ἴσων γωνιῶν ὁρώμενα . εʹ . καὶ τὰ μὲν ὑπὸ μετεωροτέρων ἀκτίνων ὁρώμενα μετεωρότερα φαίνεσθαι , τὰ δὲ ὑπὸ ταπεινοτέρων
τὰ ὑπὸ ἴσων γωνιῶν ὁρώμενα . καὶ τὰ μὲν ὑπὸ μετεωροτέρων ἀκτίνων ὁρώμενα μετεωρότερα φαίνεσθαι , τὰ δὲ ὑπὸ ταπεινοτέρων
7673650 μετεωροτερα
Τῶν ἴσων μεγεθῶν ὑπὸ τὸ ὄμμα κειμένων τὰ πόρρω κείμενα μετεωρότερα φαίνεται . ἔστω γὰρ ἴσα μεγέθη τὰ ΒΓ ,
ἄρα ἴσων μεγεθῶν ὑπὸ τὸ ὄμμα κειμένων τὰ πόρρω κείμενα μετεωρότερα φαίνεται . ιδʹ . Τῶν ἴσων μεγεθῶν ἄνω τοῦ
6078386 περιαγωγης
ἐμβρύου καὶ τὰς ἀρχὰς ἀποδήσαντες πρὸς τὸν τύλον διὰ τῆς περιαγωγῆς τὴν ὁλκὴν ποιήσωνται , μὴ συνιέντες τὸ κοινόν ,
τοῦ ἐπικύκλου πρόσνευσιν ἴδιον τῆς μὲν τοῦ κέντρου τοῦ ἐπικύκλου περιαγωγῆς περὶ τὸ Ε κέντρον τοῦ διὰ μέσων τῶν ζῳδίων
5754058 ἐπιζευχθεισης
ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ
μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως
5582986 διοπτρας
ὧν τὰ λαβία τοῖς μαχαιρίοις κατεσκεύαζον : ἄλλος δὲ εἰς διόπτρας βώλους μεγάλας ἐκδιδούς , ὥστε καὶ ἔξω κομίζεσθαι .
ἡ διόπτρα ἐργάζηται . δεῖ δὲ καθιέναι τὸν λωτὸν τῆς διόπτρας εἰς τὸ ἄνω μέρος τὸν κοχλίαν ἔχοντα , καὶ
5522103 ΒΗΔ
ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ :
ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς
5478904 ΔΞ
κύκλος ὁ ΗΘ , καὶ διῃρήσθω ἑκατέρα τῶν ΒΞ , ΔΞ εἰς τρία ἴσα κατὰ τὰ Κ , Λ ,
. ἤχθω γὰρ διὰ τοῦ Δ τῇ ΑΕ παράλληλος ἡ ΔΞ . ἐπεὶ οὖν ὑπερβολή ἐστιν ἡ ΑΒ καὶ διάμετρος
5463608 ΛΜΡ
καὶ τῆς ΕΜ , τὸ ἀπὸ ΛΜ πρὸς τὸ ὑπὸ ΛΜΡ . καὶ ἐναλλάξ , ὡς τὸ ὑπὸ συναμφοτέρου τῆς
ΜΕ πρὸς τὸ ὑπὸ ΛΜΡ . ἴσον δὲ τὸ ὑπὸ ΛΜΡ τῷ ὑπὸ τῆς ΜΕ καὶ συναμφοτέρου τῆς ΜΞ ,
5434703 περιαγομενη
, κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα
, κωνικὴν ποιήσει ἐπιφάνειαν τῆι ΑΠ εὐθείαι , ἣ δὴ περιαγομένη συμβαλεῖ τῆι κυλινδρικῆι γραμμῆι κατά τι σημεῖον : ἅμα
5371852 ἐκβληθεισης
ἐλλείψεων . Κείσθω πάλιν ἡ καταγραφὴ τοῦ κώνου , καὶ ἐκβληθείσης τῆς ΓΒ ἐπὶ θάτερα δέον ἔστω ἀπ ' ἀμφοτέρων
ζῳδιακοῦ ἐπεζεύχθωσαν αἱ ΑΔ καὶ ΒΔ καὶ ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ
5352699 περιφερειας
τῶν ἄλλων μενόντων τῶν αὐτῶν τὴν μὲν διπλῆν τῆς ΖΗ περιφερείας γίνεσθαι μοιρῶν ρλη νθ μβ καὶ τὴν ὑπ '
κύκλῳ εὐθειῶν . ιβʹ . περὶ τῆς μεταξὺ τῶν τροπικῶν περιφερείας . ιγʹ . προλαμβανόμενα εἰς τὰς σφαιρικὰς δείξεις .
5328079 μεσουρανησεως
παντὸς ὑπὲρ γῆν ὄντων τρία μὲν καὶ ἥμισυ ἀπὸ τῆς μεσουρανήσεως πρὸς ἀνατολὴν ἀπολαμβάνεται , δύο δὲ καὶ ἥμισυ πρὸς
ἀπὸ τῆς ἀνατολῆς μέχρι τῆς μεσουρανήσεως δρόμον τῷ ἀπὸ τῆς μεσουρανήσεως μέχρι δύσεως . Ἐπὶ δὲ τοῦ ζῳδιακοῦ κύκλου λαμβανομένων
5278409 ἐφαπτομενης
ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς ἐφαπτομένης τὸ μεταξὺ τῆς ἁφῆς καὶ τῆς ἀνηγμένης πρὸς τὸ
οὕτως τὸ περιεχόμενον ὑπὸ τῶν μεταξὺ τῆς τομῆς καὶ τῆς ἐφαπτομένης πρὸς τὸ ἀπὸ τῆς ἀπολαμβανομένης πρὸς τῇ ἁφῇ τετράγωνον
5268509 προδεδειγμενα
οἵων ἐστὶν ἡ μία ὀρθὴ Ϙ . διὰ δὲ τὰ προδεδειγμένα πάλιν καὶ ἡ ὑπὸ τοῦ ἐαρινοῦ ἰσημερινοῦ σημείου γινομένη
γίνεται τὸ ΕΖΗ τρίπλευρον τῷ ΕΚΛ , ἐπεὶ διὰ τὰ προδεδειγμένα καὶ τὰς τρεῖς πλευρὰς ταῖς τρισὶ πλευραῖς ἴσας ἔχει
5247471 διχοτομιας
, ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος
τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον .
5240768 ΑΨ
καὶ ἐπεζεύχθωσαν αἱ ΨΒ , ΨΚ . καὶ ἐπεὶ ἡ ΑΨ ὀρθή ἐστι πρὸς τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον ,
τῆς ΑΨ : καὶ ἡ ΑΗ ἄρα ἐλάττων ἐστὶ τῆς ΑΨ . Ἐν ἄλλοις ἀντιγράφοις οὐκ ἔστιν ΗΛ , ἀλλὰ
5217549 ταπεινοτερα
καὶ δι ' ὃ πάντα ἐστὶν ὁμοῦ , τά τε ταπεινότερα τά τε ὑψηλότερα . ἀλλ ' ὅσα μέν ἐστιν
ιαʹ . Τῶν ἄνω τοῦ ὄμματος ἐπιπέδων κειμένων τὰ πόρρω ταπεινότερα φανεῖται . ἔστω γὰρ ὄμμα τὸ Β κάτω τοῦ
5180941 ἠθουμενα
: τὰ δὲ πρὸς ἀνατολὰς διὰ πώρου τινὸς ἢ γῆς ἠθούμενα τάχιστα θερμαινόμενα καὶ ψυχόμενα , ταῦτα ἐλπίζειν εἶναι κάλλιστα
διεξερχόμενα , μετ ' ἐκείνην δὲ διὰ τῶν ἠθμοειδῶν ὀστῶν ἠθούμενα , κἄπειτα οὕτως ἐμπίπτοντα τοῖς πόροις τῆς ῥινός .
5133250 ΦΥ
δὲ ἡ ΣΡ τῆς ΟΡ : διπλῆ ἄρα καὶ ἡ ΦΥ τῆς ΟΡ . ἴση δὲ ὑπόκειται ἡ ΟΡ τῇ
δύο τῶν διπλασίων τοῦ ἑνός . ἔστι δὲ καὶ ἡ ΦΥ . , ] παραλληλόγραμμον γάρ ἐστι τὸ ΡΣΦΥ χωρίον
5061561 καθετου
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η
5058785 ΕΒΓ
δέδοται καὶ οὐχὶ ἡ ΕΖ καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς
τὰ τρίγωνα , καὶ ἡγούμενα μὲν εἶναι τὰ ΑΒΕ , ΕΒΓ , ΕΓΔ , ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ ,
5052097 ΑΕΒ
ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος
μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν
5048262 ὁρωμενα
ξενοκτόνος καὶ ὁ ψευδόμαντις , οἶδα , ὅπως λυπεῖ σε ὁρώμενα ἐν τοῖς θεοῖς , καὶ μάλιστα ὁπόταν ἡ μὲν
θερίζειν δὲ καὶ τρυγᾶν καὶ κλαδεύειν παρὰ μὲν τὸν καιρὸν ὁρώμενα τὰς πράξεις [ τὰς τοιαύτας ] καὶ τὰς ἐγχειρήσεις
5037023 ΡΤ
διῆκταί τις ἡ ΗΤ , ἡ ΟΡ ἄρα πρὸς τὴν ΡΤ μείζονα λόγον ἔχει ἤπερ ἡ ὑπὸ ΡΤΗ γωνία πρὸς
ἡ ΡΤ : ἴση ἄρα ἐστὶ καὶ ἡ ΜΣ τῇ ΡΤ . ἔστι δὲ καὶ ὅλη ἡ ΜΣΞΥ ὅλῃ τῇ
5018899 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
5015021 ΗΡ
ἐδείχθη δὲ καὶ τὰ τέσσαρα τὰ ΓΚ , ΚΔ , ΗΡ , ΡΝ τοῦ ΓΚ τετραπλάσια : τὰ ἄρα ὀκτώ
κοινὴ δὲ αὐτῶν τομή ἐστιν ἡ ΗΡ : καὶ ἡ ΗΡ ἄρα ὀρθή ἐστι πρὸς τὸν ΑΒΓ κύκλον : καὶ
4979861 ἀπολαμβανομενης
τὸ δὲ περιεχόμενον σχῆμα ὑπό τε τοῦ κύκλου καὶ τῆς ἀπολαμβανομένης ὑπὸ τοῦ τέμνοντος ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ
ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ ' αὐτῆς περιφερείας . κέντρον δὲ τοῦ ἡμικυκλίου
4979669 ΔΗΘ
ΔΘ μείζων ἐστὶν τῆς ΑΛ . καὶ ἔστιν ὅμοια τὰ ΔΗΘ ΑΚΛ τρίγωνα : ὡς ἄρα ἡ ΔΘ πρὸς ΘΗ
αὑτή ἐστιν τῇ ὑπὸ ΔΗΘ . δοθεῖσα οὖν ἡ ὑπὸ ΔΗΘ . ἀλλὰ καὶ ὀρθὴ ἡ πρὸς τῷ Θ .
4966960 ΒΑΕ
ΑΕ : ἀκολούθως δὲ αὐταῖς καὶ αἱ ὑπὸ ΒΑΔ καὶ ΒΑΕ γωνίαι . τῆς δὲ τοῦ ζῳδιακοῦ θέσεως ἐγκεκλιμένης ,
ἡ ΔΕ , ἴση ἐστὶν ἡ ὑπὸ ΔΑΒ τῇ ὑπὸ ΒΑΕ . ἀλλ ' ἡ ὑπὸ ΔΑΒ τῇ ἐν τῷ
4960537 ἀκτινος
ἕως ἂν ἀποχωρήσαντος τοῦ ἀστέρος ἢ τῆς ἀπ ' αὐτοῦ ἀκτῖνος τῇ δύσει εἰς τὸ μηδὲν καταντήσῃ : καὶ οἱ
. βλάστουσι ] πολλὰ τίκτει ὁ ἀὴρ ἐκ τῆς ἡλιακῆς ἀκτῖνος πτηνὰ καὶ ἑρπετά : εἰσὶ γὰρ ὄφεις ἐξ ἀέρος
4950702 συνδυνοντα
τοῦ ζῳδιακοῦ κατὰ τὰς δύσεις πρὸς μεσημβρίαν , ἐὰν τὰ συνδύνοντα ἄστρα ἀπὸ τῶν συνανατελλόντων ἀπέχῃ ἔλαττον ζῳδίου περιφερείας ,
κατὰ τὰς δύσεις ἐπὶ τὰ πρὸς ἄρκτους , ἐὰν τὰ συνδύνοντα ἀπὸ τῶν συνανατελλόντων ἄστρων ἀπέχῃ ἐλάττονα ἡμίσους ζῳδίου περιφέρειαν
4915468 ΒΑΔ
εἰσίν . ὁμοίως δὴ δείξομεν , ὅτι καὶ αἱ ὑπὸ ΒΑΔ , ΔΓΒ γωνίαι δυσὶν ὀρθαῖς ἴσαι εἰσίν . Τῶν
δοθεῖσα γωνία ὀρθή , καὶ ἔστω αὐτῇ ἴση ἡ ὑπὸ ΒΑΔ , καὶ τετμήσθω ἡ ΑΒ δίχα κατὰ τὸ Ε
4914131 ἀνακλασθησεται
προσπέσῃ ὄψις ἴσας ποιοῦσα γωνίας , αὐτὴ δι ' ἑαυτῆς ἀνακλασθήσεται . ἔστω ἔνοπτρον ἐπίπεδον τὸ ΑΓ , ὄμμα δὲ
παράλληλος ἤχθω ἡ ΖΗ . λέγω , ὅτι ἡ ΖΗ ἀνακλασθήσεται πρὸς ἴσην γωνίαν μεταξὺ τῶν Ε , Θ .
4905700 ἀνατολης
, καὶ πάλιν ἔστω ἡ μὲν προγεγενημένη δύσις τῆς Ζ ἀνατολῆς ἡ Θ , ἡ δὲ προγεγενημένη ἀνατολὴ τῆς Θ
βεβασιλευκότων Ἀπολλοδότου καὶ Μενάνδρου . Ἔνι δὲ αὐτῇ καὶ ἐξ ἀνατολῆς πόλις λεγομένη Ὀζήνη , ἐν ᾗ καὶ τὰ βασίλεια
4892060 ΚΔ
, οὕτως ἡ ΚΔ πρὸς ΔΘ . ὡς δὲ ἡ ΚΔ πρὸς ΔΘ , οὕτως ἡ ΚΖ πρὸς ΘΗ :
ἐπεὶ οὖν διὰ τὰς ἐφαπτομένας ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΔ , ἡ ΒΘ πρὸς ΘΔ , καὶ ἔστιν ἡ
4888693 ἀχθεισης
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν
4879397 πτησεως
περιφέρεται , τὴν μάχην τῶν γεννησάντων τῷ τρόπῳ δεικνῦσα τῆς πτήσεως . διὰ τί ποτὲ μὲν μετὰ ὑετὸν ἄνεμοι γίνονται
μετὰ τῶν ἀνέμων παραγίνεται χώρας , τῇ μὲν δυνάμει τῆς πτήσεως τῶν ὀρνίθων μικρὸν παραλλάττον , μακρὸν δὲ τῷ σώματι
4875409 κυρτα
Α , καθάπερ δέδεικται , καὶ προσκείσθω τούτοις κοῖλα ἢ κυρτὰ ἔν - οπτρα κατὰ τὰς ἁφὰς τῶν ὄψεων .
τῇ θερμότητι φαίνεται . Καὶ γὰρ μετὰ τὴν ἐπὶ τὰ κυρτὰ τοῦ ἥπατος ἀνάδοσιν , κατὰ τὴν λαμβδοειδῆ οὕτω καλουμένην
4874978 ΕΖΓ
καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς τὸ ποιήσασθαί τινα κἂν μερικὴν
τῇ ὑπὸ ΗΖΑ γωνίᾳ : ὅλη ἄρα ἡ ὑπὸ τῶν ΕΖΓ ὅλῃ τῇ ὑπὸ τῶν ΓΖΗ γωνίᾳ ἴση ἐστίν :
4858802 ἀρκτου
δικαίων ἀπολείπηται ῥυθμῶν , ὡς δὴ μυθολογεῖται περὶ τῶν τῆς ἄρκτου ἐκγόνων ! ! ! ! ! συντηι ! !
διότι τοὺς ἐτησίας ἰδεῖν ἐστιν οὐδέν τι μᾶλλον ἀπὸ τῆς ἄρκτου πνέοντας ἤπερ τῆς ἑσπέρας : οὐ βορέαι γὰρ οὐδ
4851937 ὀψεως
φοβεροὶ μὲν εἰς τὸ θεαθῆναι τουτέστιν ἱκανοὶ φοβεῖν ἐκ τῆς ὄψεως , δεινοὶ δὲ καὶ ἐπιτήδειοι καὶ δεξιοὶ πρὸς πόλεμον
ὅλον οἶκον . ὅτι διὰ τὰς τρίχας τὰς κατὰ τῆς ὄψεως αὐτοῦ ὀρθῶς οὐχ ὁρᾷ ἀλλὰ πλαγίως . ὅτι ἡ
4846342 πιπτετω
ἐντὸς πεσεῖται τῆς τομῆς . εἰ γὰρ δυνατόν , ἐκτὸς πιπτέτω τῆς τομῆς ὡς ἡ ΓΔΕ , καὶ ἀπὸ τυχόντος
τὸ [ διὰ ] τοῦ κύκλου ἐπίπεδον ἡ ΖΗ μὴ πιπτέτω ἐπὶ τὸ Ε κέντρον , καὶ ἐπιζευχθεῖσα μὲν ἡ
4845742 προσᾳδων
φόρμιγγ ' ἐλελίζων : ἀντὶ τοῦ τῇ κιθάρᾳ τὸν ἐπίνικον προσᾴδων . κλεινᾶς ἐξ Ὀπόεντος : ποίου , φησὶν ,
πρῶτα καὶ ἄντροις τὴν ἁρμονίαν ταύτην ἡρμόσατο , παιδικοῖς ἑαυτοῦ προσᾴδων ταῦτα τὰ κηλήματα . οὐκοῦν ὥρα καὶ ἡμῖν ,
4837455 ΑΘ
τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή
ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ
4811673 βασεως
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν :
4810467 ΕΡ
? [ ] [ ] ΧΕ [ ] [ ] ΕΡ ? ? ! [ ] [ ] ΓΟ [
. τίς ἄρα ὁ τῆς ΕΠ πρὸς ΠΤ τῷ τῆς ΕΡ πρὸς ΡΤ ; ἀλλ ' ὁ τῆς ΕΡ πρὸς
4807719 δεκαποδος
καὶ ἔστω ἡ ΒΔ ἑπτάπους μείζων ἢ τὸ ἥμισυ τῆς δεκάποδος , ἥτις ἑπτάπους νενοήσθω ἡ ἀνασταθεῖσα πυραμὶς ἀπὸ τοῦ
ἦν μείζων τοῦ ἡμίσεος τῆς ΑΒ , τῆς δὴ ΒΕ δεκάποδος οὔσης λείπεται τὴν ΕΑ τετράποδα εἶναι : ὥστε ἐπεὶ
4793605 πυραμιδος
οὕτως ἡ ΑΒΓΗ πυραμὶς ἤτοι πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεὸν ἢ πρὸς μεῖζον . ἔστω πρότερον πρὸς ἔλασσον
ἀπὸ δὲ τοῦ Θ ἐπὶ τὸ ΗΕΚΛ . Ἔστω βάσις πυραμίδος τρίγωνον τὸ ΑΒΓ , καὶ τετμήσθω ἡ μὲν ΑΒ
4767166 ΡΚ
, τὴν δὲ ΡΛ μοιρῶν νζ λ , τὴν δὲ ΡΚ μοιρῶν νε μ , τὴν δὲ ΡΘ , μοιρῶν
τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ , ΝΣ , ΣΚ . οὐκοῦν αἱ ἀπὸ τοῦ
4764833 πληθυεσθαι
γνώμην ἀποδέξασθαι , φράσω δι ' ὅ τι μοι δοκέει πληθύεσθαι ὁ Νεῖλος τοῦ θέρεος : τὴν χειμερινὴν ὥρην ἀπελαυνόμενος
πρῶτον πλῆθος καὶ πληθυόμενον πρῶτον , τοῦ πολλὰ εἶναι καὶ πληθύεσθαι : καὶ ἐπὶ τοῦ ἑνὸς ἕτερα τοιαῦτα . Εἰ
4754237 ὑποτεινουσης
ʂ α Μο α , καὶ γίνεται συναμφοτέρου τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν τὸ ἥμισυ ἐφ ' ἑαυτὸ
τῷ ἐμβαδῷ αὐτοῦ , λείψας τὸν ἐν συναμφοτέρῳ τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν , ποιῇ δοθέντα ἀριθμόν .
4752992 ΒΚ
ΔΜ , πέμπτον δὲ τὸ ΓΛ , ἕκτον δὲ τὸ ΒΚ , ἕβδομον δὲ τὸ ΑΘ , μόνα δὲ καὶ
ταῦτα γὰρ ἡμῖν πάντα προαποδέδεικται : τοιούτων καὶ ἑκατέρα τῶν ΒΚ καὶ ΚΘ ἔσται ιε νε . πάλιν , ἐπεὶ
4750935 ζωνης
προγάστορας , τὸν δ ' ὑπερβαλλόμενον τῶν νέων τὸ τῆς ζώνης μέτρον ζημιοῦσθαι . ταῦτα μὲν περὶ τῆς ὑπὲρ τῶν
. μετὰ ταῦτα , ἔφη , κελεύοντος Κύρου ἔλαβον τῆς ζώνης τὸν Ὀρόνταν ἐπὶ θανάτῳ ἅπαντες ἀναστάντες καὶ οἱ συγγενεῖς
4746380 ΕΔ
τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ
ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ
4731645 χαλασματα
συμβαίνειν , σίνη πάθη ἐκζέματα ἐκβιάσματα ἐξανθήματα συγγενήματα σημεῖά τινα χαλάσματα : τὰ δὲ πρακτικὰ καὶ διανοητικὰ ἐξ ὑστέρου γίνεται
ποσὸν στενοτέρου ἡ μεσότης τῇ ῥινὶ προστίθεται , οὗ τὰ χαλάσματα δι ' ἀλλήλων ὑπὸ λοβοὺς ὤτων ἄγεται , αἱ
4731535 ἐνοπτρον
κυρτῶν ἐνόπτρων ἀνεστραμμένα φαίνεται . ἔστω ὕψος τὸ ΑΕ , ἔνοπτρον δὲ κυρτὸν τὸ ΑΔΓ , ὄψεις δὲ αἱ ΒΔ
τῆς περιφερείας , αἱ ὄψεις ἀνακλώμεναι συμπεσοῦνται . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , κέντρον δὲ τῆς σφαίρας τὸ Β
4724558 διαμετρου
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ
4718636 ΒΖΗ
ἔσται τῷ εὐθυγράμμῳ τῷ συγκειμένῳ ἐκ τῶν τριῶν τριγώνων τῶν ΒΖΗ ΒΖΚ ΕΚΖ . τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ
δὲ ὑπὸ ΒΑΕ ἴση ἐστὶν τῇ ἐκτὸς τετραπλεύρου τῇ ὑπὸ ΒΖΗ : καὶ ἡ ὑπὸ ΘΖΒ ἄρα γωνία ἴση ἐστὶν
4716335 ΖΒ
τμημάτων ριζ λα , καὶ πάλιν ἡ μὲν διπλῆ τῆς ΖΒ μοιρῶν ξ καὶ ἡ ὑπὸ αὐτὴν εὐθεῖα τμημάτων ξ
τῇ Ν . καὶ ἐπεὶ σύμμετρός ἐστιν ἡ ΚΖ τῇ ΖΒ , καὶ συνθέντι σύμμετρός ἐστιν ἡ ΚΒ τῇ ΖΒ
4700965 βλεπεται
: τὸ δὲ μὴ σφαιρικὸν ὄρος , ἄλλ ' οἷον βλέπεται , πολὺ ἔτι ἐλάττονα . τὸ δὲ τοιοῦτον μέρος
ἄλληλα σπουδῆς καὶ συννεύσεως καὶ τὸ σύρρουν ὧδε μόνον οὐ βλέπεται . ἀλλ ' ὅμως καίτοι φεύγοντες περικαταλαμβάνονται : κρατεῖ
4700404 ΓΚΘ
ἔστω γὰρ ἡ ΓΖΘ . φανερόν , ὅτι τὸ ὑπὸ ΓΚΘ ἴσον τῷ ἀπὸ ΑΓ : τέτμηται γὰρ ἡ ΘΚ
ΚΘ , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΚΘ , ἡ δὲ ὑπὸ ΚΓΒ τῇ ὑπὸ ΓΑΔ ,
4699494 διακεκαυμενης
ἐὰν προσλάβωσι τὸ ἐπὶ τὴν Ταπροβάνην καὶ τοὺς ὅρους τῆς διακεκαυμένης , οὓς οὐκ ἐλάττους τῶν τετρακισχιλίων θετέον , ἐκτοπιοῦσι
τε Βάκτρα καὶ τὴν Ἀρίαν εἰς τοὺς ἀπέχοντας τόπους τῆς διακεκαυμένης σταδίους τρισμυρίους καὶ τετρακισχιλίους , ὅσους ἀπὸ τοῦ ἰσημερινοῦ
4698802 ΩΜ
ἔστιν ὡς ἡ ΛΜ πρὸς τὴν ΜΩ , καὶ ἡ ΩΜ πρὸς τὴν ΜΑ͵ , καὶ δοθεῖσα ἡ ΩΜ :
, καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . ὡς δὲ ἡ ΩΜ πρὸς ΜΑ͵
4689054 ἡμισειας
προσλαβὸν τὴν ἡμίσειαν τῆς ὅλης πενταπλάσιον δύναται τοῦ ἀπὸ τῆς ἡμισείας τετραγώνου : ὅπερ ἔδει δεῖξαι . Ἐὰν εὐθεῖα γραμμὴ
ἐνδεχομένου καὶ ἀναγκαίου , ὅτι πάντες ἀτελεῖς καὶ τὸ ἐξ ἡμισείας ἐνδεχόμενον συνάγουσι . Καὶ τελειοῦνται διὰ τῶν πρώτων σχημάτων
4685298 εἰσπνοης
εἴσεται τοῦ λεγομένου τὴν ἀλήθειαν , ἐν μὲν τῷ τῆς εἰσπνοῆς χρόνῳ μόνῳ τῆς ὀσμῆς αἰσθόμενος , ἐν δὲ τῷ
' αὐτῶν ἀναγκαῖον ἦν ἐπιτελεῖσθαι : διὰ μὲν γὰρ τῆς εἰσπνοῆς ἡ τῶν ἀτμῶν γίνεται διάγνωσις , διὰ δὲ τῆς
4677837 μηνιγγος
παραστάτες οἱ καὶ κρεμαστῆρες λεγόμενοι ἐκφύσεις εἰσὶ τοῦ νωτιαίου μυελοῦ μήνιγγος , σὺν φλεψὶν ἀρτηριώδεσιν ἐν τοῖς διδύμοις καθήκουσαι δι
τὸν Ἐρασίστρατον ἠπάτησεν . ὡς οἰηθῆναι . διὰ τὴν τῆς μήνιγγος τρῶσιν ἀκίνητον αὐτίκα γίγνεσθαι τὸ ζῷον . ἑώρα γὰρ
4671507 καθετων
τῆς ΔΒ καὶ τῆς ΒΘ καὶ ἔτι τῆς ΕΘ , καθέτων δ ' ἀγομένων ἐπὶ μὲν τὴν ΔΒ τῆς ΖΚ
κώνου , οὗ βάσις μὲν ὁ ὑπὸ τῶν πτώσεων τῶν καθέτων γραφόμενος κύκλος , κορυφὴ δὲ ἡ αὐτὴ τῷ ἐξ
4667261 ΟΛ
ἄρα ἐστὶν ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν
ἡ μὲν ΠΟ τῆς ΟΚ , ἡ δὲ ΞΟ τῆς ΟΛ , ἴση ἐστὶ τῇ ΚΟ ἡ ΟΛ . διὰ
4666561 ΣΠ
Π , καὶ γεγράφθωσαν μεγίστων κύκλων περιφέρειαι αἱ ΡΠ , ΣΠ . Λέγω , ὅτι ἐλάσσων ἐστὶν ἡ ΡΠ τῆς
ἡ δὲ ΥΚ τῇ ΜΞ : μείζων ἄρα καὶ ἡ ΣΠ τῆς ΜΞ , ὅπερ : ∼ ζʹ . Ἔστω
4662230 ΖΔ
πρὸς ΕΒ μείζονα λόγον ἔχειν ἤπερ τὸ ΓΖ πρὸς τὸ ΖΔ . λέγω , ὅτι τῶν ΑΕ , ΕΒ ,
ἡ ΒΕ τῇ ΔΖ : διπλῆ ἄρα ἡ ΒΓ τῆς ΖΔ : ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ , ΒΓ
4657634 πορευομενα
. Λέγεται περὶ Δαιδάλου ὡς ἀγάλματα κατεσκεύαζε δι ' ἑαυτῶν πορευόμενα : ὅπερ ἔμοιγε ἀδύνατον εἶναι δοκεῖ , ἀνδριάντα δι
τρυφῆς θαλασσόπλακτα ] τὰ ἐν θαλάσσῃ ἐρχόμενα ἢ πλανώμενα καὶ πορευόμενα λινόπτερ ' ] τὰ ἔχοντα τὰ πτερὰ ἤτοι τὰ
4651000 βουλευομενης
παρὰ Διὸς γνώμην , ἤγουν τῆς Εἱμαρμένης , τῆς μεγάλα βουλευομένης . Οὐ γὰρ μετατρέπεται ἡ τῆς εἱμαρμένης βουλή .
φησὶ καὶ οὐ Κλυμένης . : ὀρθοβούλου ] Τῆς ὀρθὰ βουλευομένης . οἱ μὲν Ἰαπετοῦ καὶ Ἀσώπης ἢ Κλυμένης παῖδα
4650903 ΘΦ
ΣΠ τῇ ΥΘ ἐστιν ἴση , ἡ δὲ ΠΞ τῇ ΘΦ : καὶ ἡ ΥΘ ἄρα τῆς ΘΦ ἐστι μείζων
ἐποίησεν ἐν τῷ αὐτῷ λόγῳ καὶ τὴν ΤΘ πρὸς τὴν ΘΦ . πᾶσα δὲ ἀνάγκη μήτ ' ἐκεῖνον εὑρίσκειν τὸ
4647792 ΖΘΡΟ
τῶν ὁμολόγων πλευρῶν . τὸ ΒΔΜΛ ἄρα στερεὸν πρὸς τὸ ΖΘΡΟ στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν
ἑξαπλάσιον τὸ ΒΔΜΛ στερεόν , τῆς δὲ ΕΖΗΘ ἑξαπλάσιον τὸ ΖΘΡΟ στερεόν , ἴσον ἄρα ἐστὶ τὸ ΒΔΜΛ στερεὸν τῷ
4647164 ΑΥ
. ἤχθω γὰρ ἀπὸ τοῦ Α παρὰ τὴν ΒΖ ἡ ΑΥ . ἐπεὶ οὖν διὰ τὰ αὐτὰ τοῖς πρότερον τῆς
ἐπὶ τοῦ λοξοῦ τὰς ΓΔ , ΓΚ , ΑΠ , ΑΥ . καὶ γεγράφθωσαν μέγιστοι κύκλοι διὰ τῶν Δ ,
4644022 Βρεττανικης
γάρ ἐστι καὶ διαφορητικῆς , εἰ ποθείη , δυνάμεως . Βρεττανικῆς τὰ φύλλα στυπτικά , καὶ ὁ χυλὸς δ '
λέγειν οὐδὲν μνήμης ἄξιον ἐρωτηθεὶς ὑπὸ τοῦ Σκιπίωνος περὶ τῆς Βρεττανικῆς , οὐδὲ τῶν ἐκ Νάρβωνος οὐδὲ τῶν ἐκ Κορβιλῶνος
4638720 ΝΣ
ΜΡ μείζων ἐστὶν ἢ διπλῆ , ἡ δὲ ΞΝ τῆς ΝΣ ἐλάσσων ἐστὶν ἢ διπλῆ , ἐλάσσων ἄρα ἐστὶν ἡ
μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ ΘΚ ἄρα τῆς ΝΣ μείζων ἐστὶν ἢ ὁμοία . καὶ εἰσὶ τοῦ αὐτοῦ
4625811 πενταγωνα
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα .
4623851 καρδιης
τῆς κοιλοτάτης . Δύο γάρ εἰσι κοῖλαι φλέβες ἀπὸ τῆς καρδίης : τῇ μὲν οὔνομα ἀρτηρίη : τῇ δὲ κοίλη
, εἶτ ' ἑαυτόν ἀφῆκεν εἰς βέλεμνον : μέσος δὲ καρδίης μευ ἔδυνε καί μ ' ἔλυσεν . μάτην δ
4614181 ΖΓ
ΖΒ , τὸ δὲ ὑπὸ ΕΖΓ μετὰ τοῦ ὑπὸ ΑΕ ΖΓ ὅλον ἐστὶν τὸ ὑπὸ ΑΖΓ . εἴχομεν δὲ καὶ
ΖΓ πρὸς τὸ ἀπὸ τῆς ΓΑ ἐστι τὸ ἀπὸ τῆς ΖΓ διαμέτρου τῆς τομῆς πρὸς τὸ ἀπὸ τῆς συζυγοῦς ἑαυτῇ
4612803 ἐπιρροης
ἐν τῇ Ῥωμαίων πόλει , γίνεσθαι δέ μοι δοκοῦσιν ἐξ ἐπιρροῆς μὲν αἵματος , καθάπερ ἡ φλεγμονή , μὴ μέντοι
καὶ ἐρυθριάσαν τὸ πῦρ τὴν πρᾶξιν τοῦ υἱοῦ ἀνεκόπη τῆς ἐπιρροῆς . καὶ παρῆλθον ὁ παῖς καὶ ὁ πατὴρ ἀβλαβεῖς
4609956 ἐμπιδος
διεντερεύματος : ἤγουν τῆς καταλήψεως τοῦ ζητήματος τοῦ ἐντέρου τῆς ἐμπίδος . γελοίου δὲ χάριν εἴρηκεν αὐτό : ὡς γὰρ
ἦ ῥᾳδίως φεύγων ἂν ἀποφύγοι δίκην ὅστις δίοιδε τοὔντερον τῆς ἐμπίδος . πρῴην δέ γε γνώμην μεγάλην ἀφῃρέθη ὑπ '
4603555 ἀπολαμβανεται
, τοῦ δὲ ζῳδιακοῦ κύκλου Ϛ ζῴδια ὑπὲρ τὸν ὁρίζοντα ἀπολαμβάνεται , Ϛ δὲ ὑπὸ τὸν ὁρίζοντα ἀποτέμνεται : ἡ
καὶ ἀπὸ ἑῴας ἀνατολῆς ἐπὶ ἑῴαν δύσιν πρότερον . Ὅσα ἀπολαμβάνεται ὑπὸ τοῦ ζῳδιακοῦ κατὰ τὰς ἀνατολὰς ἐπὶ τὰ πρὸς
4599289 σημειωσεως
μὴ προσλαμβάνον τὸ ς : τὸ μέντοι κέκλιμαι οὐ δεῖται σημειώσεως , κἂν ἀπὸ τῆς πέμπτης ἢ τῆς ἕκτης ληφθείη
' ἑκάτερον φαινομένων καὶ οὐκ ἀδήλων . διὸ οὐ δέονται σημειώσεως , οἷον τὸ μὲν στεγνὸν , ἐκ τοῦ πεπυκνῶσθαι
4596782 ὑπτια
οὖσα τοιαῦτα παλαμᾶται . ἑαυτὴν ὑπέρριψε δένδρῳ , καὶ κεῖται ὑπτία , καὶ τὴν γαστέρα διώγκωσε , παρῆκε δὲ τὰ
, ἐκδικητής . κάτεισιν ] ἐλεύσεται . ὑπτίασμα ] ἡ ὑπτία κατάκλισις , ἤγουν τὸ νεκρὸν αὐτὸν εἶναι . ἀπαλλάσσουσιν
4595878 οἰδεῃ
τι φλέγμα καὶ χολὴν ἰνήσεται : ἢν δὲ μὴ ἰσχυρῶς οἰδέῃ καὶ τὸ φλέγμα αὐτὴν πιέζῃ , ἄνω δοῦναι φάρμακον
οἱ αὐτοὶ , οἳ καὶ πρόσθεν εἴρηνται . Ἢν κύουσα οἰδέῃ , κνίδης καρπὸν ὡς πλεῖστον καὶ μέλι καὶ οἶνον
4592324 ΕΗ
εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ
τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε
4592320 ἐπιζευγνυμενης
. καί ἐστι τῆς ΚΔ . , ] τῆς ΚΔ ἐπιζευγνυμένης γίνεται τρίγωνον ὀρθογώνιον τὸ ΔΚΒ ὀρθὴν ἔχον τὴν ὑπὸ
παραλλήλου , τὰ γινόμενα τμήματα ὑπὸ τῆς ἐπὶ τὰς ἁφὰς ἐπιζευγνυμένης . ἔστω ἡ ΑΒ τομὴ καὶ αἱ ΑΓ ,
4588023 ἀμφιφανη
χρόνον ὑπὸ γῆν φέρεται . Ὅθεν καί τινα τῶν ἄστρων ἀμφιφανῆ καλεῖται , καθάπερ καὶ ὁ Ἀρκτοῦρος : μετὰ γὰρ
ἑσπέριον καὶ ἑῷον , τὰ δὲ καὶ ἀμφιφανῆ φαίνεται : ἀμφιφανῆ δὲ κλῄζουσιν ὅσα περὶ πρῶτα τῆς νυκτὸς φανέντα πρὸς
4586182 ἐλαχιστης
τὴν ἐνταῦθα ὑποκειμένην ἐπὶ τοῦ ἐπικύκλου μετάβασιν τὸν ἀπὸ τῆς ἐλαχίστης κινήσεως ἐπὶ τὴν μέσην χρόνον , μείζων ἐστὶν τῆς
δὴ ταῦτα ἀληθῆ λέγομεν , καὶ τὸ μέγεθος ὥρισται τῆς ἐλαχίστης σαρκός , ἀναγκαίως ἀδύνατον ἐν ἑκάστῳ πάντα μεμῖχθαι .
4579462 ἐκφυομενα
ἔξω βλαστανόντων : ὡσαύτως δὲ καὶ τὰ ἐκ τῶν ξύλων ἐκφυόμενα καὶ μάλιστα ἐκ τῶν ἐλατίνων ἃ καλοῦσιν οἱ μάντεις
, καὶ ὅτι αἵματόϲ τε καὶ πνεύματόϲ εἰϲι περιεκτικά , ἐκφυόμενα μὲν ἀπὸ καρδίαϲ , διανεμόμενα δὲ κατὰ πάντα τοῦ
4577517 σκιας
: πανσέληνος γάρ . καὶ τὸ κέντρον τοῦ κύκλου τῆς σκιᾶς , ὅπερ ἐστὶν κατὰ διάμετρον τῷ ἡλίῳ , κατὰ
, εὑρήσει τὸν οὐρανὸν ἡμέραν αἰώνιον , νυκτὸς καὶ πάσης σκιᾶς ἀμέτοχον , ἅτε περιλαμπόμενον ἀσβέστοις καὶ ἀκηράτοις ἀδιαστάτως φέγγεσιν
4573851 ΟΕ
πάλιν ἐπεὶ ἀπὸ τοῦ κέντρου ἐπὶ τὴν ἁφὴν ἐπέζευκται ἡ ΟΕ , ἡ ὑπὸ ΚΕΟ γωνία ὀρθή ἐστιν . καὶ
τοῦ κύκλου καὶ ἔστω τὸ Ο , καὶ ἐπεζεύχθω ἡ ΟΕ . καὶ ἐπεὶ ἐπὶ τεταρτημορίου βέβηκεν , ἡ ὑπὸ
4568826 ΥΡ
μείζων ἄρα ἡ ΥΡ τῆς ΡΞ . Ἴση δὲ ἡ ΥΡ τῇ ΡΟ : μείζων ἄρα ἡ ΟΡ τῆς ΡΞ
μείζων ἄρα ἡ ΨΥ , τουτέστιν ἡ ΤΥ , τῆς ΥΡ . Ἔστω τῆς ΤΡ ἡμίσεια ἡ Τ ↑ .
4567019 ΔΑΓ
καὶ τῷ ὑπὸ ΒΔ ΑΓ , κοινὸν ἀφῃρήσθω τὸ ὑπὸ ΔΑΓ : λοιπὸν ἄρα τὸ ὑπὸ ΑΓ ΔΒ ἴσον ἐστὶν
. ἔσται δὴ πάλιν κατὰ τὰ αὐτὰ ἡ ὑπὸ τῶν ΔΑΓ γωνία ὀρθῆς μεʹ μέρος , ἡ δὲ ὑπὸ τῶν
4564466 ΚΡ
ἴση ἐστὶν ἡ μὲν ΚΜα τῇ ΒΔ , ἡ δὲ ΚΡ τῇ ΑΒ , ἡ δὲ ΒΕ τῇ ΚΘ ,
τῇ μὲν ΑΓ ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν ,
4563686 κατηγμενης
καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη
τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ
4558579 ἀνακλωμεναι
δὲ τὸ Β , ὄψεις δὲ αἱ ΒΑ , ΒΓ ἀνακλώμεναι ἐπὶ τὰ Ε , Δ , ὁρώμενον δὲ ἔστω
δὲ τὸ Β , ὄψεις δὲ αἱ ΒΓ , ΒΔ ἀνακλώμεναι ἐπὶ τὰ Ε , Κ . οὐκοῦν φαίνεται ἐκβληθεισῶν
4551458 ἐπισπωμενης
ἄνθος καὶ κουφότερον , τῆς ἐπὶ τὰ κυρτὰ τοῦ ἥπατος ἐπισπωμένης κύστεως , ἣν δὴ καὶ χοληδόχον φαμέν . ὅσον
σχήματος ἐνομίσθησαν , τῆς καινουργίας δὲ αὐτοὺς συναυξούσης , τῆς ἐπισπωμένης ἀεὶ τὸν πολὺν συρφετὸν καὶ πρὸς τὰ ξένα καὶ
4549414 ΑΔΒ
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ
4545790 ΡΥ
, καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν # μβ . καὶ λοιπὴ ἡ ὑπὸ
ἡ μὲν ΖΡ τῇ ΡΣ , ἡ δὲ ΡΝ τῇ ΡΥ , δύο αἱ ΖΡΝ δυσὶ ταῖς ΣΡΥ ἴσαι εἰσίν

Back