ἦκται ἡ ΘΚ , ἰσογώνιόν ἐστι τὸ ΑΔΒ τρίγωνον τῷ ΔΘΚ τριγώνῳ , καὶ τὰς πλευρὰς ἀνάλογον ἔχουσιν : ὅμοιον
θέσει ἄρα ἐστὶν ὁ ΗΚΛ : θέσει δὲ καὶ ὁ ΔΘΚ κύκλος : δοθὲν ἄρα ἐστὶ καὶ τὸ Κ σημεῖον
6144705 δωδεκαγωνου
καὶ Δήμητρος καὶ Ἑστίας καὶ Ἥρας : τὴν δὲ τοῦ δωδεκαγώνου Διός : τὴν δ ' ἑκκαιπεντηκονταγώνου Τυφῶνος , ὡς
ἐὰν δὲ ἀπολάβωμεν ἑκατέ - ραν τῶν ΓΗ ΓΘ περιφερειῶν δωδεκαγώνου , καὶ ἐπιζεύξωμεν τὴν ΗΘ καὶ τὰς ΕΗ ΕΘ
5999730 ἰσοδυναμουσαν
. κατὰ πρόσληψιν δὲ καλεῖ ὁ Ἀριστοτέλης τὴν πρότασιν τὴν ἰσοδυναμοῦσαν συλλογισμῷ τὴν δύο ὅρους ἐνεργείᾳ ἔχουσαν καὶ ἕνα [
να , εἰ μὲν ἡ προτεθεῖσα καταφατικὴ εἴη , τὴν ἰσοδυναμοῦσαν ἀποφατικὴν εἶναι καὶ κατὰ τὸ κατηγορούμενον : οὐδὲν δὲ
5897168 ἀμβλειαν
καὶ εἴδει , οἷον ὅταν ὀρθὴν λέγωμεν ἢ ὀξεῖαν ἢ ἀμβλεῖαν ἢ ὅλως εὐθύγραμμον ἢ μικτήν : δίδοται καὶ λόγῳ
πύργοι ἐν αὐτῇ κατασκευάζονται τὴν μὲν ὀξεῖαν , τὴν δὲ ἀμβλεῖαν γωνίαν ποιοῦντες τὰς προσηκούσας πρὸς τὸ τεῖχος : οὕτω
5818817 ΧΑ
ἐστὶν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΧΑ πρὸς ΑΞ , καί ἐστιν ὡς ἡ ΟΞ πρὸς
μείζονα λόγον ἔχει ἤπερ πρὸς τὴν ΗΚ : καὶ ἡ ΧΑ πρὸς ΑΖ ἄρα μείζονα λόγον ἔχει ἤπερ ἡ ΘΚ
5798131 ΞΔ
ΛΗ μοιρῶν κγ να ἔγγιστα . ἔστιν δὲ καὶ ἡ ΞΔ μοιρῶν κγ μθ . ἀλλὰ καὶ ἡ ΜΞ τῇ
. ἔσται τοίνυν διὰ τοῦ τῆς λοξώσεως κανονίου δοθεῖσα ἡ ΞΔ περιφέρεια μοιρῶν οὖσα κγ μθ : τοσαῦται γὰρ ἐπιβάλλουσιν
5623715 λειπουσαν
δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν ἔδει λείπουσαν , ἐκεῖνον μετὰ φωτὸς ὁρῶσαν . Αὐτῇ μὲν οὖν
Ἐπεὶ οὖν τὴν τάξιν ἐγνώκαμεν , φέρε καὶ ἐπὶ τὴν λείπουσαν διδασκαλίαν χωρήσωμεν : δεῖ γὰρ πρῶτον Ἀριστοτελικῷ νόμῳ κεχρημένους
5621868 πυραμιδα
Α σημεῖον , πρὸς τὴν ἐν τῇ ἑτέρᾳ σφαίρᾳ ὁμοιοταγῆ πυραμίδα τριπλασίονα λόγον ἔχει , ἤπερ ἡ ὁμόλογος πλευρὰ πρὸς
ΑΔΕ βάσιν , οὕτως ἡ ΑΒΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα . καὶ συνθέντι πάλιν , ὡς ἡ ΑΒΓΔΕ βάσις
5618789 διπλασιαζων
, καὶ ἐφ ' ἑκάστης ἁλώσεως τοὺς δεσμοὺς μὴ παυέσθω διπλασιάζων τὸν ἔμπροσθεν χρόνον . δεύτερος μὴν νόμος : Μέτοικον
παλαιστής : μὴ ὢν γὰρ ἕτερος ἑαυτοῦ , καὶ μὴ διπλασιάζων ἑαυτὸν κατὰ τὴν πρόσθεσιν , οὐκ ἂν ἑαυτῷ προστεθείη
5609278 ἀμβλυγωνιου
ὡς ἂν κάθετος ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν τοῦ ἀμβλυγωνίου : δῆλον οὖν , φησίν , ἐκ τῆς παιδικῆς
τὴν ἐπὶ πᾶν διάστασιν αὐτοῖς ἐνδίδωσι , καὶ ὁ τοῦ ἀμβλυγωνίου λόγος εἰς μέγεθος αὔξει καὶ παντοίαν ἔκτασιν τὰ εἴδη
5595549 συναμφοτερας
ὑπεροχὴν τῶν παραλλάξεων μείζονα εἶναι τῶν α κζ , ἢ συναμφοτέρας τὰς παραλλάξεις πλείονα τῶν αὐτῶν συνάγειν τμημάτων , ὅταν
ἐφ ' ἧς συνεστάτω τρίγωνον ἰσοσκελὲς τὸ ΑΖΓ , ὥστε συναμφοτέρας τὰς ΑΖΓ ἴσας εἶναι συναμφοτέραις ταῖς ΑΒΓ διὰ τὸ
5592177 Νοεισθω
Α σφαίρας : λέγω ὅτι μείζων ἐστὶν ἡ σφαῖρα . Νοείσθω γὰρ εἰς τὸ πολύεδρον ἐγγεγραμμένη σφαῖρα , ὥστε τῶν
ἐν ταῖς μέσαις συνόδοις τε καὶ πανσελήνοις ὑποτιθεμένης ἀποτελεῖσθαι . Νοείσθω ἐν τῷ λοξῷ τῆς σελήνης ἐπιπέδῳ ὁμόκεντρος κύκλος τῷ
5551380 ἀβαθης
ἀξύμφορον . ἡ δ ' ἐφ ' ἕνα ἐπὶ μετώπου ἀβαθὴς τάξις ἐς λεηλασίας ἀνυπόπτους ἐπιτήδειος , ἢ εἴ που
αὖ μηκῦναι τὸ μέτωπον ἐς ὀκτώ , ἔσται οὐ πάντη ἀβαθὴς ἡ φάλαγξ . τὴν δὲ εἰς ὀκτὼ εἰ ἐκτεῖναι
5547359 ΘΜ
αἱ ΗΘ ΛΜ ΔΕ : ἴση ἄρα ἐστὶν καὶ ἡ ΘΜ τῇ ΜΕ . ὧν ἡ ΒΜ τῇ ΜΚ ἐστὶν
ΑΚ , ΚΛ , τῇ δὲ ΕΘ ἴσαι ὁσαιδηποτοῦν αἱ ΘΜ , ΜΝ , καὶ συμπεπληρώσθω τὰ ΛΟ , ΚΦ
5492439 ὀξυγωνιου
ὀρθογωνίου καὶ ἀμβλυγωνίου εἶναι , ἣν δὲ ὀρθογωνίου εἶναι δυναμένην ὀξυγωνίου τε καὶ ἀμβλυγωνίου , ἣν δὲ ἀμβλυγωνίου δυναμένην εἶναι
ἐπιπέδῳ τμηθῇ μὴ παρὰ τὴν βάσιν , ἡ τομὴ γίγνεται ὀξυγωνίου κώνου τομή , ἥτις ἐστὶν ὁμοία θυρεῷ . δῆλον
5489984 πλευραν
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου
5429907 ϲυνωνυμωϲ
δὲ τὸ λ τῷ ο ὁλκὴν ϲημαίνει τὴν καὶ δραχμὴν ϲυνωνύμωϲ καλουμένην , λο . ] Τῷ δὲ χ ϲτοιχείῳ
πρὸϲ τῇ ὀρθῇ γραμμῇ ϲημαίνουϲι δραχμήν , ⋖ , τὴν ϲυνωνύμωϲ καὶ ὁλκὴν καλουμένην . Ἰδίωϲ δὲ τὴν ὁλκὴν τὸ
5397385 ΓΜ
τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ
λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ
5379703 ἀντικειμενην
τοῦ ἀντίχειρος λεγομένου . Ἡ ἀρχὴ τοῦ ἐπιδέσμου κατὰ τὴν ἀντικειμένην λαγόνα τάσσεται , ἔπειτα ἀπὸ τῆς ὀσφύος ἄγεται λοξὴ
γενέσθαι τὰς ἑκατέρωθεν ἐπεκτεταμένας διαιρέσεις . παραπλησίως δὲ καὶ τὴν ἀντικειμένην πλευρὰν τὴν ἐπὶ τῇ ὀφρύι ἐπιδιελοῦμεν ἐφ ' ἑκάτερα
5372493 τασιν
τούτου στροφῇ ἡ κατάτασις γένηται . μετὰ δὲ τὴν αὐτάρκη τάσιν δοκιμάζονται αἱ μοχλεῖαι αἱ ἐπὶ τῶν ἄλλων ὀργάνων δεδηλωμέναι
διπλάσιον αὔξεται , κατανοητέον . ὅταν γὰρ ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε λιχανὸς ἀνιεμένη καὶ ἡ παρυπάτη ἐπιτεινομένη
5360141 ΥΧ
τὴν ΑΣ , διὰ τὸ παραλλήλους εἶναι τὰς ΣΑ , ΥΧ : καὶ ἡ ΥΑ ἄρα πρὸς τὴν ΑΣ μείζονα
ΟΦ , ἀπὸ δὲ τοῦ Υ ἐπὶ τὴν ΜΞ ἡ ΥΧ , καὶ ἐπεζεύχθω ἡ ΦΧ . ἐπεὶ οὖν ἡ
5354395 μερικην
ἐστι ψυχῆς : ἄψυχα δὲ αὐτὰ λέγομεν ὡς πρὸς τὴν μερικὴν ψυχὴν ἀφορῶντες : ἐπειδὴ γὰρ οὐχ ὁρῶμεν ἔχοντα αὐτὰ
τῇ ἡμετέρᾳ τῇ μερικῇ : ψυχὴν γὰρ εἴωθε πολλάκις τὴν μερικὴν καλεῖν : πόνον δὲ αὐτὴν πονεῖν διὰ τὴν μαρμαρυγὴν
5326566 μεταλαμβανονται
ἐκ τούτων , πῶς καὶ τοὺς ἄλλους τρόπους κλινοῦμεν : μεταλαμβάνονται γὰρ καὶ εἰς τὰς πέντε πτώσεις . ἀλλ '
σφωιν . καὶ δῆλον ὅτι δοτικαί εἰσι καὶ εἰς γενικὴν μεταλαμβάνονται , ὡς ἐν σχήματος ἔθει , ὁμοίως τῷ Ἀχιλῆι
5316248 τριπλευρον
ἐπὶ ταῖς ΛΒ , ΛΕ περιφερείαις τοῦ περὶ τὸ ΒΕΛ τρίπλευρον γραφομένου κύκλου . ὥστε καὶ τῆς ΒΕ πρὸς ἑκατέραν
τοῦ μεσημβρινοῦ , ἰσόπλευρόν τε καὶ ἰσογώνιον γίνεται τὸ ΓΔΕ τρίπλευρον τῷ ΓΔΗ , ὥστε καὶ τὴν ΓΕ τῇ ΓΗ
5309506 μεσημβρινην
διηκούσας κορυφὰς ] τοῦ Καυκάσου ὑπερβάλλουσαν ] ὑπερβᾶσαν , διελθοῦσαν μεσημβρινὴν ] † ἤγουν πρὸς νότιον ὁδεύειν : οὕτω γὰρ
: τὴν δ ' ἐκ Βαβυλῶνος εἰς τὴν διὰ Θαψάκου μεσημβρινὴν γραμμὴν κάθετον μικρῷ πλειόνων ἢ χιλίων , ὅσων ἦν
5299661 ΛΞ
, ἐκεῖνον τὸν λόγον ἔδει ἔχειν καὶ τὴν ΑΓ πρὸς ΛΞ , καὶ τὰ λοιπὰ ὁμοίως κατασκευάζειν . [ καὶ
, ἐπεὶ μέσον ἐστὶ τὸ ΔΘ καί ἐστιν ἴσον τῷ ΛΞ , μέσον ἄρα ἐστὶ καὶ τὸ ΛΞ . ἐπεὶ
5277595 τυμπανον
! ! κροτάλων ? ἱέτω ? [ ] ! ˈ τύμπανον ἰάχει ? ? ? [ ˈ [ ⚕ ἐμβαίνει
ἐμπλώῃ καὶ ὑπὸ τῆϲ πρήϲιοϲ ἐν τοῖϲι πατάγοιϲι δονέῃ ὅκωϲ τύμπανον , τυμπανίηϲ κικλήϲκεται . ἢν δὲ ὕδωρ ἅλιϲ ἐϲ
5270503 ἡμιολιαν
ταύτην ἀφῄρει διπλασίαν ταύτης , τὴν δ ' αὖ τρίτην ἡμιολίαν μὲν τῆς δευτέρας , τριπλασίαν δὲ τῆς πρώτης ,
τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ τῆς ΘΜ ἐπὶ ηʹ ,
5267661 ΡΕ
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ ,
5267572 τομην
, τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως
τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο
5264503 ὀρθην
κύλινδρος ἐπιπέδῳ συμπίπτοντι τῷ τῆς βάσεως ἐπιπέδῳ κατ ' εὐθεῖαν ὀρθὴν πρὸς ΓΑ ἐκβληθεῖσαν , καὶ ἔστω ἡ γενομένη τομὴ
γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις . Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν ὑπὸ ΒΑΓ γωνίαν : λέγω , ὅτι
5262549 βασιν
πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα .
ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν
5254242 ληγουσαν
γενικὴ ἰσοσυλλαβοῦσα τῇ εὐθείᾳ τὴν δοτικὴν ἔχει εἰς ι ἀνεκφώνητον λήγουσαν μετὰ τοῦ φωνήεντος τῆς εὐθείας ἢ μείζονος ἀντιστοίχου .
τὴν παραλήγουσαν , οἷον Ἀτρείδεω Πριαμίδεω , ἢ συστέλλει τὴν λήγουσαν καὶ ἐκτείνει τὴν παραλήγουσαν , οἷον καλοῖο σοφοῖο Πριάμοιο
5252409 ΔΝ
τῆς ΜΠ , οὐκ ἔστιν φανερὸν ὅτι καὶ ὅλη ἡ ΔΝ ὅλης τῆς ΔΠ ἐλάσσων ἐστίν : δυνατὸν γάρ ἐστιν
καθ ' ἓν ἄρα ἐφ - άπτονται αἱ ΔΛ , ΔΝ τῆς σφαίρας . αἱ ἄρα ἀπὸ τοῦ Δ ὄμματος
5246641 ΞΟ
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ .
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ
5245754 συμμετροτατον
μάλιστα ὁμοιουμένου διὰ τὸ ἐπιπέδων τριγώνων κατάρχειν , ὧν τὸ συμμετρότατον τετράγωνον ἰσότητα ὀρθογωνίου καὶ πλευρῶν ἔχει , καὶ πρὸς
ὑπερβάλλοντα κατὰ τὸν τῆς κράσεως λόγον φαίνεται . πάντων δὲ συμμετρότατον ἐξετάζουσιν , ἄνθρωπος , καὶ κανών τις ὅδε συμμέτρου
5238348 συζυγεις
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι
5234755 ΗΚΘ
Η , καὶ δι ' αὐτοῦ παρὰ τὴν ΓΕ ἡ ΗΚΘ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΓΕΖ τῇ
οἵων ἡ μία ὀρθὴ Ϙ , καὶ λοιπὴν τὴν ὑπὸ ΗΚΘ τῶν αὐτῶν # γ . Ἐὰν οὖν ποιήσωμεν ὡς
5229161 στερεαν
πέτρας καὶ ἔλαιον ἐκ στερεᾶς πέτρας ” , πέτραν τὴν στερεὰν καὶ ἀδιάκοπον ἐμφαίνων σοφίαν θεοῦ , τὴν τροφὸν καὶ
μὴν ὁμοίως γε τοῖς ἀκαύστοις συνάγειν τε καὶ πιλεῖν τὴν στερεὰν οὐσίαν ἔτι δύνανται . Ἀρμενιακὸν δύναμιν ἔχει ῥυπτικὴν ἅμα
5197977 ΝΓ
ΗΠ , ἡ δὲ ΚΝ τῇ ΠΤ , ἡ δὲ ΝΓ τῇ ΤΒ . ἔστωσαν παράλληλοι κύκλοι , καθ '
ἀπὸ τῶν κέντρων , τουτέστιν τῇ ΑΝ , καὶ τῇ ΝΓ , τουτέστιν τῷ μὴ ἐπισκοτηθέντι μέρει τῆς τοῦ ἐκλείποντος
5197329 ΤΘ
, οὕτως ἡ ΘΣ πρὸς τὴν ΘΤ , καὶ ἡ ΤΘ πρὸς τὴν ΘΡ , ” αὐτόθεν ἐλέγχεται τὸ ζητούμενον
ΘΣ , οὕτως ἡ ΣΘ πρὸς τὴν ΘΤ καὶ ἡ ΤΘ πρὸς τὴν ΘΦ , ὡς δὲ ἡ ΛΜ πρὸς
5178509 ΖΓ
ΖΒ , τὸ δὲ ὑπὸ ΕΖΓ μετὰ τοῦ ὑπὸ ΑΕ ΖΓ ὅλον ἐστὶν τὸ ὑπὸ ΑΖΓ . εἴχομεν δὲ καὶ
ΖΓ πρὸς τὸ ἀπὸ τῆς ΓΑ ἐστι τὸ ἀπὸ τῆς ΖΓ διαμέτρου τῆς τομῆς πρὸς τὸ ἀπὸ τῆς συζυγοῦς ἑαυτῇ
5178304 ΘΤ
ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως ἡ ΘΤ πρὸς ΘΦ , καὶ ἀφῃρήσθω
ὡς ἡ ΚΘ πρὸς ΘΣ , οὕτως ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως
5176435 γωνιαν
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν
5166560 κοχλιας
τῆς δὲ ἰσοσυλλάβου τὸ υ καὶ τὸ α , οἷον κοχλίας κοχλίου , Μηνᾶς Μηνᾶ . Καὶ ἀποροῦσί τινες λέγοντες
ἔχουσι τὸ α , οἷον Θόας Δρύας Αἴας Κάλχας γίγας κοχλίας Αἰνείας Ἑρμείας Παπίας : πρόσκειται βαρύτονα διὰ τὸ Ἀρκάς
5164671 ΖΝ
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου ,
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ
5157553 ὀξειαν
ὡς ἅρπαγας . ] ὀξὺν ἱερακίσκον : Ἀντὶ τοῦ ἁρπαγὴν ὀξεῖαν . Δίδυμος , τάχος ὡς ἱέρακος , ἵνα ταχέως
ἀέρος ἐγκεφάλου καὶ αἵματος δι ' ὤτων μέχρι ψυχῆς : ὀξεῖαν δὲ καὶ βαρεῖαν τὴν ταχεῖαν καὶ βραδεῖαν : συμφωνεῖν
5148563 ὑποτεινουσαν
τριγώνῳ καθέτου ἀχθείσης ἀφ ' οἵας τινὸς γωνίας ὑπὸ τὴν ὑποτείνουσαν αὐτὴν πλευράν , τὴν μὲν ἔχει ὀρθήν , τὴν
διὰ Θαψάκου μεσημβρινῆς . τούτου δὲ τοῦ τριγώνου τὴν μὲν ὑποτείνουσαν τῇ ὀρθῇ τὴν ἀπὸ Θαψάκου εἰς Βαβυλῶνα τίθησιν ,
5143840 διηκται
καὶ διάμετρος ἐκβληθεῖσα ἡ ΑΓΔ , καὶ ἀπὸ τοῦ Δ διῆκται πρὸς τὴν κοίλην περιφέρειαν ἡ ΔΛΞ , περιφέρεια ἄρα
καὶ ἀπὸ τῆς κατὰ τὸ Α ἐπαφῆς εἰς τὸν κύκλον διῆκται εὐθεῖα ἡ ΑΓ , ἡ ἄρα ὑπὸ ΘΑΓ ἴση
5139021 ΘΚ
σημεῖον . Κείσθω γὰρ τῇ ΖΗ περιφερείᾳ ἴση περιφέρεια ἡ ΘΚ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
, ΗΛ ἐν ἴσῳ χρόνῳ δύνουσιν : ὁμοίως καὶ αἱ ΘΚ , ΛΜ . διὰ τὰ αὐτὰ δὴ καὶ αἱ
5138560 καθετον
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ
5137526 μηκιστην
τρώσεις φυλαττόμεναι : καθιᾶσι δὲ τὴν οὐρὰν δασυτάτην οὖσαν καὶ μηκίστην τὴν αὐτὴν καὶ διασείουσαν τοὺς σφῆκας , οἱ δὲ
φόρτον κἂν εἰ πολλοῖς αὐτὴν ῥοπάλοις συγκόψαις . δοκὸν δὲ μηκίστην ἄγουσα , ἡνίκα δἂν καὶ βούλοιτο συνθλάσαι , πρόνοιαν
5128389 Ταυρικην
καὶ παρεσκεύασται , ἤν τις Ἕλλην ἀφίκηταί ποτε εἰς τὴν Ταυρικήν , συνεκπλεῦσαι μετ ' αὐτοῦ μυσαττομένη τὰς σφαγάς ;
Ἀχερουντιάς ἐξ αὐτοῦ . Ἀχίλλειος δρόμος , νῆσος μετὰ τὴν Ταυρικήν . ἔστι καὶ νῆσος Ἀχίλλεια , ὡς δ '
5126862 ὁμοτονον
, ὡς πᾶσα εὐθεῖα ἀποβολῇ τοῦ σ τὴν γενικὴν ποιοῦσα ὁμότονον αὐτὴν ἔχει : ὁ Μηνᾶς , τοῦ Μηνᾶ ,
πᾶσα δοτικὴ ἀπὸ τῶν εἰς ος γενικῶν κανονίζεται : τὸ ὁμότονον καὶ ὁμόχρονον , ἐπεὶ τῷ αὐτῷ τόνῳ κέχρηται καὶ
5124721 ἀμβλειας
συναγομένας καὶ ὀξείας γινομένας , τὰς δὲ λοιπὰς διισταμένας καὶ ἀμβλείας ἀναφαινομένας . καὶ ἔοικεν καὶ τὸ ὄνομα τῷ ῥόμβῳ
ἡ σελήνη φαντάζεται . Ἀπὸ δὲ τοῦ σχήματος τούτου πρὸς ἀμβλείας ἤδη γωνίας προϊόντες οἱ κύκλοι τὸ ἀμφίκυρτον τῆς θεοῦ
5124339 προπτωσιν
. φασὶν δὲ ἔνιοι τὴν μὲν ἔχουσαν τὸ κυάνεον ἄνθος πρόπτωσιν δακτυλίου στέλλειν , τὴν δὲ φοινικοῦν ἐξερεθίζειν καταπλασθεῖσαν .
ἐπ ' ἀμφοτέρων λαβὼν τὸ ἁπαλὸν τὴν ἄνανδρον εἰς τοῦτο πρόπτωσιν ἐπιστομίζει : καί θ ' ἁπαλὸν γελάσαι καί τ
5121841 συνημμενην
, διάληψιν δὲ ἔχουσαν : κατὰ δὲ ταύτην [ τὴν συνημμένην τῇ φανταστικῇ ἐπιβολῇ , διάληψιν δὲ ἔχουσαν ] ,
οἶκος ἐστὶ τοῦ Διὸς , ταύτην νόει Ἐκ πραγματεῖων πραγμάτων συνημμένην : Εἰ δ ' οἶκος ἐστὶ τοῦ Κρόνου ,
5117423 παραλληλογραμμον
ΒΖ ] τῇ ΓΖ , καὶ τὸ [ ΔΕΒΖ ] παραλληλόγραμμον , καὶ ἡ διάμετρος ἴση [ τῷ ] διαστήματι
δέ : καὶ τοῦ ΓΚ ἄρα παραλληλογράμμου πρὸς τὸ ΛΖ παραλληλόγραμμον λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΑΒΓ τριγώνου
5112278 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
5091824 ΒΜ
, καὶ παράλληλος τῇ ΖΔ ἡ ΑΜ , καὶ τῶν ΒΜ , ΜΓ μέση ἀνάλογον ἔστω ἡ ΜΗ , καὶ
: διάμετρος ἄρα ἐστὶν ἡ ΒΘ , ὀρθία δὲ ἡ ΒΜ . λέγω , ὅτι τὸ ὑπὸ ΔΑΖ ἴσον ἐστὶ
5091276 ἠγμενην
καὶ γυναῖκα παθεῖν ἐν Ἤλιδι λόγος ἀνδρὶ μὲν κατὰ νόμον ἠγμένην , Αἰθίοπι δὲ τὴν εὐνὴν κλέπτουσαν . κόρην μὲν
οἱ Πυθαγόρειοι λέγουσιν , ὥσπερ ἱκέτιν καὶ ἀφ ' ἑστίας ἠγμένην ὡς ἥκιστα δεῖν [ δοκεῖν ] ἀδικεῖν . .
5084414 ἑστηκυιαν
ἄλλαι πολλαὶ φύσονται . καλοῦσι δέ τινες τὴν μεσότητα ταύτην ἑστηκυῖαν , ὅτι ἐν μόνοις τοῖς εἰρημένοις πυθμενικοῖς ὅροις ὥσπερ
' ἀριστερὰ κρήνην , παρ ' δ ' αὐτῆι λευκὴν ἑστηκυῖαν κυπάρισσον : ταύτης τῆς κρήνης μηδὲ σχεδὸν ἐμπελάσειας .
5076705 σπειραν
τρίχας , καὶ ὑπόσπειραν εἶδος τριχῶν πλέγματος , ὥσπερ καὶ σπεῖραν . οὐ μὴν οὐδὲ ἡ τῶν κουρέων χειροτεχνία ἔξω
κείροντ ' ὀδόντι καὶ λαφυστίαις γνάθοις . Λεύσσω πάλαι δὴ σπεῖραν ὁλκαίων κακῶν , σύρουσαν ἅλμῃ κἀπιροιζοῦσαν πάτρῃ δεινὰς ἀπειλὰς
5076315 ΓΚ
. ἐκβεβλήσθω γὰρ ἐπ ' εὐθείας τῆς ΓΘ εὐθεῖα ἡ ΓΚ , καὶ πεποιήσθω ὡς ἡ ΓΔ πρὸς τὴν ΕΖ
, ὧν ὁ ΔΓ ἐστὶ δυάς , λοιπὸς ἄρα ὁ ΓΚ μείζων δυάδος τοῦ ΓΔ : ἡ ἄρα διχοτομία τοῦ
5068416 ΠΟ
ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ
ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς
5066523 ἐγκλισιν
' οὐδ ' ὅτε ἄρθρα εἰς σύνταξιν ἀντωνυμίας παραλαμβάνεται , ἔγκλισιν ἀναδέχεται , οὐ καθὸ γένους ἐστὶ παρεμφατικά , ἀλλὰ
τὴν αὐτὴν πανταχῇ , συμμεταβάλλειν δὲ τῇ καθ ' ἑκάστην ἔγκλισιν τῆς σφαίρας ὑπεροχῇ τῶν μεγίστων ἢ ἐλαχίστων ἡμερῶν ,
5051693 ΜΔ
ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ
ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ
5039381 ΗΣ
Κύης περιττοσύλλαβα . γύης δὲ οὐ κύριον . Τὰ εἰς ΗΣ κύρια ἀπὸ ἐντελεστέρου περισπᾶται : Ἑρμῆς Θαλῆς Πυλῆς Ποδῆς
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι αἱ ΑΒ , ΗΣ , Τ , Ξ , ὧν κέντρον τὸ Θ
5037275 ΦΧ
ἴση δὲ ἡ μὲν ΩΦ τῇ ΨΧ , ἡ δὲ ΦΧ τῇ ΧΠ , ἔστιν ἄρα ὡς ἡ ΨΧ πρὸς
, ἡ δὲ ΧΒ ὅλη διὰ τὸ ἴσην εἶναι τὴν ΦΧ τῇ ΦΘ τοιούτων ξδ κζ , οἵων καὶ ἡ
5028886 εὐθειᾳ
συντονοῦνται , φίλων κούφων δούλων , μονογενῆ δὲ τῇ ἰδίᾳ εὐθείᾳ , πτερά πτερῶν , ξυρά ξυρῶν , ὀστᾶ ὀστῶν
. Πρὸς ἄρα τῷ δοθέντι σημείῳ τῷ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ ἴση εὐθεῖα κεῖται ἡ ΑΛ : ὅπερ
5024697 προπερισπασθαι
Θέων δ ' ὀξύνεσθαι ἀξιοῖ ὡς ἀγαθός : ἔνιοι δὲ προπερισπᾶσθαι , . , , . , . * .
θέλων φύσει τε μακρὰν εἶναι τὴν παραλήγουσαν τοῦ φᾶσθαι καὶ προπερισπᾶσθαι αὐτήν . εἰπὼν γὰρ χρῆναι ἐν τῷ φημί τὸ
5019571 ΛΜ
Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ .
. ἀλλὰ καὶ διὰ τὸ τρεῖς εἶναι παραλλήλους τὰς ΔΕ ΛΜ ΗΘ ἴση γίνεται ἡ ΕΜ τῇ ΜΚ . εἴη
5014297 ΕΙΣ
ὁ ἄφενος ἀρσενικῶς , καὶ τὸ ἄφενος οὐδετέρως . . ΕΙΣ ΑΦΕΝΟΝ . Τὸν πλοῦτον ἄφενον καλοῦσι , τὸν ἀπὸ
ΚΡΗΤΙΚΗΙ ΛΕΞΕΙ ΔΙΑ ΤΙ ΓΑΡ ΟΥΚ ΑΝ Η ΔΥΟ ΙΑΜΒΙΚΟΙΣ ΕΙΣ [ ΤΗΝ ? ΠΝΩΜΕΝΗΝ [ ! ] ! [
5003425 εὐθειαν
γραμμὴ ἡ εὐθεῖα οὑτωσὶ καὶ ποσόν . Εἰ γὰρ τὴν εὐθεῖαν οὐ ποσὸν μόνον , τί κωλύει καὶ τὴν πεπερασμένην
ὀπίσω ὁδόν , ὡς δὲ Πτολεμαῖος ὁ Λάγου , ἄλλην εὐθεῖαν ὡς ἐπὶ Μέμφιν . Εἰς Μέμφιν δὲ αὐτῷ πρεσβεῖαί
4998825 ΒΜΖ
τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ
αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ
4996837 ὀρθῃ
τὸν αὐχένα κατὰ νῶτα δαφοινὸς καὶ γένεια καθιεὶς ὑπ ' ὀρθῇ καὶ πριονωτῇ τῇ λοφιᾷ βλέπων τε δεινῶς δεδορκὸς καὶ
ποιεῖν ἐμφερὲϲ ταῖϲ τοῦ Κ δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ ϲημαίνουϲι δραχμήν , ⋖ , τὴν ϲυνωνύμωϲ καὶ
4993760 χηραμον
δ ' ἠεροφοῖτις ἀριστοπόνος τε μέλισσα ἠὲ πέτρης κοίλης κατὰ χηραμὸν ἢ δονάκεσσιν ἢ δρυὸς ὠγυγίης κατὰ κοιλάδος ἔνδοθι σίμβλων
δολεροῦ ὅταν θεάσωνται σφηκιὰν εὐθενουμένην , αὐταὶ μὲν ἀποστρέφονται τὸν χηραμὸν ἐκνεύουσαι καὶ τὰς ἐκ τῶν κέντρων τρώ - σεις
4989437 ΡΔ
. ἡ δὲ ΡΓ μοιρῶν θ λ . ἡ δὲ ΡΔ ὁμοίως μοιρῶν ιβ . καὶ ὀρθαί εἰσιν αἱ πρὸς
δὲ καὶ ἡ ΚΔ δοθεῖσα : δοθεῖσα ἄρα καὶ ἡ ΡΔ περιφέρεια ζητουμένη πρὸς τὸν λοξὸν κύκλον . Ἐπεὶ δὲ
4985416 τριαδα
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα :
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων
4976084 ΞΠ
ΕΓ ἡ ΞΛΟ , καὶ τῇ ἴσαι κείσθωσαν ἥ τε ΞΠ καὶ ἡ ΡΜ , καὶ ἐπεζεύχθωσαν ἡ ΕΚ καὶ
ΑΒ ἴση ἡ ΞΟ , τῇ δὲ ΒΓ ἴση ἡ ΞΠ , καὶ ἐπεζεύχθω ἡ ΟΠ . καὶ ἐπεὶ ἴση
4973687 καμπην
τὰ ἐμπρόσθια γόνατα : μετὰ δὲ τὸν ἀφανῆ πόλον τὴν καμπήν τε τοῦ Ποταμοῦ καὶ τοῦ Κήτους τὴν κεφαλὴν καὶ
: καὶ περᾷ τὸν μηρὸν παρὰ τὴν πρὸς τὸ γόνυ καμπήν : ἑτέρην δὲ παρὰ τὸν βουβῶνα καθῆκε πυκινόῤῥιζον καὶ
4972827 τετραπλευρον
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ
4966288 ΔΚ
τὴν ΜΖ : καὶ περὶ ὀρθὰς γωνίας τὰς ὑπὸ τῶν ΔΚ , ΚΒ , ΜΝ , ΜΖ αἱ πλευραὶ ἀνάλογόν
ΚΜΔ γωνίᾳ τῇ ὑπὸ ΒΜΔ ἴση : βάσις ἄρα ἡ ΔΚ βάσει τῇ ΔΒ ἴση ἐστίν . λέγω [ δή
4965889 ἰσας
τὰς ἐφεξῆς γωνίας τὰς ὑπὸ ΑΓΕ , ΑΓΒ δυσὶν ὀρθαῖς ἴσας ποιοῦσιν : ἐπ ' εὐθείας ἄρα ἐστὶν ἡ ΒΓ
εὐθείας ἁπτομένας ἀλλήλων ὦσι μὴ ἐν τῷ αὐτῷ ἐπιπέδῳ , ἴσας γωνίας περιέξουσιν . Δύο γὰρ εὐθεῖαι αἱ ΑΒ ,
4957227 γραμμην
λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ
τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει ,
4956458 ΒΛ
, ὁ δὲ ΒΛ τοῦ ΔΖ ἥμισυ , τοῦ ἄρα ΒΛ ἥμισυ ἔσται ὁ ΔΚ . ἦν δὲ ὁ ΒΛ
ΒΛ περιφερείᾳ : καὶ ἡ ΔΚ ἄρα ὁμοία ἐστὶ τῇ ΒΛ . Καὶ εἰσὶ τοῦ αὐτοῦ κύκλου : ἴση ἄρα
4950920 ἰσοπλευρον
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν ,
4944048 πορνευεσθαι
Σκηνὰς καταλαμβανούσαις τὴν πόρδαλιν καλοῦσι τὴν κασαλβάδα . τὸ δὲ πορνεύεσθαι ῥῆμα ἐν τῷ πρώτῳ Εὐπόλιδος Αὐτολύκῳ , ὡς τὸ
ἔχων τῶν σημείων τὴν ἰσχὺν οὐ μόνον εἶναι σημεῖα τοῦ πορνεύεσθαι λέγει , ἀλλὰ καὶ αὐτὸ καθ ' ἑαυτὸ ὁριεῖται
4942785 δωδεκαεδρον
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ
4941533 ΕΛ
ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ ἡ ΒΕ τῇ ΕΛ ἐστὶν ἴση διὰ τὸ εἶναι ὡς τὴν ΒΓ πρὸς
οὕτως ἡ ΓΔ πρὸς τὴν ΚΛ . μείζων δὲ ἡ ΕΛ τῆς ΕΔ : μείζων ἄρα καὶ ἡ ΚΛ τῆς
4940150 ΧΨ
ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ ὁμοίως ἡ ΧΨ κάθετος , ἣν δεῖ ἐλάσσονα δεῖξαι τῆς ΥΩ καθέτου
ἀπὸ τῆς ΚΓ μείζονα λόγον ἔχει ἤπερ ιβʹ τὰ ἀπὸ ΧΨ πρὸς ιεʹ τὰ ἀπὸ ΩΦ : ὥστε καὶ λϚʹ
4939420 ΜαΜβ
μὲν τοῦ ΕΖ ἄξονος βάρος ἐξάψωμεν , ἐκ δὲ τοῦ ΜαΜβ τυμπάνου τὴν ἕλκουσαν δύναμιν τὰ δʹ τάλαντα , οὐδοπότερον
ΜαΜβ πρὸς τὸ ἀπὸ ϘΩ , τουτέστιν τὸ πεντεκαιδεκάκις ἀπὸ ΜαΜβ πρὸς τὸ πεντεκαιδεκάκις ἀπὸ ϘΩ . καὶ ἐπεὶ ἔχομεν
4938978 πλαγιους
πνεύματι ἑβδομαίους ἰδεῖν τὸν Ἀκάμαντα , εἶτα ζεφύρου ἀντιπνεύσαντος ἀπενεχθῆναι πλαγίους ἄχρι Σιδῶνος , ἐκεῖθεν δὲ χειμῶνι μεγάλῳ περιπεσόντας δεκάτῃ
τῷ κύκλῳ , ὀξύτατος δὲ τῶν λοιπῶν κομητῶν ἐντυγχάνει . πλαγίους καὶ πυρώδεις δὲ εἰσφέρει τοὺς πλοκάμους , ἀλλὰ καὶ
4936997 πλευρᾳ
γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν
ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν
4929057 καθετους
ἐν ἑνὶ ἐπιπέδῳ , ἀλλ ' ἴσας ἔχουσαι πάσας τὰς καθέτους τὰς ἀγομένας ἀπὸ τῶν τῆς ἑτέρας σημείων ἐπὶ τὴν
ἐπὶ τὸν διὰ μέσων ἀπὸ τῶν Η καὶ Θ σημείων καθέτους τὰς ΗΚ καὶ ΘΛ , τὴν ΒΔ πάλιν ἕξομεν
4926379 ἀλληλαις
Καὶ ἐπεὶ ἴσαι εἰσὶν αἱ ΓΒ , ΒΗ , ΗΘ ἀλλήλαις , ἴσα ἐστὶ καὶ τὰ ΑΘΗ , ΑΗΒ ,
, ἀνδρειοτέρας ἡγῇ τὰς γυναῖκας , ὅτι ἐγγύτατα μάχονται ἐπιπεσοῦσαι ἀλλήλαις ; ὁ δὲ Ἀχιλλεὺς ταῦτα ἀκούων ἅμα θυμοῦ καὶ
4920913 μετακινησιν
τὰ ἑπόμενα τῶν μερῶν αὐτοῦ δεδειγμένην τῆς τῶν ἀπλανῶν σφαίρας μετακίνησιν . δεδόσθω γὰρ ἐπὶ τοῦ δεδειγμένου σχήματος ἡ ΕΖ
φέρεσθαι , συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς
4914862 κοιλοτητα
τὸ αὐτὸ παραληφθῆναι λέγομεν , ὅτι ῥὶς σιμή ἐστι ῥὶς κοιλότητα ἔχουσα ἐν ῥινί . * * * τῇ ῥινὶ
διαφορήσεως γινομένης , ὥστε μηδὲ τὴν τῶν ὀφθαλμῶν ἐν αὐτοῖς κοιλότητα διαφαίνεσθαι . οὐκοῦν οὐδὲ οἱ σφυγμοὶ μειωθήσονται , τῆς
4907557 ὠδοντωμενον
ϘϠ , τῷ δὲ ἄξονι αὐτοῦ τύμπανον ἔστω συμφυὲς ΜαΜβ ὠδοντωμένον ὀδοῦσιν λοξοῖς , οὗ ἡ διάμετρος πρὸς τὴν τοῦ
τῷ δὲ ἄξονι τοῦ ΥΦ τυμπάνου συμφυὲς γενέσθαι τὸ ΧΨ ὠδοντωμένον , οὗ ἡ διάμετρος πρὸς τὴν τοῦ ΥΦ τυμπάνου
4899239 διαφυσεις
, οὐκ ἰσότονος τῇ συγκρίσει τοῦ χρώματος , ἔχων δὲ διαφύσεις λευκὰς ὡς καδμεία . καίεται δ ' οὕτως :
ἔστι τις καὶ πλακωτὴ λεγομένη , ὡσπερεὶ ζώνας ἔχουσα τὰς διαφύσεις , ὅθεν καὶ ζωνῖτιν αὐτὴν ἐκάλεσαν . καλεῖταί τις
4895302 ΣΚ
μετὰ τοῦ ἀπὸ ΣΚ . ᾧ ἄρα διαφέρει τὸ ἀπὸ ΣΚ τοῦ ἀπὸ ΚΡ , τούτῳ διαφέρει τὸ ὑπὸ ΜΡΝ
ἑκατέρας τῶν ΣΚ , ΚΨ , μείζων ἄρα καὶ ἡ ΣΚ τῆς ΚΨ . ἀλλ ' ἡ μὲν ΣΚ τῇ

Back