: ἀφ ' ὧν τὴν τῶν η ν ἑξηκοστῶν περιφέρειαν ὑποτείνει εὐθεῖα ἑξηκοστῶν θ ιε : λοιπὴν ἄρα τὴν τῶν | ||
ἡ ΒΖ . , ] μείζων εὐλόγως : ὀρθὴν γὰρ ὑποτείνει , ἡ δὲ ΖΑ ἐλάττονα ὀρθῆς : οὐ γὰρ |
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου . καὶ ἐπεὶ ἐν σφαίρᾳ δύο κύκλοι οἱ ΜΝΞ | ||
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου , ἴση περιφέρεια ἀπειλήφθω ἡ ΒΘ , καὶ πόλῳ |
ΒΓΖ τῇ ὑπὸ ΓΒΗ . ἐπεὶ οὖν ὅλη ἡ ὑπὸ ΑΒΗ γωνία ὅλῃ τῇ ὑπὸ ΑΓΖ γωνίᾳ ἐδείχθη ἴση , | ||
ΑΒΗ τρίγωνον : καὶ τὸ ΑΒΓ ἄρα τρίγωνον πρὸς τὸ ΑΒΗ διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ |
Ἐρυθράν , καὶ ἐν τῇ αὐτῇ διέμεινεν ἐπιφανείᾳ , μὴ ταπεινουμένη : καὶ γὰρ κατ ' αὐτὸν Ἐρατοσθένη τὴν ἐκτὸς | ||
κακῶς μοι ἔχῃ ἡ ψυχὴ καὶ χείρων ἑαυτῆς ᾖ , ταπεινουμένη , ὀρεγομένη , συνδουμένη , πτυρομένη ; καὶ τί |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
ἐκκέντρου ὑπόκειται ξ . καὶ οἵων ἄρα ἐστὶν ἡ ΓΖ ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΖΛ ἔσται πδ | ||
ΒΝ εὐθεῖα τοιούτων ια μδ , οἵων ἐστὶν ἡ ΕΒ ὑποτείνουσα ρκ . καὶ οἵων ἐστὶν ἄρα ἡ μὲν ΕΒ |
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν | ||
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ |
ὑποτείνουσα ν λγ . καὶ οἵων ἐστὶν ἄρα ρκ ἡ ΝΗ , τοιούτων καὶ ἡ μὲν ΝΧ ἔσται ιθ μβ | ||
, τμημάτων ρθ με ιβ . ἡ δὲ διπλῆ τῆς ΝΗ μοιρῶν ρπ : καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα |
ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ | ||
ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ |
γινομένου , καὶ τοῦ φαρμάκου τὸν ἐπιϲωρευμὸν εὐμαρέϲτερον φέρουϲιν . λειποθυμοῦνταϲ δὲ αὐτοὺϲ ὀϲφραντοῖϲ τε καὶ τοῖϲ παραπληϲίοιϲ ἀνακτᾶϲθαι καὶ | ||
τοὺϲ τιτθοὺϲ ἐπιθήϲομεν . Πρὸϲ τοὺϲ δι ' ἀτονίαν ϲτομάχου λειποθυμοῦνταϲ . δι ' ἀτονίαν δὲ ϲτομάχου λειποθυμίαϲ γιγνομένηϲ καταπλάϲμαϲι |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ | ||
ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα |
ἐπὶ τὸ Γ καὶ διὰ τοῦ κέντρου αἱ ΒΖΚ , ΓΖΕ , καὶ ἀπὸ τῶν Ε , Κ ἡ ΚΕ | ||
φησι τὰς ὑπὸ ΑΕΖ καὶ ΔΖΕ καὶ πάλιν τὰς ὑπὸ ΓΖΕ καὶ ΒΕΖ . οὕτως δὲ καλεῖ αὐτὰς ὡς ἐνηλλαγμένως |
ἤτοι ἐντὸς αὐτοῦ πεσεῖται ἢ ἐκτὸς ἢ παραλλάξει ὡς τὸ ΓΗΔ , καὶ κύκλος κύκλον τέμνει κατὰ πλείονα σημεῖα ἢ | ||
καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΑΕΒ , ΒΖΓ , ΓΗΔ , ΔΘΑ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη |
ΕΓ ἡ ΞΛΟ , καὶ τῇ ἴσαι κείσθωσαν ἥ τε ΞΠ καὶ ἡ ΡΜ , καὶ ἐπεζεύχθωσαν ἡ ΕΚ καὶ | ||
ΑΒ ἴση ἡ ΞΟ , τῇ δὲ ΒΓ ἴση ἡ ΞΠ , καὶ ἐπεζεύχθω ἡ ΟΠ . καὶ ἐπεὶ ἴση |
ΕΛ ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ | ||
καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ ٢ τὸ ΕΓ ٨ ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ |
σοι μοιχείας ἔχειν γραφὴν , ἀλλὰ καὶ φόνου κρίνεσθαι . ΤΗ ΜΕΤΑΘΕΣΕΙ ΤΗΣ ΑΙΤΙΑΣ , Ο ΚΑΛΕΙΤΑΙ ΧΡΩΜΑ . Ἀλλ | ||
Βατή τὸ τοῦ δήμου . . . . Τὰ εἰς ΤΗ παραληγόμενα τῷ Ε κύρια ὄντα βαρύνεται : Βρεμέτη Ὠκυπέτη |
ἂν ἐκ ϲηπεδόνοϲ γεννώμενοϲ , ἐϲτὶ δὲ καὶ φυϲώδηϲ . Ζύμη λεπτομερήϲ ἐϲτι καὶ μετρίωϲ θερμή : διὰ τοῦτο τοίνυν | ||
τῆϲ ὀξώδουϲ ποιότητοϲ : δι ' ὃ καὶ κακόχυμοϲ . Ζύμη καὶ αὐτὴ ἐξ ἐναντίων οὐϲιῶν ϲύγκειται : καὶ γὰρ |
γὰρ ἀεὶ καὶ ἑνοειδὲς τὸ ἴσον : δεύτερον δὲ τὸ ἡμιτετράγωνον : μίαν γὰρ ἔχον παραλλαγὴν γραμμῶν καὶ γωνιῶν ἐν | ||
ἤτοι ἥμισυ ἑτερομήκους . εἰ μὲν οὖν ἰσοσκελές ἐστιν ἤτοι ἡμιτετράγωνον , ἐὰν αἱ περὶ τὴν ὀρθὴν γωνίαν ῥηταὶ μήκει |
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς | ||
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ |
καλείσθω δὲ μέσης ἀποτομὴ δευτέρα . Ἐκκείσθω γὰρ ῥητὴ ἡ ΔΙ , καὶ τοῖς μὲν ἀπὸ τῶν ΑΒ , ΒΓ | ||
τὸ ἄρα ΔΘ μέσον ἐστίν . καὶ παρὰ ῥητὴν τὴν ΔΙ παράκειται πλάτος ποιοῦν τὴν ΔΖ : ῥητὴ ἄρα ἐστὶ |
δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ ΑΔΒΖ παραλληλόγραμμον τῷ ΑΓΖ τριγώνῳ , καὶ κοινοῦ ἀφαιρουμένου τοῦ ΑΕΒΖ λοιπὸν τὸ | ||
. ἐπεὶ οὖν ὀρθὴ ἡ ὑπὸ ΓΖΑ , ἡ ὑπὸ ΑΓΖ ἄρα ἐλάσσων ὀρθῆς . τὴν δὲ μείζονα γωνίαν ἡ |
ἐπ ' αὐτὴν κάθετος ἔσται [ . , ] . Μείζων ἄρα γωνία . , ] ἐπεὶ ὀρθογώνιά ἐστιν , | ||
ἀποστάσεις διὰ τὸ ἀπ ' ἀλλήλων ἀποσχισθῆναι οὐχ ἅψονται . Μείζων δὲ πλευρὰ ἡ ΒΖ . , ] μείζων εὐλόγως |
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ . | ||
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ |
ἐστι : τὸ ἄρα ὑπὸ ΑΘΔ μεῖζόν ἐστι τοῦ ὑπὸ ΑΚΖ . ἀλλὰ τῷ μὲν ὑπὸ ΑΘΔ ἴσον ἐστὶ τὸ | ||
τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου : ἡ ΑΚΖ ἄρα μείζων ἐστὶ τῆς , ὑφ ' ἣν ὑποτείνει |
ἄρα ἡ ὑπὸ ΖΔΗ . ὀρθὴ δὲ καὶ ἡ ὑπὸ ΖΒΗ : ἐν κύκλῳ ἄρα τὸ ΒΖΔΗ τετράπλευρον . καὶ | ||
καὶ διὰ μὲν τοῦ Β παρὰ τὴν ΓΔ ἤχθω ἡ ΖΒΗ , διὰ δὲ τοῦ Γ τῇ ΔΕ ἡ ΓΑΗ |
τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
ΜΚΘ : δι ' ἴσου ἄρα , ὡς τὸ ἀπὸ ΧΕ πρὸς τὸ ὑπὸ ΧΕΔ , τὸ ἀπὸ ΜΚ πρὸς | ||
τρίγωνον τῷ ΗΜΚ . ἔστιν ἄρα , ὡς τὸ ἀπὸ ΧΕ πρὸς τὸ ἀπὸ ΕΓ , τὸ ἀπὸ ΜΚ πρὸς |
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η | ||
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ , |
παραπεπρεσβευκὼς τῷ δημοσίῳ τὸ ὄφλημα εἰς δικαστήριον ἤγετο , ἐνδείξει ὑπέκειτο , καὶ ὄνομα τῇ κατηγορίᾳ ἔνδειξις . Εἰ δὲ | ||
, καὶ * τοῖς περὶ αὐτὸν οὐκ ὀλίγοις χώρα τε ὑπέκειτο ἱερὰ καὶ ἦν τοῦ ἱερέως . Πομπήιος δὲ πολλὰς |
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ | ||
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς |
] [ ] ΗΤ ? ? [ ] [ ] ΡΩ [ ] [ ] ΑΡΚ [ ] [ ] | ||
[ ] ! ϹΑ ! [ ] [ ] ! ΡΩ ! [ ] [ ] ΜΕΝ ? ? ! |
καὶ ἡ ὑπὸ ΑΕΒ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων Ϙθ νε , οἵων εἰσὶν αἱ β ὀρθαὶ τξ : | ||
, οἵων δ ' αἱ δύο ὀρθαὶ τξ , τοιούτων Ϙθ λϚ : ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΑΛ |
. Ποιείσθω οὖν κατὰ τὸ Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ | ||
καὶ ἡμέρας χρόνος ἐστίν , ἐν ᾧ ὁ ἥλιος τὴν ΛΖ περιφέρειαν διαπορεύεται , καὶ ἔστιν ἴση ἡ ΛΖ τῇ |
τῆς ΜΠ , οὐκ ἔστιν φανερὸν ὅτι καὶ ὅλη ἡ ΔΝ ὅλης τῆς ΔΠ ἐλάσσων ἐστίν : δυνατὸν γάρ ἐστιν | ||
καθ ' ἓν ἄρα ἐφ - άπτονται αἱ ΔΛ , ΔΝ τῆς σφαίρας . αἱ ἄρα ἀπὸ τοῦ Δ ὄμματος |
τῇ ΟΛ καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΗΕΖ ἴση τῇ ὑπὸ ΛΟΝ . ἐπεὶ οὖν εὐθειῶν τῶν | ||
ὑπὸ ΘΕΖ ἴση ἐστίν . ὀρθὴ ἄρα ἑκατέρα τῶν ὑπὸ ΗΕΖ , ΘΕΖ γωνιῶν . ἡ ΖΕ ἄρα πρὸς τὴν |
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ | ||
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ |
γῆς ὑποτείνουσα εὐθεῖα , μείζονα λόγον ἔχει ἢ ὃν τὰ χοε πρὸς α . Ἔστω τὸ αὐτὸ σχῆμα τῷ πρότερον | ||
, γίνονται σκϚ : ταῦτα ἀπὸ τῶν Ϡ , λοιπὸν χοε : ὧν πλευρὰ τετραγωνικὴ κϚ : τοσοῦτον ἡ κάθετος |
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου , | ||
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ |
χαυνῶ κοινῶ οἰνῶ , χωρὶς τοῦ ἐλαύνω . Τὰ εἰς ΝΩ ὑπερδισύλλαβα παραληγόμενα τῇ ΕΙ διφθόγγῳ ἢ μακρῷ τῷ Ι | ||
ΕΤ , ΗΥ , ΜΦ , ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν τῷ ἐπιπέδῳ κατὰ τὰ |
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ | ||
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ |
٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ | ||
τὸ ἀπὸ τῆς ἡμισείας τῆς ΔΗ ἤτοι τῆς ΕΗ ٢٦ ٣١ ٥٠ ١١ ٨ ١ ٤٠ ἡ ἡμίσεια τῆς ΑΗ |
πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ | ||
ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ |
καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει | ||
δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία |
. τεμνέτωσαν ἀλλήλους κατὰ τὸ Ξ , καὶ ἐπεζεύχθωσαν αἱ ΞΑ , ΞΒ , ΞΗ , ΞΓ : ἡ μὲν | ||
ΕΑ πρὸς ΑΔ : διελόντι , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΕΔ πρὸς ΔΑ . ἐδείχθη δὲ καί |
μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων ἐστὶν ἢ | ||
ἴση ἐστὶν ἡ ΗΠ τῇ ΗΘ , μείζων ἐστὶν ἡ ΡΜ τῆς ΜΚ : πολλῷ ἄρα μείζων ἐστὶν ἡ ΞΜ |
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ | ||
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις . |
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ , | ||
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη |
, κε - ράτια ͵αωʹ , χαλκοῦϲ ͵δωʹ [ ἄλλοι ͵γχʹ ] . ἡ Πτολεμαϊκὴ μνᾶ ἔχει # ιηʹ , | ||
ἑκατέρου μέρους τοῦ ἰσημερινοῦ τεσσάρων , σταδίων δὲ τρισμυρίων καὶ ͵γχʹ : χειμερινή , ἀνάπαλιν τῆι θερινῆι , πλεῖον ἔχουσα |
πζ εἰ πρεσβεύσω τὰ πρὸς θεόν πη εἰ βουλευτὴς ἔσομαι πθ εἰ λανθάνει μου ὁ δρασμός Ϙ εἰ ἀπαλλάσσομαι τῆς | ||
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων πθ ιϚ , οἵων ἐστὶν ὁ περὶ τὸ ΓΖΛ ὀρθογώνιον |
. ἀνάλυσις τὸ σχῆμα κατὰ φιλοσόφους : ἀνάλυσις δέ ἐστιν ἀντεστραμμένη ἀπόδειξις τουτέστιν ἀνάπαλιν λύσις . τῷ καὶ ἐπεὶ δαίτηθεν | ||
πρὸ αὐτοῦ . Ἡ αὐτὴ πρότασίς ἐστι τοῦ πρὸ αὐτοῦ ἀντεστραμμένη , διπλῆ μέντοι . ὥσπερ γὰρ τὸ ἀπὸ τῆς |
πλοῖον ἀπὸ μιᾶς φύσεως τοῦ ξυλίνου . Οὐκοῦν καὶ ἡ βαφικὴ τέχνη ἕνεκεν τούτου ἐπενοήθη , ἵνα βαφήν τινα καὶ | ||
πλοῖον ἀπὸ μιᾶς φύσεως τοῦ ξυλίνου . Οὐκοῦν καὶ ἡ βαφικὴ τέχνη ἕνεκεν τούτου ἐπενοήθη , ἵνα βαφήν τινα καὶ |
τριγώνῳ καθέτου ἀχθείσης ἀφ ' οἵας τινὸς γωνίας ὑπὸ τὴν ὑποτείνουσαν αὐτὴν πλευράν , τὴν μὲν ἔχει ὀρθήν , τὴν | ||
διὰ Θαψάκου μεσημβρινῆς . τούτου δὲ τοῦ τριγώνου τὴν μὲν ὑποτείνουσαν τῇ ὀρθῇ τὴν ἀπὸ Θαψάκου εἰς Βαβυλῶνα τίθησιν , |
καὶ κιρρὸν καὶ παλαιόν . Τοὺϲ δὲ ἐπὶ λεπτοῖϲ χυμοῖϲ ϲυγκοπτομένουϲ θεραπευτέον ἐναντίωϲ τοῖϲ εἰρημένοιϲ : καὶ γὰρ τὰ διαγνωϲτικὰ | ||
ταῖϲ τῶν παροξυϲμῶν ἀρχαῖϲ ϲυγκοπτομένουϲ . καὶ τοὺϲ διὰ ξηρότητα ϲυγκοπτομένουϲ ἐν ταῖϲ τῶν παρο - ξυϲμῶν ἀρχαῖϲ ἄριϲτον προγιγνώϲκειν |
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ | ||
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ |
τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΤΧ . καί ἐστιν ἡ ΣΞ ἔγγιον τοῦ θερινοῦ τροπικοῦ ἤπερ ἡ ΤΧ . ἐν | ||
, ΠΚ ἑξῆς ἴσαι ἀλλήλαις εἰσίν , αἱ ΝΣ , ΣΞ ἄρα ἑξῆς ἀλλήλων μείζους εἰσὶν ἀρχόμεναι ἀπὸ μεγίστης τῆς |
δὲ δεύτερα ἐπὶ δεύτερα , τέταρτα : ἐὰν γὰρ τὰ ΑΡ , ΡΨ δεύτερα δύο ἐπὶ τὰ ΑΠ , ΠΗ | ||
ἐπεὶ ὀρθογώνιά ἐστι τὰ τρίγωνα , ἡ δὲ ΠΑ τῆς ΑΡ μείζων : τριγώνου γὰρ τοῦ ΠΑΡ μείζων γωνία ἡ |
ἡ ἀπὸ τοῦ Θ κάθετος ἐπὶ τὸ ΔΕΖ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΣΤΥ ἐπιπέδου . καί εἰσιν ἴσαι αἱ | ||
παραλληλογράμμου καὶ προσεκβαλλομένη μέχρι τοῦ ἑτέρου μέρους τῆς ἐπιφανείας δίχα τμηθήσεται ὑπὸ τοῦ παραλληλογράμμου . ἤχθω διὰ τοῦ Ε σημείου |
κατὰ τὸ Ρ , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ ΡΟ , τὰ ἄρα ἀπὸ τῶν ΟΝ , ΝΡ τριπλάσιά | ||
ἡ ΥΡ τῆς ΡΞ . Ἴση δὲ ἡ ΥΡ τῇ ΡΟ : μείζων ἄρα ἡ ΟΡ τῆς ΡΞ . Τετμήσθω |
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
ὅτι παράλληλός ἐστιν ἡ ΘΗ τῇ ΧΕ , αἱ δὲ ΗΟ , ΕΞ συζυγεῖς εἰσι διάμετροι . ἤχθωσαν γὰρ τεταγμένως | ||
τὸ παρὰ τὴν ΕΞ εἶδος . αἱ ἄρα ΕΞ , ΗΟ συζυγεῖς εἰσι διάμετροι τῶν Α , Β , Γ |
κεφαλῆς . ἀερθείς : ἐπαρθεὶς , ὑψωθείς . Ἀστεμφής : ἀμετακίνητος , ἀμετάστροφος . μεγάρων : ὑψηλῶν οἰκημάτων , οἰκημάτων | ||
φύσις γὰρ τῶν ἀγαθῶν καὶ ἐναρέτων ἀνθρώπων ἑδραία ἐστὶν καὶ ἀμετακίνητος , ὥσπερ καὶ ἡ ἁπλῆ φύσις . ἀκίνητον γὰρ |
ΛΗ μοιρῶν κγ να ἔγγιστα . ἔστιν δὲ καὶ ἡ ΞΔ μοιρῶν κγ μθ . ἀλλὰ καὶ ἡ ΜΞ τῇ | ||
. ἔσται τοίνυν διὰ τοῦ τῆς λοξώσεως κανονίου δοθεῖσα ἡ ΞΔ περιφέρεια μοιρῶν οὖσα κγ μθ : τοσαῦται γὰρ ἐπιβάλλουσιν |
καὶ ἡ ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους | ||
ΡΥ , ΥΔ μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΖΡ , καὶ ἔτι αἱ ΕΟ , ΟΣ , ΣΒ |
ἔσται τῷ εὐθυγράμμῳ τῷ συγκειμένῳ ἐκ τῶν τριῶν τριγώνων τῶν ΒΖΗ ΒΖΚ ΕΚΖ . τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ | ||
δὲ ὑπὸ ΒΑΕ ἴση ἐστὶν τῇ ἐκτὸς τετραπλεύρου τῇ ὑπὸ ΒΖΗ : καὶ ἡ ὑπὸ ΘΖΒ ἄρα γωνία ἴση ἐστὶν |
τοῦ Α παρὰ τὴν ΒΔ ἡ ΑΖ : τεταγμένως ἄρα κατῆκται . ἔσται δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ | ||
δὲ τὴν Ρ , καὶ ἀπό τινος σημείου τοῦ Σ κατῆκται ἡ ΣΟ , καὶ ἀναγέγραπται ἀπὸ μὲν τῆς ἐκ |
- λαίους ποιεῖ τοὺς τύπους . οὕτω μὲν οὖν μνήμης περιέσῃ , καὶ εἰ μὴ τύχοις φύσει μετειληφώς . Ἤδη | ||
δ ' οὖν ἰσχυρότερος ὁ δαίμων εἴηκαίτοι θαυμαστὸν εἰ μὴ περιέσῃ τοῦ καιροῦεἰ δ ' οὖν μείζων ὁ κλύδων τῆς |
ἀναιροῦμεν , καὶ ταύτην εἶναί φαμεν , τὴν παντάπασι ἡμῶν ἀγνοουμένην , περὶ ὃ πᾶν ὄμμα μύομεν , καὶ πάντη | ||
Ῥωμαίων ἀρετῆς πολὺ ἀπέχει . Μίαν εἰπὼν ἔτι τὴν οὔτε ἀγνοουμένην ὑπ ' οὐδενὸς ἀνθρώπων οὔτε ἀμφισβητουμένην παύσομαι . τίς |
Ἠριγέρων ἐπίμικτον ἔχει δύναμιν ψυκτικήν τε καὶ μετρίωϲ διαφορητικήν . Ἠρύγγιον θερμαίνει μὲν οὐ καταφανῶϲ , ξηρότητοϲ δὲ λεπτομεροῦϲ οὐκ | ||
ὀνίνηϲι : καταπλάϲϲεται δὲ καὶ πρὸϲ τὰϲ φλεγμονὰϲ ἐναργῶϲ . Ἠρύγγιον . Θερμότητι μὲν ἢ βραχὺ τῶν ϲυμμέτρων ἢ οὐδὲν |
τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ | ||
λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ |
κοινὸν ἐκκεκρούσθω τὸ ἀπὸ ΒΖ : λοιπὸν ἄρα τὸ ὑπὸ ΓΕΒ ἴσον ἐστὶν τῷ τε ὑπὸ ΓΑΒ καὶ τῷ ὑπὸ | ||
ὑπὸ ΓΑΒ καὶ τῷ ὑπὸ ΔΕΑ , ὥστε τὸ ὑπὸ ΓΕΒ τοῦ ὑπὸ ΓΑΒ ὑπερέχει τῷ ὑπὸ ΔΕΑ , ὅπερ |
ἡ δὲ ἰσημερινὴ μγʹ ∠ γʹ , ἡ δὲ χειμερινὴ ργ γʹ . ιβʹ . δωδέκατός ἐστιν παράλληλος , καθ | ||
ρ Πάϲτιλλον χολῆϲ καθαρτικόν ρα Βουκελλάτον καθαρτικόν ρβ Φλέγματοϲ καθαρτικόν ργ Μελαγχολικοῦ χυμοῦ καθαρτικόν ρδ Κοινὸν καθαρτήριον ρε Ἀλοηδάρια διὰ |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
δὲ προφορικὸν ὁ Ἑρμῆς ἐντίθησιν . . ΕΝ Δ ' ΑΡΑ ΟΙ ΣΤΗΘΕΣΣΙΝ . Ἐν μέσῳ τῶν τεχνῶν , τουτέστι | ||
ἐφέλκουσι τὸ ν , συμφώνου δὲ οὐκέτι . . ΟΥΚ ΑΡΑ ΜΟΥΝΟΝ . Διττή ἐστιν ἡ ἔρις . Ἡ μὲν |
ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ | ||
ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ , |
ἐν τῷ ὑπὲρ γῆν αὐτὴν διελεύσεται : ὥστε καὶ τὴν ζαʹ : τοῦ ἄρα ἡλίου τὴν ζαʹ περιφέρειαν ἐν τῷ | ||
ἄστρον καὶ δύσεται καὶ ἀνατελεῖ : ὥστε τοῦ ἡλίου τὴν ζαʹ περιφέ - ρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν , |
ἐστιν , οἵων ὁ γνώμων ξ , τοιούτων ἡ μὲν ἰσημερινὴ σκιὰ κϚʹ ∠ , ἡ δὲ χειμερινὴ ξεʹ ∠ | ||
ἑξηκοστὰ Ϛʹ , ἡ δὲ θερινὴ εʹ , ἡ δὲ ἰσημερινὴ ηʹ ἐξ ἑκατέρου μέρους τοῦ ἰσημερινοῦ ἑξηκοστὰ δʹ , |
οὕτως , ἐπειδὴ οἱ παίζοντες ἐπὶ λατύπης ἑστῶτες , ἣν σκῦρον προσαγορεύουσιν , βολῇ σφαίρας ἀλλήλους ἐκδιώκουσιν . φαινίνδα δέ | ||
σκυρωθῶσι : σκληρυνθῶσιν καὶ οἷον σκιρωθῶσιν . ἐπειδὴ τὸν σκῖρον σκῦρον ὀνομάζει , ὅτε φησί : καὶ ἢν σκυρωθέωσι , |
δείξομεν οὕτως : ἐπεὶ γὰρ μείζων ἐστὶν ἡ ΒΝ τῆς ΝΖ , τὸ ἄρα ὑπὸ τῶν ΖΒΝ μεῖζόν ἐστι τοῦ | ||
ΤΛ πρὸς τὴν ΛΒ , οὕτως ἡ ΟΝ πρὸς τὴν ΝΖ . τῶν ΛΤΒ , ΝΟΖ ἄρα τριγώνων ἀνάλογόν εἰσιν |
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς | ||
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε |
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι | ||
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ |
δὲ τρισκαιδεκάχορδον διατονικῶς ἀμφοτέρωθεν ἑβδόμης τεταγμένης . ἔπειτα , ὡς προελέχθη , τὸν ὄγδοον φθόγγον τὸν διεστῶτα τόνῳ μεταξὺ μέσης | ||
προμήκης ἀριθμὸς ἑτερομήκους : ἑτερομήκης μὲν γάρ ἐστιν , ὡς προελέχθη , ὁ γινόμενος ὑπὸ ἀριθμοῦ τὸν μονάδι ἑαυτοῦ μείζονα |
μέσον τὸ ΓΕ . Ἡ πλευρὰ τοῦ . . ٥ ٢٨ ٣٨ ἡ πλευρὰ τοῦ ΕΓ ٢ ٥٤ ٥١ τὸ | ||
٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ ٢٨ ١٩ τὸ ΗΚ ١٦ ἡ δυναμένη αὐτό ٤ ΚΘ |
ρνζ # , αἵτινες ἐλάττους εἰσὶ τῶν κατὰ τὴν μεγίστην πεντάμηνον ἐπιλαμβανομένων τοῦ λοξοῦ κύκλου μοιρῶν ρνθ καὶ ε ἑξηκοστῶν | ||
πλάτος τῆς σελήνης ἐπειληφυῖα , ἔσται τοῖς κατὰ τὴν μέσην πεντάμηνον συναγομένοις ἐκ τοῦ τῶν μηνῶν κανονίου τμήμασιν ρνγ κα |
ἴση δὲ ἡ μὲν ΩΦ τῇ ΨΧ , ἡ δὲ ΦΧ τῇ ΧΠ , ἔστιν ἄρα ὡς ἡ ΨΧ πρὸς | ||
, ἡ δὲ ΧΒ ὅλη διὰ τὸ ἴσην εἶναι τὴν ΦΧ τῇ ΦΘ τοιούτων ξδ κζ , οἵων καὶ ἡ |
٩ ٢ ٥٠ τὸ ἀπὸ τῆς ΕΗ ٢٦ ٣ ٥٠ ١١ ٨ ١ ٤٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν | ||
١٢ ἡ ΒΗ ١ ٤٤ ٣٠ ἡ ΑΒ ٢ ٢٥ ١١ ἡ ΓΔ ٤ ἡ ΓΖ ١ ٢٧ ٤٩ ٣٣ |
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε | ||
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ |
ἀπὸ βαρβάρων τε καὶ Ἑλλήνων ἀναστήσασα καὶ ἀποικίας πολλὰς ἀποικίσασα ἄρξασά τε πολλῶν καὶ πόλεων καὶ γενῶν ἔν τε Ἀσίᾳ | ||
ψέγε . Ἐρεῖς μὲν οὐχὶ νῦν γέ μ ' ὡς ἄρξασά τι λυπηρὸν εἶτα σοῦ τάδ ' ἐξήκους ' ὕπο |
. [ Περὶ τῶν ἐν τοῖς ὠσὶ ἑλκῶν . ] Γλαύκιον μετ ' ὄξους ἀποτρίψας ἔγχει . εἰ δὲ ὑγρὰ | ||
ταῖς μελλούσαις εἰρῆσθαι δυνάμεσι χρηστέον . ἔχουσι δὲ οὕτω . Γλαύκιον , λύκιον καὶ μηκώνιον τρίψας μετὰ μέλιτος ἐπίβαλε : |
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ | ||
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ |
ὀρθαὶ τξ . τῶν δ ' αὐτῶν καὶ ἡ ὑπὸ ΒΖΛ ὑπέκειτο λζ ιϚ : καὶ λοιπὴ ἄρα ἡ ὑπὸ | ||
τῷ ὑπὸ ΗΒ ΒΘ , διὰ δὲ τὴν ὁμοιότητα τῶν ΒΖΛ ΒΕΔ τριγώνων ὡς ἡ ΔΒ πρὸς τὴν ΒΕ , |
Ἠγείρετο δὲ πολὺς κτύπος τούτων μαχομένων . . . ΙΔΕΙ ΕΝ ΑΙΝΟΤΑΤΩι . Τὸν καιρὸν λέγει τῆς μάχης . Ἴδει | ||
, ] πῶς ἔλασσον τὸ Ξ στερεὸν τῆς ἐν τῷ ΕΝ κώνῳ πυραμίδος ; δείξομεν οὕτως : ἐπεὶ ὁ ΕΝ |
κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ : | ||
αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται |
καταπλαϲμάτων καὶ ϲικυῶν Γαληνοῦ ροϚ Ἐκ τῶν Λύκου περὶ καταπλαϲμάτων ροζ Περὶ τοῦ ἐξ ἄρτου καταπλάϲματοϲ ροη Περὶ τοῦ ἐκ | ||
. . . . . . . . . . ροζ η ∠ ʹ Σαίνου ποταμοῦ ἐκβολαί . . . |
ΘΖ ٢ ١٨ ٩ ٣٦ ἡ ΖΚ ٢ ٣٢ ٣٠ ٥٦ ἡ ΚΕ ١ ١٣ ٣١ ٥٥ γεγονέτω ὡς . | ||
τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ ΑΙ παραλληλόγραμμον ١١٧ ٣٥ ٤٧ ٢٠ |
αὐτὴ ἀντιλαμβάνουσά τινα ἔκ τε ἀέρος καὶ ἐξ οὐρανοῦ . Ὁδὸς γὰρ ἄνω κάτω , φησὶν ὁ Ἡράκλειτος , δι | ||
τούτοις ἐγγίνεσθαι πονηρίαν . Ἐντεῦθεν εἰς Πλαταιὰς στάδια σʹ . Ὁδὸς ἡσυχῆ μὲν ἔρημος καὶ λιθώδης , ἀνατείνουσα δὲ πρὸς |
١١ ٨ ١ ٤٠ τὸ πλάτος τὸ ΓΚ ٢٢٩ ٣٢ ٤٦ ٥١ ⸎ ١ ٤٠ ἡ ΓΜ ٢٥٦ ٤ ٣٧ | ||
Ἡ ΑΒ ٤ ἡ ΒΗ ٦ ἡ ΗΓ ٥ ١١ ٤٦ ἡ ΒΓ οὐδέν ٤٨ ١٤ ἡ Θ ٣ ὁ |
٤ ἡ ΑΔ οὐδέν ٢٦ ١٥ ἡ ΑΗ ١٠ ٤٤ ٢٠ ٤٠ ἡ αὐτῆς ἡμίσεια ٥ ٢٢ ١٠ ٢٠ τὸ | ||
٤٧ ٢٢ ١٩ ١٠ ٢٤ τὸ ΑΒ χωρίον ١٣ ٥١ ٢٠ ἡ ΛΝ ἡ αὐτοῦ πλευρά ٣ ٤٣ ٢٠ τὸ |
Περὶ γαλῆϲ ρξη Περὶ γῆϲ ἐντέρων ρξθ Περὶ δράκοντοϲ θαλαϲϲίου ρο Περὶ ἐχίδνηϲ ροα Ἐχῖνοϲ θαλάττιοϲ ροβ Ἐχῖνοϲ χερϲαῖοϲ ρογ | ||
, ὧν ἡ μὲν δυτικωτέρα . . . . . ρο ∠ ʹ λβ ἡ δὲ ἀνατολικωτέρα . . . |
τῇ Θ , ἰσογώνιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΒΑ πρὸς τὴν | ||
ἄρα ἐστὶν καὶ ἡ ὑπὸ ΑΚΓ , τουτέστιν ἡ ὑπὸ ΔΕΘ , τῇ ὑπὸ ΑΒΓ . ἀλλὰ καὶ ἡ ὑπὸ |
δὲ τοῦ ὀϲτέου καὶ τοῦ ὄνυχοϲ ἀπαθῶν μεινάντων ἡ ἐκτὸϲ γωνία τοῦ ὄνυχοϲ ὑποδυομένη καὶ νύττουϲα τὴν ἐπιπεφυκυῖαν αὐτῇ ϲάρκα | ||
βάσει τοῦ κυλίνδρου , καὶ ὑποκείσθω ἡ πρὸς τῷ Α γωνία ὀξεῖα , καὶ διὰ τοῦ Γ ἤχθω κάθετος ἐπὶ |