τὸ εʹ ἄστρον φαίνεται : ἐδείχθη δὲ ὅτι οὐδὲ τὴν ζεʹ : ὅλην ἄρα τοῦ ἡλίου τὴν ζεηʹ περιφέρειαν διαπορευομένου
ζηʹ τῆς ἀπώτερον ἐλάσσων ἐστίν : ἐλάσσων ἄρα ἐστὶν ἡ ζεʹ τῆς ζβʹ : ἀλλὰ καὶ ἴση , ὅπερ ἐστὶν
5719162 ἀνατελλουσα
ἀσθενὴς ἡ βύβλος πρὸς τὸ φέρειν σῖτον . Στάχυας γὰρ ἀνατέλλουσα οὐκ ἐκτρέφει . Βῶλος ἄρουραν : ἐπὶ τῶν μεγάλοις
ἑῴαν φαινομένην ἀνατολὴν ποιεῖται : ἡ ἄρα ζδʹ περιφέρεια νυκτὸς ἀνατέλλουσα οὐχ ὁρᾶται : δῆλον δὲ ὅτι οὐδὲ ἡ ζεʹ
5420174 γνωμονος
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς
5343840 αγβʹ
: ποιήσει δὴ τομὴν κύκλον . Ἔστω αὐτοῦ ἡμικύκλιον τὸ αγβʹ : ἐὰν δὴ μενούσης τῆς αβʹ εὐθείας περιενεχθὲν τὸ
συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς , καὶ
5338008 δηʹ
χρόνῳ τὸ δʹ τὴν δζʹ διαπορεύεται καὶ τὸ δʹ τὴν δηʹ : καὶ εἰσὶν τοῦ αὐτοῦ κύκλου : ἴση ἄρα
ἀνατέλλουσα οὐχ ὁρᾶται . Στρεφομένου δὲ τοῦ κόσμου ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν ποιεῖται , ἡ δὲ δεʹ οὐχ
5316165 περιφερειαν
φαινόμενα . οἷον ἐνηνέχθω τὸ μὲν κέντρον τοῦ ἐπικύκλου τεταρτημοριαίαν περιφέρειαν περὶ ἔγκεντρον κύκλον τὴν μο , καὶ μετενηνοχέτω τὸν
ἴσαι εὐθεῖαι ὑποτείνουσιν : ὅπερ ἔδει δεῖξαι . Τὴν δοθεῖσαν περιφέρειαν δίχα τεμεῖν . Ἔστω ἡ δοθεῖσα περιφέρεια ἡ ΑΔΒ
5190174 κατηχθω
ἡ ΑΒ , καὶ ἐφαπτομένη ἤχθω ἡ ΓΔ , καὶ κατήχθω τεταγμένως ἡ ΓΕ , κέντρον δὲ ἔστω τὸ Ζ
ΖΘΦ τεταγμένην εἶναι : δευτέρα ἄρα διάμετρος ἡ ΖΦ . κατήχθω ἐπ ' αὐτὴν ἀπὸ τῆς τομῆς ἡ ΜΝ παράλληλος
5103959 εἰκοσαεδρου
τρίγωνα ἰσόπλευρα εἶναι . ἔσται δὴ ἡ ΑΒΓΔΕ πυραμὶς μέρος εἰκοσαέδρου σχήματος . τετμήσθω μία πλευρὰ ἑνὸς τριγώνου ἡ ΖΓ
, οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό τε τοῦ
5075970 δζʹ
πόδας βʹ , ἔστω κανὼν ἔχων τὸ μῆκος πόδας [ δζʹ ] , τὸ δὲ πλάτος καὶ τὸ ὕψος πόδα
. Εἰ γὰρ μὴ ἔστιν ὁμοία ἡ γεʹ περιφέρεια τῇ δζʹ , ἔστω ὁμοία ἡ γεʹ τῇ δηʹ : ἐν
5000328 ΠΚ
ΒΓ . , ] ἐπεὶ γὰρ ἡ ΓΠ ἴση τῇ ΠΚ , ἡ ΓΝ μείζων τῆς ΝΚ . ὥστε καὶ
ΟΚ , καὶ ἡ ΠΡ πρὸς ΡΟ , καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ ,
4996293 πενταγωνου
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ
4990619 δεʹ
τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου ἐστὶν ἡ δεʹ : ἡμίσους ἄρα καὶ ἡ λκʹ : τοῦ ἄρα
δλʹ , καὶ κοινὴ ἡ λεʹ : ὅλη ἄρα ἡ δεʹ ὅλῃ τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου
4989785 δεικνυμενου
συμπέρασμα δείκνυται : οὐ γὰρ οὐδὲν κωλύει τὰς προσεχεῖς τοῦ δεικνυμένου προτάσεις ἄλλου τινὸς συμπεράσματα δείκνυσθαι , ὡς ἐπὶ τῶν
καὶ τὸ εʹ καὶ τὸ Ϛʹ καὶ τὸ ζʹ τοῦ δεικνυμένου νυνὶ θεωρήματος . περὶ δὲ τὰ τρίγωνα ἔστι καὶ
4988663 δωδεκαεδρου
ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ
ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων
4971983 παραλληλογραμμου
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν
4969755 καταμετρει
ὀρθὰς τέμνοντες τούτους , γραφόμενοι δὲ διὰ τῶν πόλων , καταμετρεῖ τὴν μὲν οἰκήσιμον ἐμβατεύων , τὴν δ ' ἄλλην
τοῦ Ϛ μέρη ἐστί , δύο τρίτα . οὐ γὰρ καταμετρεῖ ὁ δ τὸν Ϛ οὔτε μεθ ' ἑαυτοῦ ἤτοι
4954352 ΛΝ
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ
4944454 ἐκκαλυψοντος
ἢ ἄδηλον . εἰ μὲν οὖν πρόδηλον , οὐδὲ τοῦ ἐκκαλύψοντος δεήσεται , ἀλλὰ συγκαταληφθήσεται αὐτῷ , καὶ οὐκ ἔσται
μὴ ἔχοντος ὃ ἐκκαλύψει , τοῦ δὲ μὴ χρῄζοντος τοῦ ἐκκαλύψοντος . τὰ δὲ αὐτὰ λεκτέον καὶ περὶ τῆς λειπομένης
4940259 ΝΘ
κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ :
αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται
4938863 Λεγω
ἀπὸ τῆς ΑΓ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΔΖ . Λέγω δὴ ὅτι ἐστὶν καὶ ὡς ἡ ΑΒΓ περιφέρεια πρὸς
Η καὶ λειπέτω τὴν ΗΕ ἀσύμμετρον οὖσαν ὅλῃ περιφορᾷ . Λέγω , ὅτι οὐδέποτε ἔσται ἅπαντα κατὰ τὰ αὐτά .
4933674 θεωρηματος
καὶ θεωρία ἐκεῖνο . Ἡ ἄρα πρᾶξις ἕνεκα θεωρίας καὶ θεωρήματος : ὥστε καὶ τοῖς πράττουσιν ἡ θεωρία τέλος ,
ἀνεκλείπτου περιφερείας δεδειγμέναις μοίραις ρνζ , ὡς ἐπὶ τοῦ προκειμένου θεωρήματος σελήνης , ἑκατέρα τῶν ΕΓΗ , ΖΑΘ περιφερειῶν [
4881820 βοηθε
δέ . ἄσπετον : πολύ , ἄφθονον . ἀρωγέ : βοηθέ , λυτρωτά . ἀνθοποιόν : ἄνθη ἐκφέρουσαν . ἀμφ
θ πρόμαχε ] βοηθέ . πρόμαχ ' ] ὑπέρμαχε , βοηθέ . Ξ δόμων ] οἴκων . τοῖσι ] τοῖς
4876673 ΜΚ
τὸ ἀπὸ ΜΚ τοῦ ὑπὸ ΜΚΘ , τὸ ἄρα ἀπὸ ΜΚ πρὸς τὸ ἀπὸ ΚΗ μείζονα λόγον ἔχει ἤπερ τὸ
οὕτως ἡ ΝΠ πρὸς ΟΠ , ἔσται καὶ ὡς ἡ ΜΚ πρὸς τὴν ΚΑ , τουτέστιν ὡς ἡ ΜΑ μετὰ
4858580 ἰσημερινη
ἐστιν , οἵων ὁ γνώμων ξ , τοιούτων ἡ μὲν ἰσημερινὴ σκιὰ κϚʹ ∠ , ἡ δὲ χειμερινὴ ξεʹ ∠
ἑξηκοστὰ Ϛʹ , ἡ δὲ θερινὴ εʹ , ἡ δὲ ἰσημερινὴ ηʹ ἐξ ἑκατέρου μέρους τοῦ ἰσημερινοῦ ἑξηκοστὰ δʹ ,
4853140 ζηʹ
ὄντος πρὸς τῷ νʹ [ διὰ τὸ ἴσην εἶναι τὴν ζηʹ περιφέρειαν τῇ λνʹ περιφερείᾳ ] : καὶ ἔσται ὁ
τῷ ηʹ ] : λέγω ὅτι τοῦ ἡλίου διαπορευομένου τὴν ζηʹ περιφέρειαν τὸ εʹ ἄστρον οὐ φαίνεται . Ἔστω γὰρ
4850602 ΠΡ
ΑΒ πρὸς τὴν ΓΔ , οὕτως ἡ ΕΖ πρὸς τὴν ΠΡ , ἴση δὲ ἡ ΠΡ τῇ ΗΘ , ἔστιν
περιφερείας , ἡ δὲ κατὰ τὸ Ο βορεία παράλλαξις τῆς ΠΡ , ἡ δὲ κατὰ τὸ Μ βορεία τῆς ΛΚ
4849646 ΜΔ
ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ
ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ
4847715 αδεʹ
ἔσται ὀρθὸς πρὸς αὐτόν : καὶ ἐπεὶ ἑκατέρα τῶν ζδηʹ αδεʹ τὸν αζηʹ κύκλον διὰ τῶν πόλων τέμνει , ἴση
καὶ διὰ τῶν ηʹ θʹ μέγιστοι κύκλοι γεγράφθωσαν ἐφαπτόμενοι τοῦ αδεʹ κύκλου οἱ ληκεʹ μθκδʹ , ὥστε τὸ μὲν εηλʹ
4826905 ΕΝ
Ἠγείρετο δὲ πολὺς κτύπος τούτων μαχομένων . . . ΙΔΕΙ ΕΝ ΑΙΝΟΤΑΤΩι . Τὸν καιρὸν λέγει τῆς μάχης . Ἴδει
, ] πῶς ἔλασσον τὸ Ξ στερεὸν τῆς ἐν τῷ ΕΝ κώνῳ πυραμίδος ; δείξομεν οὕτως : ἐπεὶ ὁ ΕΝ
4823301 γεʹ
ιδ ∠ ʹιβ , καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις ὥρας γεʹ . Τῆς δὲ Ἀχαΐας αἱ μὲν Βοιώτιαι Θῆβαι τὴν
ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γεʹ περιφέρειαν διαπορεύεται . Καὶ ἐπεὶ τοῦ δʹ ἄστρου ἀνατέλλοντος
4809827 ΣΤ
καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ
ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ '
4806970 συνταχθησεται
γὰρ καταφασκομένου τοῦ περιπατῶ ἐπὶ λήμματι τῷ τοιούτῳ τὸ αἰτιῶδες συνταχθήσεται , ὅτι περιπατῶ κινοῦμαι . . Σαφὲς οὖν ὅτι
ἴσως ταῖς κατὰ τὸ τρίτον ἀδιαστόλοις γένους οὔσαις , εὐλόγως συνταχθήσεται ἕνεκα γένους : οὐδὲ γὰρ ἔστι καὶ ἐπὶ τούτων
4806752 ΚΑ
κέντρου δύναται τὸ ὑπὸ ΟΓ ΚΑ ἢ τὸ ὑπὸ Θ ΚΑ ἐλάσσων ἐστὶν τῆς σφαιρικῆς τοῦ τμήματος ἐπιφανείας . ἀλλὰ
, οἵων ἐστὶν ἡ ΑΖ διάμετρος ρκ , ἡ δὲ ΚΑ τῶν αὐτῶν ργ νε : ὥστε καί , οἵων
4803328 ὑποκεκλιται
ὤν : διό φησιν Ἄρατος : λοξὸς μὲν Ταύροιο τομῇ ὑποκέκλιται αὐτὸς Ὠρίων . εἰσὶ δὲ αἱ Πλειάδες ἐπὶ τῇ
μεταξὺ νότοιο καὶ ἠελίοιο κελεύθου . Λοξὸς μὲν Ταύροιο τομῇ ὑποκέκλιται αὐτὸς Ὠρίων . Μὴ κεῖνον ὅτις καθαρῇ ἐνὶ νυκτὶ
4799820 προσπιπτουσων
πασῶν τῶν ἀπὸ τοῦ Κ σημείου πρὸς τὴν ΠΛΡ περιφέρειαν προσπιπτουσῶν εὐθειῶν , αἰεὶ δ ' ἡ ἔγγιον αὐτῆς τῆς
πρὸς τὴν μεταξὺ τῆς τε διαμέτρου καὶ τῆς παραλλήλου αὐτῇ προσπιπτουσῶν εὐθειῶν , ὡς ἑξῆς δείξομεν : ὥστε οὐδὲ διὰ
4797365 πτωτικων
. οὐδὲ γὰρ ἡ σύνθεσις αὐτῶν , τῶν δὲ προεκκειμένων πτωτικῶν , οἷς παρείπετο ἀναβιβάζειν μὲν τὸν τόνον , εἰ
θεματικώτερον ἐκλίθησαν , οὐ δυναμένης τῆς ἐγώ κατὰ λόγον τῶν πτωτικῶν τὴν ἐμοῦ γενικὴν παραδέξασθαι , οὐδὲ μὴν τῆς ἐμοῦ
4772612 ΘΥ
τὸ ΛΥ στερεόν , τῆς δὲ ΘΖ βάσεως καὶ τοῦ ΘΥ στερεοῦ ἥ τε ΝΖ βάσις καὶ τὸ ΝΥ στερεόν
ΖΩΑ . ὁμοίως δὴ δειχθήσεται μείζων ἢ ὁμοία ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ ,
4758305 ἐκβαλλομενη
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω
4757200 ΛΑ
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου
4733024 ἐξαλλασσει
ἡμισφαίριον , ἀλλ ' ἐν ᾧ χρόνῳ ἡ ΚΘΛ περιφέρεια ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον , τὸ μὲν Κ ἀρξάμενον ἀπὸ
ΘΚ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον . Ἐν ᾧ ἄρα χρόνῳ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον ἡ ΘΚ περιφέρεια , ὁ ἥλιος
4728028 ἀδιαστατῳ
σκέπτεται καὶ πολυπραγμονεῖ , μετὰ σπουδῆς ἐρευνῶν τὰ φύσεως , ἀδιαστάτῳ χρώμενος καὶ συνεχεῖ πόνῳ . διὰ τοῦτο τὸν μὲν
ὄμβρον οὐχ ὕδατος ἀλλὰ πυρὸς ὕειν : ἀθρόας δὲ νιφούσης ἀδιαστάτῳ καὶ ἀπαύστῳ ῥύμῃ φλογός , ἐκαίοντο μὲν ἀγροὶ καὶ
4716344 κυβου
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠
4709905 ΜΩ
ἄρα ἀπὸ τῆς ΜΓ ἔλασσόν ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . τὸ δὲ ἀπὸ τῆς ΜΓ τοῦ ἀπὸ τῆς
τῶν ΓΩ , ΩΜ ἐλάσσονά ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . ἀλλὰ τὸ ἀπὸ τῶν ΓΩ , ΩΜ ἴσον
4709150 γεωμετρης
ἄξων . ἀποδέδωκεν γὰρ ἂν αὐτὸ σὺν τῷ ἄξονι ὁ γεωμέτρης : ἀλλ ' εἴ τις ἄξων , οὗτος καὶ
' ἀδυνάτου . οἷον ὡς ἐπὶ τοῦ παραδείγματος βουλόμενος ὁ γεωμέτρης δεῖξαι , ὅτι ἡ διάμετρος τῇ πλευρᾷ ἀσύμμετρός ἐστι
4698952 ΑΜ
ἑκατέρα μὲν τῶν ΑΒ , ΑΖ ἑκατέρας τῶν ΑΗ , ΑΜ τῇ ἐκ τοῦ κέντρου τῆς σελήνης , ἴση δὲ
ἐστὶ καὶ ἡ ὑπὸ ΓΝΗ . καὶ παράλληλός ἐστιν ἡ ΑΜ τῇ ΝΒ , καὶ δύο διηγμέναι εἰσὶν αἱ ΑΒ
4690182 ΞΠ
ΕΓ ἡ ΞΛΟ , καὶ τῇ ἴσαι κείσθωσαν ἥ τε ΞΠ καὶ ἡ ΡΜ , καὶ ἐπεζεύχθωσαν ἡ ΕΚ καὶ
ΑΒ ἴση ἡ ΞΟ , τῇ δὲ ΒΓ ἴση ἡ ΞΠ , καὶ ἐπεζεύχθω ἡ ΟΠ . καὶ ἐπεὶ ἴση
4690108 ἀβαθης
ἀξύμφορον . ἡ δ ' ἐφ ' ἕνα ἐπὶ μετώπου ἀβαθὴς τάξις ἐς λεηλασίας ἀνυπόπτους ἐπιτήδειος , ἢ εἴ που
αὖ μηκῦναι τὸ μέτωπον ἐς ὀκτώ , ἔσται οὐ πάντη ἀβαθὴς ἡ φάλαγξ . τὴν δὲ εἰς ὀκτὼ εἰ ἐκτεῖναι
4684837 ΠΟ
ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ
ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς
4682352 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
4681848 ἰσημερινης
εἰς τὴν ιθʹ πρὸ ∠ ʹ καὶ γʹ α ὥρας ἰσημερινῆς τοῦ μεσονυκτίου καὶ τοῦ ιθʹ ἔτους Ἀδριανοῦ Χοϊὰκ βʹ
. ἅπερ οὐδὲ ιϚʹ , φησίν , ποιεῖ ὥρας μιᾶς ἰσημερινῆς . ἐὰν γὰρ τὸ ὡριαῖον μέσον δρόμημα τῆς σελήνης
4677207 ΘΚ
σημεῖον . Κείσθω γὰρ τῇ ΖΗ περιφερείᾳ ἴση περιφέρεια ἡ ΘΚ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
, ΗΛ ἐν ἴσῳ χρόνῳ δύνουσιν : ὁμοίως καὶ αἱ ΘΚ , ΛΜ . διὰ τὰ αὐτὰ δὴ καὶ αἱ
4674176 ΘΡ
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ ,
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
4673478 ΜΑ͵
δὲ ἡ ΛΜ πρὸς ΜΩ , ἡ ΜΩ πρὸς τὴν ΜΑ͵ καὶ ἡ Α͵Μ πρὸς τὴν ΜΒ͵ , ἔσται ἄρα
ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . ὡς δὲ ἡ ΩΜ πρὸς ΜΑ͵ , οὕτως
4673090 ΞΖ
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς
4669649 εθʹ
ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν ποιεῖται , ἡ δὲ εθʹ ἑσπερίαν δύσιν . Ἡ μὲν γὰρ δηʹ περιφέρεια ὑπὲρ
τοῦ ἡλίου ἔστω δωδεκατημόριον τὸ δηʹ , ἀκολουθοῦν δὲ τὸ εθʹ : λέγω ὅτι ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν
4660782 διαπορευομενου
πρῶτος ἔστω σοι καιρὸς τῆς ἀντιδότου ἀρχομένου ἔαρος καὶ ἡλίου διαπορευομένου τὸν κριόν . εἰ δέ τι κωλύσειεν ἄρχεσθαι τῆς
ἴσας περιφερείας διέρχεται . νυνὶ δὲ τοῦ μὲν ἡλίου ὁμαλῶς διαπορευομένου τὸν κύκλον , αὐτοῦ δὲ τοῦ κύκλου ἀνωμάλως τὰς
4651102 παραβαλλεται
ἡ κατὰ βάθος κίνησις τῶν ἀστέρων τοῖς ἐν ἁρμονίᾳ γένεσι παραβάλλεται . Ὅτι καὶ ταῖς κατὰ πλάτος παρόδοις τῶν ἀστέρων
τὸν μονάδι ἐλάσσονα , ἐπειδὴ αὐτό τι πρὸς αὑτὸ οὐδὲν παραβάλλεται , ἀλλὰ ἄλλο πρὸς ἄλλο . πρὸς ἀλλήλους δὲ
4648840 ΥΘ
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ
4641223 ΡΝ
ΘΚ , τῇ δὲ ΡΛ ἴση ἑκατέρα τῶν ΡΜ , ΡΝ : ἑκάστη ἄρα τῶν ΑΒ , ΒΓ , ΔΕ
: ἐπ ' εὐθείας ἄρα [ ἐστὶ ] καὶ ἡ ΡΝ τῇ ΝΟ . καὶ συμπεπληρώσθω τὸ ΣΠ τετράγωνον :
4637073 διαμετρος
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ
4635862 ἀσυμπτωτοι
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων
4634953 ΤΩ
ἡ δὲ ΦΩ τῆς παραλλάξεως τοῦ ἡλίου , καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν
ἀνακειμένου , ὄτι μέγιστός ἐστιν ὁ ἀνδριὰς καὶ ἀξιοθαύμαστος . ΤΩ δεσπότῃ μου καὶ σοφῷ στεφηφόρῳ Λέοντι , τῷ κρατοῦντι
4631566 Χηλων
Κριοῦ ἐστιν ἀρχή , κατὰ δὲ τὸ ἕτερον ἡ τῶν Χηλῶν . τοῦ μέντοι θερινοῦ τροπικοῦ πλέον ἢ τὸ ἥμισυ
τοῦ ἐπικύκλου , ὅταν ὑπὸ τὴν ιʹ μοῖραν ᾖ τῶν Χηλῶν , τὸ δὲ Γ , καθ ' οὗ γίνεται
4628768 ΗΒΓ
ἴση : καὶ ἡ ὑπὸ ΓΗΒ ἄρα γωνία τῇ ὑπὸ ΗΒΓ ἐστιν ἴση : ὥστε καὶ πλευρὰ ἡ ΒΓ πλευρᾷ
ΣΕ πρὸς ΕΔ . καὶ ἐπεὶ τὸ ΡΝΓ τρίγωνον τοῦ ΗΒΓ τριγώνου , τουτέστι τοῦ ΓΔΕ , ἐπὶ μὲν τῆς
4626976 πενταγωνον
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ
4617432 ἀπειληφθω
: ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ
χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου
4612962 προπιπτει
βλεφάρων καλύπτεϲθαι : ἐνίοτε δὲ καὶ μέχρι μήλων καὶ ὀφρύων προπίπτει . καὶ μάλιϲτα τοῦτο ϲυμβαίνει ταῖϲ ἐξ ὑψηλῶν καταπτώϲεϲιν
ἐπιφέρει καὶ ἀδύνατον , ὅπου μέμυκε τὸ στόμιον καὶ οὐδὲν προπίπτει τοῦ χορίου μέρος . τὰ δὲ ὑποθυμιάματα δριμύτητι τὴν
4603665 ΓΜ
τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ
λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ
4600836 ΓΡ
ὁμοίως ἤχθωσαν : γίνεται δὴ διπλῆ ἡ μὲν ΓΔ τῆς ΓΡ , ἡ δὲ ΗΘ τῆς ΘΣ διὰ τὸ προκείμενον
ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ ΓΡ ἄρα πρὸς τὴν ΓΣ μείζονα λόγον ἔχει ἢ ὃν
4598673 συσσημαινει
τὸ ὑπάρχον , ἀλήθειαν δὲ ἢ ψεῦδος οὐδέποτε . πλὴν συσσημαίνει ἄλλοις τισὶ σύνθεσίν τινα καὶ πρότασιν , ἥντινα σύνθεσιν
φησὶν ἐγὼ περιπατῶ , οὕτως ὁ λέγων πάντα ἐστὶν ἀόριστα συσσημαίνει καθ ' ἡμᾶς ἢ ὡς πρὸς ἐμὲ ἢ ὡς
4595722 ΓΕ
λ , ἡ δὲ ΔΕ ρκ , τοιούτων ἐστὶν ἡ ΓΕ εὐθεῖα α κ κγ . τῶν δὲ αὐτῶν ἐδείχθη
τῆς παρούσης καταγραφῆς τὸ ἕτερον εἶδός ἐστιν : ἡ γὰρ ΓΕ ἴση ἐστὶ τῇ ΔΒ . τέμνουσαν ἔλαβεν ὁ στοιχειωτὴς
4593049 ΘΣ
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ .
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ
4591664 ΟΠΡ
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ
4591068 ΒΜ
, καὶ παράλληλος τῇ ΖΔ ἡ ΑΜ , καὶ τῶν ΒΜ , ΜΓ μέση ἀνάλογον ἔστω ἡ ΜΗ , καὶ
: διάμετρος ἄρα ἐστὶν ἡ ΒΘ , ὀρθία δὲ ἡ ΒΜ . λέγω , ὅτι τὸ ὑπὸ ΔΑΖ ἴσον ἐστὶ
4589956 ΑΠ
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ
4587084 καταμετρειν
ἀκριβοῦς σημείου , τὸν ἀγχίνουν χρεὼν σκοποῦντα ταῖς ἀποστάσεσι τούτων καταμετρεῖν τὰ νοσήματα . Καὶ πέψεσι μὲν οὖν ἀκριβέσι τῶν
ἐκκυλιόμενόν τε τῇ ἀνὰ μέρος ἄλλων καὶ ἄλλων εὐθειῶν θέσει καταμετρεῖν τὴν ἐπίπεδον . εἰ δὴ καὶ κατ ' εὐθεῖαν
4585985 ἡμικυκλιου
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω ,
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ
4585171 ΙΑ
ἀλλὰ πρὸς θεῶν ἐπίσχετε [ ] μηδὲ συρίξητε . [ ΙΑ ] Ὅτι μέν , ὦ Ἀθηναῖοι , Φίλιππος οὐκ
Φθία βαρύνονται , καὶ τὸ δεία . Τὰ διὰ τοῦ ΙΑ ἐπὶ χωρῶν κείμενα παροξύνεται : Λυκία Ἀσία Κιλικία .
4581159 ἐγκλισεσιν
εὐκτικὴν ἢ προστακτικήν : οὐδὲ γὰρ ἔγκειται ἐν ταῖς τοιαύταις ἐγκλίσεσιν ἡ μαχο - μένη τῇ ἀποφάσει κατάφασις , ἣν
τῶν μὲν οὖν δύο τούτων ἀστέρων τὰς ἐν ταῖς μεγίσταις ἐγκλίσεσιν κατὰ πλάτος παρόδους τὸν ἐκκείμενον τρόπον ἐπραγματευσάμεθα διὰ τὸ
4575992 ΒΟ
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν
4568608 ἑῳαν
. ἐπειδὴ οὖν οἱ αὐτοὶ γίνονται λόγοι τοῖς περὶ τὴν ἑῴαν φάσιν τῶν Ἰχθύων , καὶ τῆς κατὰ τὸ πλάτος
τὸν ἰσθμὸν οἱ μὲν τὸν Καύκασον , οἱ δὲ τὴν ἑῴαν Ἰβηρίαν φασίν : ἄμεινον δὲ αὐτὴν ἀκούειν ἢ μεταξὺ
4566594 γενικαις
γενικήν . ταῖς κτητικαῖς τὰ ὑπακουόμενα ὁμοιόσχημα , ταῖς δὲ γενικαῖς ἀδιαφορεῖ τὸ ὑπακουόμενον . τοῦ μὲν οὖν προτέρου ἐμὸς
: τὸ μὲν γὰρ τ σύνηθες πλεονάζειν καὶ ἐνδεῖν ταῖς γενικαῖς , πλεονάζει μέν , ὡς ἐν τῷ νυκτός ἄνακτος
4560319 αβʹ
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ
4556231 ΑΙΨΑ
τὸ πολλὰ καρτερεῖν καὶ πάσχειν τοὺς συγκροτοῦντας πόλεμον . . ΑΙΨΑ ΚΕ ΠΗΔΑΛΙΟΝ . Ἤγουν ταχέως ἂν τὸ πηδάλιον μὲν
ΧΑΛΕΠΟΙΣ ΒΑΖΟΝΤ ' ΕΠΕΕΣΣΙ ΣΧΕΤΛΙΟΙ , ἤγουν ἄθλιοι . . ΑΙΨΑ ΔΕ ΓΗΡΑΣΚΟΝΤΑΣ ΑΤΙΜΗΣΟΥΣΙ ΤΟ - ΚΗΑΣ . Οἱ παῖδες
4555312 κλητικη
χαρίεν . Λέγει ὁ τεχνικός , ὅτι διχῶς λέγεται ἡ κλητική , οἷον ὦ χαρίει καὶ ὦ χαρίεν : ἰστέον
: τῶν οὐδετέρων ἡ αὐτή ἐστιν ὀρθὴ καὶ αἰτιατικὴ καὶ κλητική . Δυϊκά . Τὼ βήματε , τοῖν βημάτοιν ,
4553381 ΞΒ
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον
4547145 συναγεται
οὐδενὶ ἐξ ἀνάγκης τὸ ἀναιροῦν τὸν τρόπον , ὃ καὶ συνάγεται παρὰ τὸ ἐξ ἀνάγκης οὐδενί . Οὕτω γὰρ συνέπιπτεν
ὑπαρχόντως , καίπερ τῆς ἐλάττονος πρὸς τῷ ἀναγκαίῳ οὔσης ὑπάρχον συνάγεται : κἂν κίνησις πάσῃ βαδίσει ἀναγκαίως , βάδισις παντὶ
4538394 ΑΛ
τὸ τρίγωνον τὸ ΑΖΕ κύκλος περιγεγράφθω , καὶ ἐκβεβλήσθωσαν ἡ ΑΛ καὶ ἡ ΑΚ . εἴτε δὲ ὀξεῖα εἴη ἡ
τῆς ΔΑ πρὸς ΑΖ δοθήσεται καὶ ὁ τῆς ΖΑ πρὸς ΑΛ , διὰ δὲ τοῦτο καὶ ἥ τε ὑπὸ ΑΖΔ
4534672 δεικτικη
καὶ ὁρίζει τὰ πρόσωπα , ῥητέον . Πᾶσα ἀντωνυμία ἢ δεικτική ἐστιν ἢ ἀναφορική , αἱ κατὰ πρῶτον καὶ δεύτερον
δεικτικὴ τούτου . Λαβὼν ὅτι ἀπόδειξίς ἐστι τοῦ ὅτι ἔστι δεικτική , ἔχων δὲ ὅτι καὶ ὁ ὁρισμὸς καὶ ἡ
4533742 ΦΝ
τὸ ἀπὸ τῆς ΕΗ διαμέτρου , οὕτως τὸ ὑπὸ τῶν ΦΝ , ΝΖ πρὸς τὸ ἀπὸ τῆς ΜΝ : ὃ
τῇ ἀνατολῇ τμήματα ὅμοια εἶναι : ὁμοία ἄρα ἔσται ἡ ΦΝ τῇ ͵ΑΟ . Ἀλλ ' ἡ ΦΝ τῇ ΨΡ
4527760 ὑποτεινουσαν
τριγώνῳ καθέτου ἀχθείσης ἀφ ' οἵας τινὸς γωνίας ὑπὸ τὴν ὑποτείνουσαν αὐτὴν πλευράν , τὴν μὲν ἔχει ὀρθήν , τὴν
διὰ Θαψάκου μεσημβρινῆς . τούτου δὲ τοῦ τριγώνου τὴν μὲν ὑποτείνουσαν τῇ ὀρθῇ τὴν ἀπὸ Θαψάκου εἰς Βαβυλῶνα τίθησιν ,
4527064 ΧΕ
ΜΚΘ : δι ' ἴσου ἄρα , ὡς τὸ ἀπὸ ΧΕ πρὸς τὸ ὑπὸ ΧΕΔ , τὸ ἀπὸ ΜΚ πρὸς
τρίγωνον τῷ ΗΜΚ . ἔστιν ἄρα , ὡς τὸ ἀπὸ ΧΕ πρὸς τὸ ἀπὸ ΕΓ , τὸ ἀπὸ ΜΚ πρὸς
4518415 ٥٩
٢٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢ ٥٠ ٢٨ ٥٩ ἡ αὐτοῦ πλευρά ١ ٤١ ٨ ἡ ΖΗ ٥
٢٤ ١٦ τὸ σύναμα ὑπὸ τῶν ΑΒ , ΒΓ ٣ ٥٩ οὐδέν ٣٥ ٥ ἡ ΔΗ ἤτοι τὸ πλάτος τοῦ
4514832 ΚΖ
δὴ ὑποκείσθω τὸ αὐτὸ σχῆμα , καὶ ἔστω τετραγώνου ἡ ΚΖ , καὶ ἴσαι ἀπειλήφθωσαν ἐπὶ τὰ Ζ Δ μέρη
ΔΖ πρὸς τὴν ΘΖ , οὕτως ἡ ΓΚ πρὸς τὴν ΚΖ . Ὡς γὰρ αἱ γωνίαι , δι ' ὧν
4510956 ΟΥΔΕ
καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει
δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία
4504568 ΛΞ
, ἐκεῖνον τὸν λόγον ἔδει ἔχειν καὶ τὴν ΑΓ πρὸς ΛΞ , καὶ τὰ λοιπὰ ὁμοίως κατασκευάζειν . [ καὶ
, ἐπεὶ μέσον ἐστὶ τὸ ΔΘ καί ἐστιν ἴσον τῷ ΛΞ , μέσον ἄρα ἐστὶ καὶ τὸ ΛΞ . ἐπεὶ
4504037 τεταγμενως
δ ' ὥσπερ ἡγεῖται σχεδόν . τὸ γὰρ παραθεῖναι κἀφελεῖν τεταγμένως ἕκαστα , καὶ τὸν καιρὸν ἐπὶ τούτοις ἰδεῖν ,
ἔφασαν , τίνος ἕνεκα τοὺς παῖδας συνεθίζομεν προσφέρεσθαι τὴν τροφὴν τεταγμένως τε καὶ συμμέτρως , καὶ τὴν μὲν τάξιν καὶ
4503437 ΛΛ
καὶ τὸ Μαλλός θηλυκὸν ὄνομα πόλεως . Τὰ εἰς δύο ΛΛ προσηγορικὰ εἰ μὴ παραλήγοιεν Ι ὀξύνεται : μαλλός φαλλός
[ ] [ ] Μ ! [ ] [ ] ΛΛ [ ] [ ] Ο [ ] [ ]
4496779 προηγουμενην
. Εἰ δὲ πονηρὸς ὁ πλουτήσας , τὴν μὲν πονηρίαν προηγουμένην καὶ ὅ τι τὸ αἴτιον τῆς πονηρίας , προσληπτέον
πότερον ἐφ ' αὑτῇ ; ἀλλ ' ἀδιανόητόν ἐστιν : προηγουμένην γάρ τινα ὑφεστάναι δεῖ οὐσίαν τοῦ ἀγαθοῦ , ἧς
4495420 λαμβανομενη
ἐλαίῳ . Ἡ δὲ δι ' ἐχιδνῶν θηριακὴ Ἀνδρομάχου συνεχῶς λαμβανομένη ἐν τοῖς διαλείμμασι , δυσαλώτους ἀποδείξει ἐν τοῖς παροξυσμοῖς
οὖσα ἔδεσμα , καὶ ὡς ἐν φαρμάκου χρήσει τὸ πλέον λαμβανομένη : ἄλλως δὲ ἄθετος , πάνυ τε ὀλιγότροφος οὖσα
4494348 κατηκται
τοῦ Α παρὰ τὴν ΒΔ ἡ ΑΖ : τεταγμένως ἄρα κατῆκται . ἔσται δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ
δὲ τὴν Ρ , καὶ ἀπό τινος σημείου τοῦ Σ κατῆκται ἡ ΣΟ , καὶ ἀναγέγραπται ἀπὸ μὲν τῆς ἐκ

Back