὸς ΥΑ , ἡ ΘΤ πρὸς ΤΟ καὶ ἡ ΘΒ πρὸς | ||
τῆς ΚΓ : ἡ δὲ ΦΧ πρὸς ἐλάσσονα ὁμοίως τῆς ΥΑ : ἡ δὲ ΟΡ πρὸς μείζονα τῆς ΑΠ . |
, τοῦ δὲ ζῳδιακοῦ κύκλου Ϛ ζῴδια ὑπὲρ τὸν ὁρίζοντα ἀπολαμβάνεται , Ϛ δὲ ὑπὸ τὸν ὁρίζοντα ἀποτέμνεται : ἡ | ||
καὶ ἀπὸ ἑῴας ἀνατολῆς ἐπὶ ἑῴαν δύσιν πρότερον . Ὅσα ἀπολαμβάνεται ὑπὸ τοῦ ζῳδιακοῦ κατὰ τὰς ἀνατολὰς ἐπὶ τὰ πρὸς |
ἐφαπτομένας τῶν ἐπικύκλων τὰς ΖΘ , ΖΟ , ΖΗ : συγχρώμεθα τῷ εἶναι ὡς τὴν τῶν ὑπὸ ΓΖΗ , ΑΖΘ | ||
τὸ Σ , ὅταν ἐπιζητῶμεν τὴν γινομένην αὐτῆς παράλλαξιν , συγχρώμεθα τῷ εἶναι ὡς τὴν τῶν ΑΖ , ΖΓ ὑπεροχὴν |
μετοπωρινὴ ἰσημερία γέγονεν τῇ θʹ τοῦ Ἀθὺρ μετὰ τὴν ἡλίου ἀνατολήν , ἡ δὲ ἐαρινὴ τῇ ζʹ τοῦ Παχὼν μετὰ | ||
ἂρ Αἰγίοχος δαμάσει σθένος οὐλοὸν αὐτῶν . εἶτα τῶν κατὰ ἀνατολήν . καὶ τοῦτο ἐναντίως τῷ Δωροθέῳ : ἐκεῖνος γὰρ |
; ἠρκέσθη γὰρ τῷ ἀπὸ τοῦ χρόνου ἐπιχειρήματι νικῆσαι τὴν ὑποφορὰν νῦν οὖν κατηγορεῖς , δέον ὅτε ἐκρινόμην καὶ τὰς | ||
οὐκ ἠδυνήθημεν χρήϲαϲθαι διὰ τὸ μὴ ὑποπίπτειν τῇ ὁράϲει τὴν ὑποφορὰν τῆϲ ϲύριγγοϲ : μεταξὺ γὰρ ἦν δακτυλίου τε καὶ |
. Πάλιν , ἐπεὶ διπλῆ ἐστιν ἡ μὲν ΟΞ τῆς ΞΩ , ἡ δὲ ΡΟ τῆς ΨΩ , ὅλη ἄρα | ||
, Ω , Ϛ , καὶ συμπεπληρώσθω τὰ ΖΦ , ΞΩ στερεά : λέγω , ὅτι καὶ οὕτως ἴσων ὄντων |
ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ | ||
ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς |
τὸν Σκορπίον , τῷ δὲ αὐτῷ τρόπῳ καὶ ἐπὶ τῶν ἰσαναφόρων ζῳδίων κριθήσεται τὸ πλείονα δύναμιν ἐπέχειν τὸν Καρκίνον πρὸς | ||
, πλείονος δυνάμεως οὔσης ἐπὶ τῶν κατὰ ἀπόστροφον ὁμοζώνων καὶ ἰσαναφόρων , † ἐνεργειῶν † τῶν κατ ' ἐπιδεξιότητα γινομένων |
καὶ ἰϲχνάνϲεωϲ ἀχροίαϲ τε καὶ ἀνορεξίαϲ , ἐποχῆϲ ἐμμήνων καὶ μαϲθῶν ὄγκοϲ , ὡϲ ὑπόνοιαν ϲυλλήψεωϲ ἐπί τινων γίνεϲθαι κατ | ||
διορθοῦν δύναιτο . περὶ τοῦ τετυρωμένου γάλακτοϲ ἐν τῷ περὶ μαϲθῶν κατὰ τὸ τρίτον βιβλίον λεχθήϲεται . Πρώτην τροφὴν εἰϲφέρειν |
προκείσθω εὑρεῖν πόσων ἐστὶν τὸ περιεχόμενον ὑπὸ τῶν ΑΔΓ , ΓΖΑ περιφερειῶν ἐμβαδὸν μέγεθος οἵων ἐστὶν τὸ ὅλον τοῦ ἡλιακοῦ | ||
τοῦ ὑπὸ ΓΖΑ : τὸ οὖν ὑπὸ ΒΖΕ τοῦ ὑπὸ ΓΖΑ ὑπερέχει τῷ ὑπὸ Η ΖΔ , ὥστε τὸ ὑπὸ |
Μεγασθένης μῆκος μὲν ἐπέχειν τὴν πόλιν καθ ' ἑκατέρην τὴν πλευρήν , ἵναπερ μακροτάτη αὐτὴ ἑωυτῆς ᾤκισται , ἐς ὀγδοήκοντα | ||
, ἢ τὰ πτερά . ἐμπεφύασι : ἀνεβλάστησαν . παρὰ πλευρήν : τῶν πλευρῶν . ἑκάτερθεν : ἀμφοτέρωθεν , ἐν |
ΥΚ , ΦΧ . ὥστε ἐν ᾧ τὸ Θ τὴν ΘΝ διέρχεται , ἐν τούτῳ τότε Υ τὴν ΥΞ διαπορεύεται | ||
ΚΖ , ΖΛ , ΛΗ , ΗΜ , ΜΘ , ΘΝ , ΝΕ . δύο οὖν μεγεθῶν ἀνίσων ἐκκειμένων τοῦ |
πρὸς ὀρθὰς γωνίας τέμνει , τέσσαρα μὲν ἔσται σημεῖα τοῦ λοξοῦ κύκλου , δύο μὲν τὰ ὑπὸ τοῦ ἰσημερινοῦ κατὰ | ||
τὸ κέντρον τῆς σελήνης ἐν ἀμφοτέραις ταῖς ἐκλείψεσιν ἐπὶ τοῦ λοξοῦ κύκλου , τουτέστιν ἡ μὲν ΑΕ μοιρῶν θ καὶ |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
κινεῖ . Θράττει , οἷον ταράττει , κατὰ συγκοπὴν καὶ τροπὴν γεγενημένον . Θυήματα . θυμιάματα . ἄλφιτα δέ ἐστι | ||
ἐπίῤῥημα , καὶ τὸ οἴκει ἀπὸ τὸ οἴκοι γεγονὸς κατὰ τροπὴν τοῦ ο εἰς ε : τὰ γὰρ Δωρικῶς παρηγμένα |
εἰ τοῦτ ' ἐμπόδιόν σοι : Εἰς τὸ σιωπῆσαι . ἐζωσμένος ὡς γυνή . . κυάμους τρώγων : Ἢ δικάζων | ||
ἡμῖν ἐφόδιον σῶον : ὃ γὰρ ὁ Σάτυρος ἔτυχεν ἔχων ἐζωσμένος , ὅτε ἐναυαγήσαμεν , οὐκ ἀφῄρητο ὑπὸ τῶν λῃστῶν |
λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν | ||
, ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω - |
πράσσειν . Καιρὸς καὶ πλοῦς ὅδ ' ἐπείγει γὰρ κατὰ πρύμνην . Φέρε νυν στείχων χώραν καλέσω . χαῖρ ' | ||
εὔκραιοι . εὐκραίροις : διὰ τὰς ἐξοχὰς τῶν περὶ τὴν πρύμνην ἀφλάστων , ἢ διὰ τὴν κεραίαν ὀϊστοῦ . Ῥιπῇ |
γίνονται διὰ τὰς αὐγὰς τοῦ ἡλίου . Φαινόμεναι δέ εἰσιν ἑσπέριαι δύσεις , ὅταν μετὰ τὴν τοῦ ἡλίου δύσιν ἐπικαταδύνῃ | ||
πρὸς μεσημβρίαν ὑπὸ τοῦ διὰ μέσων ἀπολαμβάνεται , ἐκείνων αἱ ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ |
, ἤγουν ἡ Εἱμαρμένη . . ΤΟΥΝΕΚ ' ΑΡ ' ΑΝΘΡΩΠΟΙΣΙ . Τούτου δὴ ἕνεκα , ἤγουν τῆς παρὰ τοῦ | ||
, ἢ ἀπὸ τοῦ γέρας . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙ ΝΟΜΟΝ . Καὶ τοῦτο ἄξιον ποιητοῦ νικήσαντος Ὅμηρον . |
τὴν ΑΣ , διὰ τὸ παραλλήλους εἶναι τὰς ΣΑ , ΥΧ : καὶ ἡ ΥΑ ἄρα πρὸς τὴν ΑΣ μείζονα | ||
ΟΦ , ἀπὸ δὲ τοῦ Υ ἐπὶ τὴν ΜΞ ἡ ΥΧ , καὶ ἐπεζεύχθω ἡ ΦΧ . ἐπεὶ οὖν ἡ |
ὅστις Ἑλλήνων ἑωυτὸν ἀξιοῖ Κλεισθένεος γαμβρὸν γενέσθαι , ἥκειν ἐς ἑξηκοστὴν ἡμέρην ἢ καὶ πρότερον ἐς Σικυῶνα ὡς κυρώσοντος Κλεισθένεος | ||
ὑπὸ Ἑλλήνων . ἐνίκα μὲν δὴ τὴν ἕκτην ὀλυμπιάδα καὶ ἑξηκοστὴν ὁ Κλεοσθένης , ἀνέθηκε δὲ ὁμοῦ τοῖς ἵπποις αὑτοῦ |
ἀπαύστως τῷ Διογένει αὐτὸς ἐπὶ Καρχηδόνος ἠπείγετο : ὅθεν ἐς Νέφερίν τε καὶ Καρχηδόνα διετρόχαζεν , αἰεὶ τὰ γιγνόμενα ἐφορῶν | ||
ἀπαύστως τῷ Διογένει αὐτὸς ἐπὶ Καρχηδόνος ἠπείγετο : ὅθεν ἐς Νέφερίν τε καὶ Καρχηδόνα διετρόχαζεν , αἰεὶ τὰ γιγνόμενα ἐφορῶν |
πυρσοῖς τεκμαιρομένους ἀλλὰ τοῖς προειρημένοις πεπαιδευμένους . Ἐρύθημα εἴ ποτε ἐπανατέλλει καὶ ὠχρίασις ἐπὶ ψιλῆς τῆς δορᾶς καὶ τριχῶν γυμνῆς | ||
τάξιν , ὅσα προδύνει μὲν τῆς τοῦ ἡλίου δύσεως , ἐπανατέλλει δὲ μετὰ τὴν τοῦ ἡλίου ἀνατολήν , ὥστε καθ |
] [ ] ΠΑ ? [ ] [ ] ! ΩΝ ? [ ] [ ] ! Η ! [ | ||
τόνον , οἷον : βαθυλείμων ἀχίτων αὐτόχθων . Αἱ εἰς ΩΝ λήγουσαι μετοχαὶ δισύλλαβοι ὀξυτονούμεναι ὡς ὀνόματα κλινόμενα μετατιθέασι τὸν |
, καὶ τέτμηται δίχα ἡ γωνία ἡ ὑπὸ ΚΗΑ τῇ ΗΛΜ εὐθείᾳ , βάσις ἄρα ἡ ΚΛ τῇ ΛΑ ἴση | ||
αἱ ΝΞΗΟΠΡ , ΚΣΤ , παρὰ δὲ τὴν ΑΓ αἱ ΗΛΜ , ΚΟΦΙΧΨΩ . λέγω , ὅτι ἐστίν , ὡς |
ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ . Τετμήσθω γὰρ ἡ ΒΓ δίχα κατὰ τὸ Ε σημεῖον , | ||
, ἐν ἀναλογίᾳ εἰσὶ τῇ ὑποκειμένῃ , δείξομεν οὕτως : Τετμήσθω γὰρ ἡ μὲν ΑΒ ἄκρον καὶ μέσον λόγον κατὰ |
ὑβρίσαντες | καὶ ὡς ἑταίραις ταῖς ἀσταῖς προσενεχθέντες , ἐὰν διάζευξιν τεχνάζωσι μηδεμίαν ἀπαλλαγῆς πρόφασιν ἀνευρίσκοντες , εἶτ ' ἐπὶ | ||
συναφὴν συστήματι ὑπαρχούσῃ τετραχόρδου τε καὶ πενταχόρδου , ἢ κατὰ διάζευξιν δυεῖν τετραχόρδων τόνῳ χωριζομένων ἀπ ' ἀλλήλων , ἀπὸ |
ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν | ||
, ΨΣ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ |
τὸ δὲ ὄφελον ῥῆμα . ἑτερόφθαλμος μέν ἐστιν ὁ κατὰ περίπτωσιν πηρωθεὶς τὸν ἕτερον τῶν ὀφθαλμῶν , μονόφθαλμος δὲ ὁ | ||
κατὰ τὴν ἀπὸ τῆς περιπτώσεως μετάβασιν . οὔτε δὲ κατὰ περίπτωσιν θεωρεῖται οὔτε κατὰ τὴν ἀπὸ τῆς περιπτώσεως μετάβασιν : |
Ἰουστῖνος ὁ Ῥωμαίων βασιλεὺς ἐς τὴν ἑώαν κατὰ τάχος ἐκπέμπει Μαρκιανὸν στρατηγὸν , ἐν τοῖς πατρικίοις τῆς συγκλήτου βουλῆς τεταγμένον | ||
: ὄνομα κύριον . ἤκμαζε δὲ ἐπὶ Λέοντος τοῦ μετὰ Μαρκιανὸν βασιλέως , ] λαμπρὸς τὴν τόλμαν καὶ τοῖς ποσὶ |
: ἐλάσσων δὲ ἡμικυκλίου ἥ τε ἀπὸ τῆς ἀποχωρήσεως τοῦ ἀναβιβάζοντος μέχρι τῆς ἀποχωρήσεως τοῦ ἐναντίου συνδέσμου , καὶ ἡ | ||
ἐλάχιστον ἀπόστημα διάστασιν τῆς κατὰ τὸ μέγιστον διαστάσεως ἀπὸ τοῦ ἀναβιβάζοντος μοίρας α ιβ . Τὸ μὲν οὖν ὅσον ἐπ |
ὡς ἡ πλαγία πρὸς τὴν ὀρθίαν , ἡ ΩΑʹ πρὸς ΑʹϚ , καὶ δίχα τετμήσθω ἡ ΩϚ κατὰ τὸ Ϙ | ||
ἤπερ ἡ ΡΟ πρὸς ΟΝ , καὶ ἡ ΩΑʹ πρὸς ΑʹϚ μείζονα λόγον ἔχει ἤπερ ἡ ΡΟ πρὸς ΟΝ . |
τὸ Α σημεῖον , βάσις δὲ ὁ ΒΓ κύκλος , τέτμηται ἐπιπέδῳ διὰ τοῦ ἄξονος , καὶ πεποίηκε τομὴν τὸ | ||
ἡ ΖΗ : ἡ ΗΓ ἄρα ἄκρον καὶ μέσον λόγον τέτμηται τῷ Ε , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ |
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ | ||
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς |
τῶν ΑΗ , ΓΛ ἴσων οὐσῶν καὶ κοινῆς ἀφαιρεθείσης τῆς ΓΗ , λοιπὴ ἡ ΑΓ τῇ ΗΛ ἴση ἐστίν . | ||
τὰ ια λ , ὁ δὲ τῆς ΓΔ πρὸς τὴν ΓΗ ὁ τῶν οα λ πρὸς τὰ μη λ , |
καὶ ὡς ἡ ΤΒ πρὸς τὴν ΒΛ , οὕτως ἡ ΟΖ πρὸς τὴν ΖΝ . δι ' ἴσου ἄρα ὡς | ||
τὸ ὑπὸ ΓΞΑ μετὰ τοῦ ἀπὸ ΑΕ καὶ τοῦ ἀπὸ ΟΖ , τουτέστι τοῦ ἀπὸ ΕΘ , πρὸς τὸ ὑπὸ |
μελάθρῳ , πυκνῇσι στροφάλιγξιν ἑὸν δέμας ἀσκήσασαν . Χρειὼ δὲ σκοπέλου μὲν ἀνάντεος ἠδὲ πάγοιο σεύεσθαι προθέοντα ποδώκεα φῦλα λαγωῶν | ||
μιαρωτάτην , ὥστε ἥδιστα ἂν αὐτὴν ὤσαιμι κατὰ τούτου τοῦ σκοπέλου καὶ ἀφανίσαιμι . ταῦτ ' οὖν ἐπῄνεσεν ὁ Ἑρμῆς |
κατενόει : διὰ ταχέων δὲ πάλιν παρέκρουσεν . Περὶ δὲ ἑπτακαιδεκάτην ἐοῦσα , ἦν ἄφωνος : εἰκοστῇ ἀπέθανεν . Ἐπικράτεος | ||
, τὴν ἑξκαιδεκαταίαν τε Ὠρίων ἐπανίσχει καὶ ὑετὸς παρέπεται τὴν ἑπτακαιδεκάτην : τὴν μετ ' αὐτὴν τὸν Ἥλιον δέχεται ὁ |
Σοῦραν , ἀπὸ τοῦ Κρανείου δῆλον ὅτι βαδίζων ἐπὶ τὴν Λέρναν . καὶ ταῦτα Κορινθίων ἀκουόντων ἀνεγίνωσκε τῶν ἀκριβῶς εἰδότων | ||
, ἢν μὴ πάνυ ὁ διαιτητὴς ἀμβλυώττῃ . Ἐπὶ τὴν Λέρναν , ὦ Πόσειδον , παραγίνεται καθ ' ἑκάστην ἡμέραν |
πρὸς τὴν ΗΛ . καί ἐστι παράλληλος ἡ ΕΘ τῇ ΗΛ : εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ , | ||
τοῦ κύκλου ἐπιπέδῳ τῇ ΓΔ πρὸς ὀρθὰς αἱ ΚΒ , ΗΛ , καὶ ἐπεζεύχθω ἡ ΒΛ . ἐπεὶ οὖν δύο |
. τεμνέτωσαν ἀλλήλους κατὰ τὸ Ξ , καὶ ἐπεζεύχθωσαν αἱ ΞΑ , ΞΒ , ΞΗ , ΞΓ : ἡ μὲν | ||
ΕΑ πρὸς ΑΔ : διελόντι , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΕΔ πρὸς ΔΑ . ἐδείχθη δὲ καί |
ἐπεὶ ἡ ὑπὸ τῶν ΑΒ , ΒΓ τῇ ὑπὸ τῶν ΘΖ , ΖΗ , ὁμόλογος δὲ ἔστω ἡ ΒΓ τῇ | ||
καὶ λοιπὴ ἡ ΝΛ πρὸς ΖΑ . ὁ ἄρα τῆς ΘΖ πρὸς ΖΑ λόγος σύγκειται ἐκ τοῦ τῆς ΜΛ πρὸς |
ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως ἡ ΘΤ πρὸς ΘΦ , καὶ ἀφῃρήσθω | ||
ὡς ἡ ΚΘ πρὸς ΘΣ , οὕτως ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως |
ὡς ἄρα ἡ ΓΑ πρὸς ΑΒ , οὕτως τὸ ὑπὸ ΚΗΑ , τουτέστι τὸ ἀπὸ ΖΗ , πρὸς τὸ ὑπὸ | ||
ΗΒ , τῆς ΑΗ κοινοῦ ὕψους λαμβανομένης οὕτως τὸ ὑπὸ ΚΗΑ πρὸς τὸ ὑπὸ ΒΗΑ , ὡς ἄρα ἡ ΓΑ |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
ΔΗΒ , ἡ δὲ ὑπὸ ΒΑΖ , ἐὰν ἐπιζευχθῇ ἡ ΕΒ , τῇ ὑπὸ ΒΕΖ , τουτέστιν τῇ ὑπὸ ΒΓΗ | ||
ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ , κάθετοι δ ' ἤχθωσαν ἀπὸ μὲν |
ἔστιν ἄρα ὡς ἡ ΞΑ πρὸς ΑΜ , οὕτως ἡ ΟΔ πρὸς ΔΝ . ἐπεὶ δέ ἐστιν ὡς τὸ ὑπὸ | ||
τῇ ΔΩ παράλληλος ἤχθω ἡ ͵αΤϠ , καὶ ἐκβεβλήσθω ἡ ΟΔ κατὰ τὸ ͵α , καὶ συμπεπληρώσθω τὰ ΩΨ , |
, ἀνάσχεσθέ μου μικρὰ περὶ τούτου τανῦν εἰπεῖν . ΚΑΤΑΣΚΕΥΗ ΤΗΣ ΜΥΗΣΕΩΣ . Εἶτα εὐθὺς κατασκεύασον , ὅτι οὔτε ἀμύητος | ||
[ ὃς ] ὁρίζει Ἀσίαν καὶ Εὐρώπην . ΠΑΡΑΠΛΟΥΣ ΑΠΑΣΗΣ ΤΗΣ ΕΥΡΩΠΗΣ . Ἀπὸ Ἡρακλείων στηλῶν τῶν ἐν τῇ Εὐρώπῃ |
ἴσαι ἀλλήλαις εἰσίν , ὧν αἱ τέσσαρες αἱ ΕΚ , ΚΗ , ΖΛ , ΛΘ ἴσαι ἀλλήλαις εἰσίν [ ὁμοίως | ||
πρὸς τὸ ΓΔΛ τρίγωνον , οὕτως ἡ ΘΚ πρὸς τὴν ΚΗ , ἀλλ ' ὡς τὸ παραλληλόγραμμον πρὸς τὸ τρίγωνον |
ἴση τῇ ὑπὸ ΟΝΜ , βάσις ἡ ΕΘ βάσει τῇ ΟΜ ἴση καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ | ||
τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν ΠΝ . ὀρθογώνια |
ὁ ἄφενος ἀρσενικῶς , καὶ τὸ ἄφενος οὐδετέρως . . ΕΙΣ ΑΦΕΝΟΝ . Τὸν πλοῦτον ἄφενον καλοῦσι , τὸν ἀπὸ | ||
ΚΡΗΤΙΚΗΙ ΛΕΞΕΙ ΔΙΑ ΤΙ ΓΑΡ ΟΥΚ ΑΝ Η ΔΥΟ ΙΑΜΒΙΚΟΙΣ ΕΙΣ [ ΤΗΝ ? ΠΝΩΜΕΝΗΝ [ ! ] ! [ |
πρὸς τῷ θʹ τὸ εʹ ἄστρον οὐ φαίνεται ἀνατέλλον : προανατέλλει γὰρ αὐτοῦ τὸ θʹ [ τουτέστιν ὁ ἥλιος ] | ||
εἰς τὰ ἑπόμενα μετέβη , ὁ δ ' ἀστὴρ τοσοῦτον προανατέλλει τοῦ ἡλίου , ὅσον ὁ ἥλιος ἐν ταῖς δυσὶν |
καὶ τὸ Π τοῦ ἀναβιβάζοντος , τὸ δὲ Τ τοῦ καταβιβάζοντος . Κἂν διὰ τὰ προκείμενα διέλωμεν τὴν ΟΜ περιφέρειαν | ||
τοῦ ΑΒ , ἀναβιβάζοντος δὲ συνδέσμου τοῦ Ζ νοουμένου , καταβιβάζοντος δὲ τοῦ Ε , ἐκλειπτικῶν δὲ ὅρων ἀκριβῶν τῶν |
ἀπὸ ΓΗ . καὶ ὡς ἄρα ἐπὶ μὲν τῆς ἐλλείψεως συνθέντι , ἐπὶ δὲ τῶν ἀντικειμένων ἀνάπαλιν καὶ ἀναστρέψαντι τὸ | ||
ἄρα καὶ ὁ τῆς ΘΚ πρὸς τὴν ΚΑ δοθείς . συνθέντι ἄρα λόγος ἐστὶ τῆς ΘΑ πρὸς ΑΚ δοθείς . |
χωρία ἐνδιδόντων τῶν ἐνοικούντων κατασχὼν διὰ τῆς ἐρήμου ἀφίκετο ἐς Ἡλιούπολιν : ἐκεῖθεν δὲ διαβὰς τὸν πόρον ἧκεν ἐς Μέμφιν | ||
Κῶ : Ἀκτὶς δ ' εἰς Αἴγυπτον ἀπάρας ἔκτισε τὴν Ἡλιούπολιν ὀνομαζομένην , ἀπὸ τοῦ πατρὸς θέμενος τὴν προσηγορίαν : |
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ | ||
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ : |
, καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΓΔ πρὸς ὀρθὰς ἦκται ἐν τῷ ΓΝΔ ἐπιπέδῳ ἡ ΟΦ , ἡ ΟΦ | ||
: τὸ μετεωρίζεσθαι καὶ ἐπαίρεσθαι καὶ γαυριᾶν : παρὰ τὸ ἦκται ἀκτός καὶ ῥῆμα ἀκτῶ , ἀφ ' οὗ ἀκταίνω |
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ | ||
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν |
ἐκ τῆς ἐπιορκίας τιμωρίαν τοῖς σκολιῶς δικάσασι . . ΑΥΤΙΚΑ ΓΑΡ ΤΡΕΧΕΙ ὉΡΚΟΣ . Κατασκευάζων πῶς ἡ δικαιοσύνη ὑπερφέρει τῆς | ||
ἦτοι βασιλῆες Ἀχαιῶν εἰσὶ καὶ ἄλλοι . . ΗΔΗ ΜΕΝ ΓΑΡ ΚΛΗΡΟΝ ΕΔΑΣΣΑΜΕΘΑ . Ἀντὶ τοῦ πρὸ μακροῦ τὴν περιουσίαν |
] τὰ φαινόμενα [ ἐμπειρία ] ὡς [ ] αποστα ἀλληλουχίαν [ ] [ τοῦ ] ἐξωτάτου χιτῶνος εἶναι καὶ | ||
αὐτὸ καὶ ἔστι διὰ μέσου ἡ κίνησις μία κατ ' ἀλληλουχίαν , πολλῶν ὄντων τῶν ἑξῆς κινούντων καὶ κινουμένων , |
καὶ μεγίστας ἐν τοῖς τοιούτοις τόποις ὑπάρχειν , ἐν οἷς ὑπερκείμενά ἐστιν ὄρη μεγάλα καὶ ὑψηλὰ καὶ δασέα , ἔχοντα | ||
τῆς λαγόνος , ἐπειδὴ κενότερον δοκεῖ εἶναι ὡς πρὸς τὰ ὑπερκείμενά τε καὶ ὑποκείμενα . ὡς δὲ τῷ Γαληνῷ δοκεῖ |
ἢ ὁμοία : ἐν πλείονι ἄρα χρόνῳ τὸ Κ τὴν ΚΟ περιφέρειαν διελθὸν ἐπὶ τὸ Ο παραγίγνεται , ἤπερ τὸ | ||
, ΚΛ , καὶ ἐπεζεύχθωσαν αἱ ΚΜ , ΚΞ , ΚΟ . ἐπεὶ οὖν ἀπὸ μετεωροτέρου τοῦ Κ ἐπὶ τὸ |
. καὶ γὰρ Μωυσῆς „ ἐξάγει τὸν λαὸν εἰς τὴν συνάντησιν τοῦ θεοῦ „ , σαφῶς εἰδὼς ἐρχόμενον αὐτὸν ἀοράτως | ||
ἀκούσας ταῦτα ἐχάρη χαρὰν μεγάλην σφόδρα , καὶ ἐξελθὼν εἰς συνάντησιν τοῦ μακαρίου Ἡσαΐου ἐπελάβετο τῆς χειρὸς αὐτοῦ καὶ εἰσήγαγεν |
τῇ Ἐρυθρᾷ θαλάττῃ , ἕως ἀκμὴν ἐκέκλειστο τὰ κατὰ τὰς Στήλας στενά , ἐκραγέντων δὲ τὴν ἀναχώρησιν γενέσθαι , ταπεινωθείσης | ||
Αἰθίοπας δυσμικοὺς [ τοὺς ] ὑπὲρ Μαύρους , κατὰ ζέφυρον Στήλας καὶ ἀρχὰς Λιβύης καὶ Εὐρώπης , κατ ' ἀργέστην |
ποτὲ μὲν κατὰ μείωσιν ἢ ἀφαίρεσιν , ποτὲ δὲ κατὰ πρόσθεσιν ἢ αὔξησιν . οἱ οὖν τοιοῦτοι οἰκείως καλοῦνται μυουρίζοντες | ||
, ταῖς τε προτάσεσι λέγω καὶ συμπεράσματι , τήν τε πρόσθεσιν καὶ τὴν ὑφαίρεσιν γίνεσθαι . οὐδὲν δὲ διαφέρει , |
ὁρίζοντι . Τὸ Θ ἄρα τοῖς πρὸς ἀνατολὰς οἰκοῦσι πρότερον ἀνατέλλει καὶ πρότερον δύνει . Λέγω δή , ὅτι καί | ||
τὸ πρότερον ἀνατέλλον πρότερον δύνει καὶ τὸ πρότερον δῦνον πρότερον ἀνατέλλει . ἔστω ἀνατολικὰ μὲν τὰ Γ μέρη , δυτικὰ |
παραφερομένων κατὰ τὴν πρώτην καὶ ἀπ ' ἀνατολῶν ἐπὶ δυσμὰς περιαγωγὴν πρὸς τὴν διῃρημένην τοῦ μεσημβρινοῦ πλευρὰν τῶν ἐπιζητουμένων ἀστέρων | ||
ἀπαλλαγὴν τῶν ἀνθρωπίνων δεσμῶν παρέχειν καὶ λύσιν τῆς γενέσεως καὶ περιαγωγὴν ἐπὶ τὸ ὂν καὶ γνῶσιν τῆς ὄντως ἀληθείας καὶ |
. ἤχθω γὰρ ἀπὸ τοῦ Α παρὰ τὴν ΒΖ ἡ ΑΥ . ἐπεὶ οὖν διὰ τὰ αὐτὰ τοῖς πρότερον τῆς | ||
ἐπὶ τοῦ λοξοῦ τὰς ΓΔ , ΓΚ , ΑΠ , ΑΥ . καὶ γεγράφθωσαν μέγιστοι κύκλοι διὰ τῶν Δ , |
Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . | ||
. ἀλλὰ καὶ διὰ τὸ τρεῖς εἶναι παραλλήλους τὰς ΔΕ ΛΜ ΗΘ ἴση γίνεται ἡ ΕΜ τῇ ΜΚ . εἴη |
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
κατατάσει θέναρι χειρὸς ἡ ἴπωσις γινέσθω πρὸς τὴν τοῦ ὀστοῦ καταταγήν , καὶ αὐτῆς τῆς τάσεως ἰδίως συνεργούσης τῷ καταρτισμῷ | ||
αὐτάρκη τάσιν μοχλείαις χρησόμεθα ταῖς καταλλήλοις πρὸς τὴν τοῦ ἄρθρου καταταγήν , ἐπὶ μὲν τῆς ἔσω καὶ τῆς ἔξω διαφορᾶς |
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς | ||
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ |
Δ , καὶ ἀπ ' αὐτοῦ πρὸς ὀρθὰς ἀγαγὼν τῇ ΕΓ τὴν ΔΒ , καὶ ἐπιζεύξας τὴν ΕΒ , καὶ | ||
ἡ ΑΕ τῇ ΕΒ : ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ : τὰ Γ , Δ ἄρα σημεῖα οὐκ ἴσον |
ΒΓ . , ] ἐπεὶ γὰρ ἡ ΓΠ ἴση τῇ ΠΚ , ἡ ΓΝ μείζων τῆς ΝΚ . ὥστε καὶ | ||
ΟΚ , καὶ ἡ ΠΡ πρὸς ΡΟ , καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , |
ἀνέχεσθαι ἡμᾶς παντελοῦς ἀργίας . διὰ τὰς γνωστικὰς οὖν εἰκότως προεβάλετο τὸ θεωρητικόν , διὰ δὲ τὰς πρακτικὰς τὸ πρακτικόν | ||
καὶ κατὰ τὰς ἀναβάσεις ἐπικλύζοντος , ἀπὸ μὲν τοῦ νότου προεβάλετο χῶμα παμμέγεθες , πρὸς μὲν τὴν πλήρωσιν τοῦ ποταμοῦ |
αἶψ ' ὑπακοῦσαι : ἀλλ ' Ὀδυσεὺς κατέρυκε καὶ ἔσχεθεν ἱεμένω περ . ἔνθ ' ἄλλοι μὲν πάντες ἀκὴν ἔσαν | ||
ὅμουροι . ὤλακα γὰρ τὴν αὔλακα Δωρικῶς : καὶ Ὅμηρος ἱεμένω κατὰ ὦλκα . ἀρήιοι : ἤτοι οἱ κατὰ φύσιν |
πρὸ τῆς γενέσεως ἦν καὶ οὐχ , ἵνα γένηται , ἐνοήθη , οὐ πρὸς τὰ τῇδε βλέπων εἶχε παρ ' | ||
τὸ ἀνάλογον οὖν καὶ ὁ νοητὸς ἀπὸ τοῦ αἰσθητοῦ κόσμος ἐνοήθη , πύλη τις ὢν ἐκείνου . ὡς γὰρ οἱ |
περιοδικὴν πάροδον ἀνωμαλίας ἀπὸ τοῦ ἑτέρου τῶν στηριγμῶν ἐπὶ τὴν ἀκρώνυκτον μοιρῶν ιη κη ιθ , οἷς ἐπειδὴ διὰ τοῦ | ||
ἐδείχθη δ ' , ὅτι καὶ κατὰ μὲν τὴν αʹ ἀκρώνυκτον ἐπεῖχεν Σκορπίου μοίρας κγ ιδ , κατὰ δὲ τὴν |
] τὴν στροφὴν [ [ παύει ] ? τὴν [ ἀντιστροφὴν ] [ [ ὧδε ] ? : ἀλλὰ φαίνεται | ||
ῥυθμοὺς ἐμπεριλαμβάνουσα καὶ μήτε ἀκολουθίαν ἐμφαίνουσα αὐτῶν μήτε ὁμοζυγίαν μήτε ἀντιστροφὴν εὔρυθμος μέν ἐστιν , ἐπειδὴ διαπεποίκιλταί τισιν ῥυθμοῖς , |
παρὰ πάντων οἱ Θηβαῖοι ἐπείσθησαν , καὶ αὐτοὶ μὲν κατὰ Καρύας ἐνέβαλον , οἱ δὲ Ἀρκάδες κατὰ Οἰὸν τῆς Σκιρίτιδος | ||
δὲ ταῦτα οἱ Ἀρκάδες ἐπορεύοντο πρὸς τοὺς Θηβαίους ἐπὶ τὰς Καρύας . οἱ δὲ Θηβαῖοι ἐπεὶ ᾔσθοντο τὰ πεπραγμένα ὑπὸ |
πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι | ||
τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ |
ἢ κοιλότητος κἀν ταῖς ἐξαρθρήσεσι διακριτέον τὸ πρὸς τοῖς κορωνοῖς ῥαφανηδὸν γινόμενον κάταγμα διὰ τοῦ κινεῖσθαι κατὰ τὴν διὰ τῶν | ||
ταρσοῦ , πάντα μεγαλομερῶς μὲν κατάγνυται , καυληδὸν , ἢ ῥαφανηδὸν , ἢ σχιδακηδόν . ἐπὶ λεπτὸν δὲ καρυηδὸν ἢ |
. Ὅτι Ἀγησίλαος πλῆθος ἱππέων βουλόμενος τοῖς πολεμίοις παραδεῖξαι εἰς διφαλαγγίαν τοὺς πρωτοστάτας τῶν ἱππέων τάξας ὑπέταξεν ὄνους τε καὶ | ||
μέρη καθ ' ἑαυτὰ παρέρχεσθαι , δύο μέρη ποιεῖν εἰς διφαλαγγίαν . Εἰ δὲ μηδὲ δύο χωροῦσιν , κατὰ ἓν |