| Ϛʹ πρὸς τὰ γʹ ιʹʹ , οὕτως αὐτὰ τὰ γʹ ιʹʹ πρὸς μείζονά τινα τῶν δύο . καὶ ἔστιν ἡ | ||
| ἡ ἐλαχίστη ἐπ ' ἀκριβὲς συντεθεῖσαι γίνονται μοῖραι κϚ καʹ ιʹʹ . Ἀλλὰ αἱ κατὰ τὸ ὁλοσχερὲς ἐκ τηρήσεως εἰλημμέναι |
| Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας | ||
| ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον . |
| τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
| τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
| ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
| μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
| τὰ δὲ παʹ τρὶς σμγʹ : ηʹ θʹ ξδʹ οβʹ παʹ ρϞβʹ σιϚʹ σμγʹ : εἶτα προστίθεμεν τοῖς σμγʹ ἀπὸ | ||
| θʹ , κατὰ δὲ ἐμβαδομετρίαν ὡς ὁ κεʹ πρὸς τὸν παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν |
| εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ γίνονται κεʹ : ὁμοῦ ρξθʹ : ὧν πλευρὰ τετράγωνος γίνεται ιγʹ : τοσούτων ἔσται | ||
| : ὁμοῦ σνϚ . Καὶ αὖθις ἐννεακαιδεκάκις ιθ , τξα ρξθʹ , καὶ τρὶς ιγ , λθ : ὁμοῦ υ |
| ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
| ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
| ζ . Γίνεται οὖν ὁ ἐνιαυτὸς κατ ' αὐτοὺς ἡμερῶν τξε καὶ ε ἐννεακαιδεκάτων . Ἐν δὲ τοῖς σλε μησὶ | ||
| ἐστιν ἡμερῶν τξε ἐννεακαιδεκάτων ε . Πλεονάζουσι δὲ αὗται τῶν τξε δʹ ἡμέρας οϚʹ . Δι ' ἣν αἰτίαν οἱ |
| τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ | ||
| δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ |
| τὰ εʹ , οὕτως τὰ εʹ πρὸς τὰ γʹ καὶ ηʹʹ : ὡς δὲ τὰ εʹ πρὸς τὰ γʹ καὶ | ||
| ὧν τὸ ρϘβʹʹ γίνεται βʹ : καὶ τὰ λοιπὰ εἰς ηʹʹ γίνονται ιβʹ : ὡς εἶναι τὸ ξύλον ποδῶν στερεῶν |
| ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα | ||
| λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ |
| φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ | ||
| Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # # |
| πανσελήνου ἐπὶ τὴν Σελήνην , καὶ ἐὰν μὲν ἐντὸς τῶν ρπʹ μοιρῶν εὑρεθῇ , χρῆσθαι τῷ ὑποδεδειγμένῳ τρόπῳ : ἐὰν | ||
| γωνία μεʹ μέρος ἐστὶν ὀρθῆς , ἡ ΓΔ ἄρα περιφέρεια ρπʹ μέρος ἐστὶ τοῦ κύκλου : ἡ δὲ ΔΖ περιφέρεια |
| τὸ πτηνὸν ζῷον ρπγ Κοχλίοϲ χερϲαῖοϲ ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη | ||
| ρπ Κάππαριϲ ρπα Κάρδαμον ρπβ Καρδάμωμον ρπγ Καρῶον ρπδ Καϲϲία ρπε Καρύα ρπϚ Κάρυα ποντικὰ καὶ λεπτοκάρυα ρπζ Καϲτάνια ρπη |
| . Προστιθέμενοι οἱ δ ἀριθμοὶ μὲν ταῖς υ μονάσι ταῖς λειπούσαις ἀριθμοὺς δ , γίνονται υ μονάδες τέλειαι , εἰ | ||
| μέρη τοῦ Ὑδροχόου γινομένη πρότερον ἔσται ταῖς εἰς ὅλας ἡμέρας λειπούσαις ὥραις Ϛ . ζητητέον ἄρα , ποῦ καὶ πότε |
| εἰς τὴν ιθʹ πρὸ ∠ ʹ καὶ γʹ α ὥρας ἰσημερινῆς τοῦ μεσονυκτίου καὶ τοῦ ιθʹ ἔτους Ἀδριανοῦ Χοϊὰκ βʹ | ||
| . ἅπερ οὐδὲ ιϚʹ , φησίν , ποιεῖ ὥρας μιᾶς ἰσημερινῆς . ἐὰν γὰρ τὸ ὡριαῖον μέσον δρόμημα τῆς σελήνης |
| δὲ οβʹ γίνεται σιϚʹ , τὰ δὲ ξδʹ τρὶς γίνεται ρϞβʹ . τούτων ἐπίτριτα τὰ σνϚʹ , ἅτινα πρὸς σμγʹ | ||
| τοῖς ποδαγρικοῖς : λιθαργύρου ⋖ ϞϚʹ , ἐλαίου παλαιοῦ ⋖ ρϞβʹ , οἴνου παλαιοῦ καὶ κιρροῦ διαυγοῦς καὶ ἠρέμα γλυκέος |
| οἷον ηυ , ωυ , υι . Σύμφωνα δέ εἰσι δεκαεπτά . Ἐκλήθησαν δὲ σύμφωνα , ὅτι αὐτὰ μὲν καθ | ||
| ἐννήρεις λʹ , ἑπτήρεις λζʹ , ἑξήρεις εʹ , πεντήρεις δεκαεπτά : τὰ δ ' ἀπὸ τετρήρους μέχρι τριηρημιολίας διπλάσια |
| . καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι | ||
| μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ |
| δαφνίδων ἐπίθεμα πθʹ . Περὶ ἀποστήματος ἐν μήτρᾳ , Ἀρχιγένους ρʹ . Ὅπως δεῖ ἐνεργεῖν περὶ τὸ στόμιον τῆς μήτρας | ||
| μάρπω , τὸ καταλαμβάνω γίνεται μαρπεῖν , καὶ ἀποβολῇ τοῦ ρʹ μαπέειν κατ ' ἐπέκτασιν . Καὶ τὸ ΒΑΙΝΟΥΣΕΩΝ δὲ |
| λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
| ' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
| ὑποθέμενοι τὴν σελήνην κατὰ τὸ Λ ἀπέχειν τοῦ ἀπογείου μοίρας ροη μϚ , γίνεται ἡ ὑπὸ ΕΘΖ γωνία , τουτέστιν | ||
| : καὶ ὅλη ἄρα ἡ ὑπὸ ΒΕΓ τῶν αὐτῶν ἔσται ροη ιϚ . πάλιν , ἐπειδὴ τὸ μὲν Γ περίγειον |
| ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά ἐστι τῶν ἀπὸ τῶν ΑΓ , ΓΔ | ||
| σὺν τῇ προσκειμένῃ ὡς μιᾶς , ἅ εἰσιν ἡμίση τῶν σλδ . Τὰ ἀπὸ τῶν ΑΔ καὶ ΔΒ τετράγωνα διπλάσιά |
| . πζʹ . Περὶ ἥλων καὶ μυρμηκίων καὶ ἀκροχορδόνων . πηʹ . Περὶ βελῶν ἐξαιρέϲεωϲ . πθʹ . Περὶ καταγμάτων | ||
| ἥμισυ , ἀπὸ δὲ ταύτης τῆς ἰσημερίας ἄχρι χειμερινῆς τροπῆς πηʹ , ἀπὸ δὲ χειμερινῆς τροπῆς ἐπὶ ἐαρινὴν ἰσημερίαν Ϙʹ |
| τὴν διάμετρον ἐφ ' ἑαυτήν , γίνονται μθ : ταῦτα τρισσάκις , γίνονται ρμζ : ὧν ιδʹ , ι ∠ | ||
| αὐτοῦ τὴν πλευράν . ποιῶ οὕτως : πάντοτε τὴν διάμετρον τρισσάκις , γίνονται ξ : ἄρτι καθολικῶς μερίζω : ὧν |
| ἐπέχουσι διάστημα , αἱ δὲ Ϙʹ τριῶν , αἱ δὲ ξʹ δύο , ὧν ὁ γʹ κείμενος μέσος πρὸς μὲν | ||
| . νθʹ . Πῶϲ ἄν τιϲ ἰάϲαιτο κατιϲχνωθέντα μόρια . ξʹ . Διάγνωϲιϲ ἀρίϲτηϲ κράϲεωϲ . ξαʹ . Διάγνωϲιϲ τῶν |
| . . . . . . . . . . ριε δʹ ιζ γʹ Ὀμηνόγαρα . . . . . | ||
| . . . . . . . . . . ριε δʹ λ Ϛʹ : Ἀράχωτος . . . . |
| ∠ ʹ τὸ πέμπτον , ὃ καλεῖται Ἀντιβολή . . ρμη ∠ ʹ ιη δʹ : Ὄρη δὲ ὀνομάζεται ἐν | ||
| ὑπὸ ΑΖΒ ὅλη τὸ ὁμαλὸν μῆκος περιέχουσα τῶν μὲν αὐτῶν ρμη λη , οἵων δ ' αἱ δ ὀρθαὶ τξ |
| ὁ ΛΜΝ γνώμων καὶ ] τὰ ΓΚ , ΘΗ τετράγωνα τριπλάσιά ἐστι τοῦ ΘΗ τετραγώνου . καί ἐστιν ὁ [ | ||
| ἡ ΝΟ : τὰ ἄρα ἀπὸ τῶν ΝΣ , ΣΟ τριπλάσιά ἐστι τοῦ ἀπὸ τῆς ΝΟ . ἴση δὲ ἡ |
| καὶ ἄνυδρον ἐπὶ μίλια ρνʹ , πλανήσαντες αὐτοὺς , τῇ εἰκάδι πέμπτῃ τοῦ Δαισίου τοῦ καὶ Ἰουνίου μηνός . Καὶ | ||
| σὺν ὀκτὼ , τέσσαρες σὺν εἰκάδι , Τὰς πέντε σὺν εἰκάδι σὺν ἓξ εἰκάδι . Τῶν Διδύμων τέσσαρες ὡς δὶς |
| , ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ | ||
| - ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν |
| πρώταις ἡμῖν τετηρημένων ἰσημεριῶν μία τῶν ἀκριβέστατα ληφθεισῶν γέγονεν ἰσημερία μετοπωρινὴ τῷ ιζʹ ἔτει Ἀδριανοῦ κατ ' Αἰγυπτίους Ἀθὺρ ζʹ | ||
| Ϙʹ , Καλλίππῳ Ϙβʹ . . . . κη : μετοπωρινὴ ἰσημερία . Αἰγυπτίοις καὶ Εὐδόξῳ ἐπισημαίνει . . . |
| δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι | ||
| Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς |
| μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ | ||
| ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ |
| ἐποχῆς τῆς σελήνης τῆς ἀκριβοῦς κατὰ τὸ τέλος τῆς μέσης πενταμήνου Λέοντι μοίραις ζ ιζ . ἦν δὲ καὶ ὁ | ||
| , ἐν ᾧ ὁ ἥλιος κατὰ τὸ τέλος τῆς μέσης πενταμήνου παραγίγνεται : καὶ τὴν ΗΘΚ περιφέρειαν διάστασιν εἶναι ἀπὸ |
| ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα | ||
| ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ |
| . . . . . . . . πζ δʹ λβ δʹ Ἄρδεα . . . . . . . | ||
| καὶ ἡ μὲν ἐπὶ τῆς ΕΗ περιφέρεια τοιούτων ἐστὶν λθ λβ , οἵων ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ |
| ' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . . | ||
| ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ |
| μοῖραι νϚ κ . ἃς καὶ διπλώσαντες , τὰς γενομένας ριβ μ εἰσηνέγκαμεν εἰς τὸν τῶν ἐν κύκλῳ εὐθειῶν κανόνα | ||
| ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν |
| , τὰ δὲ πέρατα ἐπὶ μασχάλην ἀπαθῆ . Κεφ . οθʹ . Ἡ μεσότης ὑπὸ μασχάλην βραχίονος πεπονθότος αἱ ἀρχαὶ | ||
| τῶν ρηʹ ἐτῶν νδʹ καὶ τὰς ἐλαχίστας κεʹ : γίνονται οθʹ . τῷ δὲ Ἄρει τῆς αὐτῆς αἱρέσεως ὄντι ἡ |
| δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
| ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
| Ἰϲάτιϲ βαφική ρογ Ἰϲάτιϲ ἀγρία ροδ Ἰτέα ροε Καλαμίνθη ροϚ Κάλαμοϲ ἀρωματικόϲ ροζ Κάλαμοϲ φραγμίτηϲ ροη Καννάβεωϲ ὁ καρπόϲ ροθ | ||
| καὶ ἐπιχρίϲαϲ μέτωπον καὶ κροτάφουϲ παύϲειϲ παραχρῆμα κεφαλῆϲ ὀδύναϲ . Κάλαμοϲ ἀρωματικὸϲ ϲτύψεωϲ βραχείαϲ καὶ δριμύτητοϲ ἐλαχίϲτηϲ μετέχει . τὸ |
| , ὥστε γενέσθαι πάντα τὸν ἐκ τῶν β ὀρθογωνίων ἀριθμὸν σνβ . τοσοῦτον δὲ φεν . . . . . | ||
| , ἃς ἐὰν ἀφέλωμεν ἀπὸ τῶν κατὰ τὴν τήρησιν μοιρῶν σνβ ζ , ἕξομεν ἐποχὴν εἰς τὸ αʹ ἔτος Ναβονασσάρου |
| ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΕΖ περιφέρεια τοιούτων ἐστὶν ρμε νϚ , οἵων ὁ περὶ τὸ ΑΕΖ ὀρθογώνιον κύκλος | ||
| ιη ∠ ʹ τὸ δεύτερον στόμα , ὃ καλεῖται Μέγα ρμε γοʹ ιη ∠ ʹ τὸ τρίτον , ὃ καλεῖται |
| . . . . . . . . . Ϙθ νζ ∠ ʹ ἀφ ' ὧν ῥέουσιν ὅ τε Ῥυμμὸς | ||
| ιθ ὀκταετηρίσιν , ὅπερ ἐστὶν ἔτη ρνβ , ἐμβόλιμοι ἄγονται νζ : ἐν δὲ τῷ αὐτῷ χρόνῳ κατὰ τὴν ἐννεακαιδεκαετηρίδα |
| τουτέστιν ἡ ΡΥ ] παραλλάξεως οὖσα τῆς σελήνης Καρκίνου μοίραις κθ ιδ τῆς πρὸ γ ∠ ὡρῶν ἰσημερινῶν τῆς μεσημβρίας | ||
| νζ μ ν ιε . τὸ ἥμισυ τῆς ΑΒ α κθ κβ , τὸ ἀπὸ τῆς ἡμισείας τῆς ΑΒ β |
| ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ , | ||
| ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ , |
| καὶ ἡ ὑπὸ ΒΕΓ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων ρν κϚ , οἵων εἰσὶν αἱ δύο ὀρθαὶ τξ . | ||
| μεμφόμενος τῆς πόλεως κάθαρσιν [ . ] . οὗτος ἔζησεν ρν ἔτη , τὰ δὲ Ϙ ἐκαθεύδησεν . καὶ παροιμία |
| Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως | ||
| ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ |
| πρὸς ΝΙ : ὥστε καὶ λϚʹ τὰ ἀπὸ ΟΝ πρὸς ψκʹ τὰ ἀπὸ ΝΙ , τουτέστιν πʹ τὰ ἀπὸ ΙΛ | ||
| : ἀπ ' Ἰσθμοῦ διὰ Κορινθίου κόλπου εἰς Πάτρας στάδια ψκʹ : ἐπὶ Λευκάδα στάδια ψʹ : ἐπὶ Κόρκυραν στάδια |
| . Ὁ ποὺς ὁ Πτολομαϊκὸς ἔχει εὐθυμετρικοὺς δακτύλους ιϚʹ , ἐμβαδομετρικοὺς σνϚʹ , στερεοὺς δὲ ͵δϘϚʹ . Ὁ δὲ Ῥωμαϊκὸς | ||
| σνʹʹ . Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ |
| ρξγ νότ . β Ἀττάβα ποταμοῦ ἐκβολαί . . . ρξδ νότ . α Κῶλι πόλις . . . . | ||
| κεκαυμέναι ρξα Ὀϲτέα κεκαυμένα ρξβ Περὶ δερμάτων ρξγ Περὶ αἰθυίηϲ ρξδ Περὶ ἀλωπέκων ρξε Περὶ ἀράχνηϲ ρξϚ Περὶ βατράχων ρξζ |
| καὶ φύλλου καὶ ἑψητοῦ ὀλίγον ἐμβάλλουσιν : ἄλλοι καὶ ἀλόης ἡπατίτιδος καὶ κυπείρου . Ἢ ἀλόης δραχ . βʹ ἀμώμου | ||
| . . . . . οὐγγ . αʹ ʹʹ ἀλόης ἡπατίτιδος . . . . . . . . οὐγγ |
| εἰς Αἰγινήτην , πολίχνιον καὶ ποταμὸν , στάδια ρκʹ , μίλια ιϚʹ . Ἀπὸ δὲ Αἰγινήτου εἰς Κίμωλιν κώμην , | ||
| Ἀπὸ δὲ Σαγγαρίου ποταμοῦ εἰς Ὕπιον ποταμὸν στάδια ρπʹ , μίλια κδʹ . Οὗτος ὁ ποταμὸς ἔχει ἐφ ' αὑτῷ |
| ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΕΛ ἔσται ιγ λγ , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων | ||
| . . . . . . . . ι γʹ λγ ∠ ʹδʹ Τοκολόσιδα . . . . . . |
| πανσέληνος . πάλιν τὰς Ϛʹ ἀφεῖλον ἀπὸ τῆς ιγʹ τοῦ Μεχίρ : γέγονε τοῦ Μεχὶρ ζʹ . ὁμοίως ἐπεὶ ἀπὸ | ||
| Τυβί . βʹ . [ γʹ . ] Φευρουάριος : Μεχίρ . γʹ . [ δʹ . ] Μάρτιος : |
| μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
| τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
| δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα # | ||
| . . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ |
| λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων δὲ σξδ , λείπεται τξα . . Ὁ χκε τετράγωνος γίνεται | ||
| ὑπὸ τῶν Α , Β ἤτοι τὸ ἀπὸ τῆς Γ σξδ μοιρῶν μδ λεπτῶν πρώτων κε δευτέρων , ἡ Γ |
| κθ : τὰ γὰρ ἀπ ' αὐτῶν τετρά - γωνα τξα καὶ υμα κατ ' οὐδὲν χωρίον κοινῷ μέτρῳ μετροῦνται | ||
| καὶ τῆς τοῦ ἀστέρος , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις τξα πρὸς Αἰγυπτιακοῖς ἔτεσιν Ϙε ἀποκαταστάσεις ποιεῖσθαι να ἔγγιστα : |
| ιεʹ , ὁλκὰϲ ριβʹ ʂ . Ἡ λίτρα ἔχει ὁλκὰϲ Ϙʹ . Τὸ δὲ δηνάριον ἔχει γράμματα δʹ . Τὸ | ||
| ᾗ ὅρμος ναυσὶ , στάδιοι σʹ , μίλια κϚʹ , Ϙʹ Ϛʹ . Ὀδησσὸν κτίζουσι Μιλήσιοι , ὅτε Ἀστυάγης ἦρχε |
| Περὶ χαλαζίων . ιζʹ . Περὶ ἀκροχορδόνων καὶ ἐγκανθίδων . ιηʹ . Περὶ πτερυγίων . ιθʹ . Περὶ ϲταφυλωμάτων . | ||
| ιβʹ ὦμοι , ἀπὸ ιγʹ ἕως ιζʹ κοιλία , ἀπὸ ιηʹ ἕως κʹ μηροί , ἀπὸ καʹ ἕως κγʹ μέσαι |
| δὲ μοίρας νβ λα , ὡς τὴν μὲν τοῦ μήκους ἐπουσίαν ἀπαράλλακτον , ὡς ἔφαμεν , εὑρῆσθαι τῇ διὰ τῶν | ||
| ἔφαμεν , εὔχρηστον καὶ ἀφελόντες ὅλους κύκλους ἕξομεν ὀκτωκαιδεκαετηρίδος μέσην ἐπουσίαν μήκους μὲν μοιρῶν ρξη μθ νβ θ θ με |
| ʹ κη ὁ δὲ Δοάνας , ἀπὸ μὲν τῶν Δαμάσσων ρξβ κζ ∠ ʹ ἀπὸ δὲ τοῦ Βηπύῤῥου ὄρους . | ||
| . . . . . . . . . . ρξβ γʹ Ϛ τὸ μετ ' αὐτὴν ἀκρωτήριον . . |
| τὸ κατὰ τὴν ἀνωμαλίαν ἀπέχειν τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ρπα ιβ . συνάγεται δὲ καὶ ἡ ἀπὸ τῆς δευτέρας | ||
| ροη Καννάβεωϲ ὁ καρπόϲ ροθ Κάπνιοϲ ἢ καπνόϲ ρπ Κάππαριϲ ρπα Κάρδαμον ρπβ Καρδάμωμον ρπγ Καρῶον ρπδ Καϲϲία ρπε Καρύα |
| φανερόν , ὅτι τοῦ χρόνου τῆς μέσης πενταμήνου τυγχάνοντος ἡμερῶν ρμζ καὶ ὡρῶν ἔγγιστα ιε ∠ ʹ δʹ ὁ τῆς | ||
| πγ λϚ Διὸς . . . . . . . ρμζ λϚ Ἄρεως . . . . . . . |
| Πρασώδης κόλπος . . . . . . . . ρκα β Νούβαρθα πόλις . . . . . . | ||
| . . . . . . . . . . ρκα δʹ ιθ γοʹ Ἱππόκουρα , βασίλειον Βαλεοκούρου . . |
| καὶ σξδ , παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς | ||
| τὰς ιζ ἐπὶ τὰς ἓξ ὥρας , καὶ γίνονται χρόνοι ρβ . πάλιν οὖν δεῖ λαμβάνειν αὐτῆς τῆς ἑπομένης τὴν |
| τὸν δὲ μῆνα ἐλάχιστον ὑποθώμεθα , ὡς ἐπὶ τῆς ἐλαχίστης ἑπταμήνου ἔδειξεν , ἵνα ὅσῳ δυνατὸν ἐλαχίστῳ μείζων ἡ κατὰ | ||
| γ λϚ : ὧν τὸ ιβʹ ὡς ἐπὶ τῆς ἐλαχίστης ἑπταμήνου λαβόντες , ἔστιν δὲ # ιη , προσθήσομεν οἷς |
| ὁμοίως β ιγ , ἡ δὲ ΝΖ τῶν λοιπῶν νε μθ . διὰ τοῦτο δὲ καὶ ἡ ΔΖ ὑποτείνουσα τοιούτων | ||
| ἔγγιστα # λϚ ν κδ , λοιπαὶ γίνονται ριζ ιβ μθ νδ . Ἐπὶ δὲ τοῦ δευτέρου τὰς ἐπιλαμβανούσας ἐν |
| φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα | ||
| δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη |
| ἑαυτόν : πεντάκις εʹ , κεʹ . ὁμοῦ ὅλα , μʹ . ὁ μʹ ἀριθμὸς πεπολλαπλασιάσθω ἐπὶ τὸ ἐμβαδὸν τοῦ | ||
| ∠ ʹʹ Φόρος Ποπιλίου λθʹ ∠ ʹʹδʹʹ μαʹ δʹʹ Καπύη μʹ μαʹ Ϛʹʹ Ἀβέλλα μʹ γʹʹ μαʹ Ϛʹʹ Ἀτέλλα μʹ |
| α κθ ο Ϙθ ζ ια ο λε ια θ ιθ κ ζ α κ δ ζ ιγ κ μγ | ||
| ἀκρόποδι λαμπρὸς κοινὸς Ὕδατος . . . . . Ταύρου ιθ ∠ ʹ γʹ νο λα ∠ ʹ αʹ ὁ |
| , μοῖρα α , παρ ' ἣν ἐὰν μερίσωμεν τὰ σμ πρῶτα λεπτά , τὸ αὐτὸ ἔσται : σμ γὰρ | ||
| Μέλιτος # ζ , οἴνου # κα , ἴων δεσμίδια σμ , φυλλίσας ταῦτα βρέξον ἐν τῷ οἴνῳ ἡμέρας λ |
| πα , ρ , ρκα , ρμδ , ρξθ , ρϘϚ , σκε : ὁ δὲ τῶν ἑτερομηκῶν ἀπὸ δυάδος | ||
| σκε : ἡ δὲ ΓΒ ιδ : τὸ ἀπὸ ταύτης ρϘϚ : ἡ δὲ ΒΑ ιγ καὶ τὸ ἀπὸ ταύτης |
| ρβ ιϚ ργ β ρδ να ρε κη ρϚ λϚ ρζ ξγ ρη πβ ρθ πη ρι Ϙα ρια Ϙβ | ||
| γ τοῖϲ πάνυ ἀϲθενοῦϲιν . ἐϲτὶν ἡ γραφὴ Ὀριβαϲίου κεφάλαιον ρζ : λείπει δὲ τούτῳ τρία εἴδη . Καθαρτικὸν τοῦ |
| καὶ ἐν κε ἔτεσιν Αἰγυπτιακοῖς λείπουσιν μιᾶς ἡμέρας ἑξηκοστοῖς δυσὶ μζ ε ὅλοι τε μῆνες ἔγγιστα ἀπαρτίζονται , καὶ ἐπιλαμβάνει | ||
| ʂ α Μο γ : καὶ συνάγεται ὁ ʂ Μο μζ , ἐν μορίῳ μονάδος Ϙῳ . ἔσται ὁ μὲν |
| πρὸς τὴν ΛΓ , διὰ τὸ νῦν ἄρα δειχθὲν τοῦ ογʹ τὸ πρῶτον λόγος τοῦ ΓΜ πρὸς τὸ ΕΗ δοθείς | ||
| ἐν τῷ γʹ ὅρῳ ἔτη ογʹ : καὶ ἐτελεύτησεν τῷ ογʹ ἔτει . εἰ δὲ ὁ τῆς Σελήνης γνώμων ὑπερεῖχεν |
| κεράμιον ἔχει ἐλαίου οἴνου μέλιτοϲ λι οβʹ λι πʹ λι ρηʹ [ ἀλ . ρκʹ ] ὁ χοῦϲ λι θʹ | ||
| τοῖς ιβʹ ζῳδίοις μερίζοντες ἀνὰ ἔτη θʹ εὑρήσομεν τὴν συμπλήρωσιν ρηʹ ἐτῶν : εἰ δὲ τοῖς ζῳδίοις προμερίζοντες ἐκ δευτέρου |
| ιβʹ , ιαʹ καὶ λοιπὰ Ϛʹ : ταῦτα δωδεκάκις γίνονται οβʹ , καὶ ἑκάστου ἐκκρουσθέντος κύκλου ἀνὰ αʹ , γίνονται | ||
| ' ἑαυτά , καὶ γίνεται παʹ : ηʹ θʹ ξδʹ οβʹ παʹ : εἶτα πάλιν τούτων ἕκαστον ληφθήτω τρίς , |
| νθ α , τὴν δὲ ΓΖ τῶν αὐτῶν νδ Ϛ μδ , τὴν δὲ ΓΘ ὅλην νθ ε με : | ||
| ἀνωμαλίας δ ' ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ροδ μδ : ἅπερ προέκειτο εὑρεῖν . Πάλιν δ ' ἐφεξῆς |
| Σύναξον ταύτην τὴν βοτάνην ἀπὸ τῆς πρὸ ιϚʹ καλανδῶν τοῦ Ἰανουαρίου : Αἰγοκέρωτος βοτάνη λάπαθον . Αὕτη δυνάμεις μὲν οὐκ | ||
| τὰ δὲ ἐμβάμματα καὶ τὰς ὀπώρας ὡς τὰ προλεχθέντα τοῦ Ἰανουαρίου . ἐκ δὲ τῶν κοδιμέντων καὶ λαχάνων ὁμοίως ὡς |
| τῆς γῆς ἑξηκοστῶν μὲν λʹ σταδίων μυριάδων δὲ ιβʹ καὶ ͵Ϛ . καλοῦνται δὲ οἱ μὲν ἐπὶ τοῦ αὐτοῦ ἡμισφαιρίου | ||
| ἀρχῆς στερεόν , αἱ ἄρα μυριάδες ρʹ ἐπὶ τὰς μονάδας ͵Ϛ γενόμεναι ποιοῦσιν μυριάδας ξʹ διπλᾶς , ὥστε ὁ ἐκ |
| τῶν ΑΔ , ΔΒ τετράγωνα , τουτέστι ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά | ||
| τῆς ΖΒ τὰ λοιπὰ τῶν υ τῶν ἀπὸ τῆς ΑΒ σκε , ἡ δὲ ΒΖ ιε , ἥτις ἐστὶ σύμμετρος |
| τῶν προχείρων , τὰ αὐτά ἐστιν : καὶ περὶ τὰς Ϙε καὶ σξε τῆς ἀνωμαλίας μοίρας , μεγίστην ἔχει τὴν | ||
| δὲ ἡ ϲκευαϲία τοῦ ὀροῦ ἐν τῷ δευτέρῳ λόγῳ κεφαλαίου Ϙε . εἰ δὲ οὔκ ἐϲτιν ὁ καιρὸϲ τοῦ γάλακτοϲ |
| αὐτὸν καὶ τὸν πα ἀριθμὸν , ὅς ἐστιν ὄγδοον τοῦ χμη . εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη | ||
| γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ |
| . . . . . . . . Ϛ ∠ ʹγʹ λδ γοʹ Βάνασσα . . . . . . | ||
| . . . . . . νβ γοʹ λα ∠ ʹγʹ Τυνδάριοι σκόπελοι , νῆσοι τρεῖς . νε ∠ ʹγʹ |
| ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
| δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
| ιγ , ιε , ιζ , ιθ , κα , κγ , κε , κζ : β , δ , | ||
| . . . . . . . . ϘϚ γʹ κγ Κόμμανα . . . . . . . . |
| ταύταις παράκειται κατὰ τὸ δʹ κλίμα τῷ μὲν πρώτῳ ὅρῳ κβʹ λγʹ , τῷ δὲ βʹ ὅρῳ μβʹ κζʹ , | ||
| Ἁδριανὸς ἔτη κʹ μῆνας ιʹ ἡμέρας κηʹ . Ἀντωνῖνος ἔτη κβʹ μῆνας ζʹ ἡμέρας κϚʹ . Οὐῆρος ἔτη ιθʹ ἡμέρας |
| ὄντος πρὸς τῷ νʹ [ διὰ τὸ ἴσην εἶναι τὴν ζηʹ περιφέρειαν τῇ λνʹ περιφερείᾳ ] : καὶ ἔσται ὁ | ||
| τῷ ηʹ ] : λέγω ὅτι τοῦ ἡλίου διαπορευομένου τὴν ζηʹ περιφέρειαν τὸ εʹ ἄστρον οὐ φαίνεται . Ἔστω γὰρ |
| , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ | ||
| δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ |
| . καὶ ἣ μέν ἐστιν ἐαρινή , ἣ δὲ μετοπωρινὴ ἰσημερία , ἐαρινὴ μὲν ἐν Κριῶι , ὅτε ἐφάπτεται τοῦ | ||
| ἰκτῖνος φαίνεται , καὶ βορρᾶς πνεῖ . κϚʹ . ἐαρινὴ ἰσημερία . ὡρῶν ιδ : ὁ λαμπρὸς τοῦ βορείου Στεφάνου |
| καὶ ὁμοίως κατὰ τὴν προκειμένην ἔφοδον , ἐὰν ἀφέλῃς τὰς κεʹ τοῦ Ὑδροχόου καὶ τῶν λοιπῶν τὸ τρίτον λάβῃς , | ||
| δὲ ἀπὸ τῶν βάσεων , τό τε ηʹ καὶ τὸ κεʹ . δεῖ οὖν τούτοις τοῖς τέσσαρσι τῷ δʹ καὶ |
| Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς | ||
| μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ |
| Ἠριγέρων ἐπίμικτον ἔχει δύναμιν ψυκτικήν τε καὶ μετρίωϲ διαφορητικήν . Ἠρύγγιον θερμαίνει μὲν οὐ καταφανῶϲ , ξηρότητοϲ δὲ λεπτομεροῦϲ οὐκ | ||
| ὀνίνηϲι : καταπλάϲϲεται δὲ καὶ πρὸϲ τὰϲ φλεγμονὰϲ ἐναργῶϲ . Ἠρύγγιον . Θερμότητι μὲν ἢ βραχὺ τῶν ϲυμμέτρων ἢ οὐδὲν |
| χρόνοι ἀναφορικοὶ σξϚ με , τῇ δὲ ιʹ τοῦ Ζυγοῦ ρϘα μ . ἀφαιρουμένων δὲ τῶν ρϘα μ ἀπὸ τῶν | ||
| ν κγ ἔγγιστα , πλάτους δὲ κύκλων ͵δχλ καὶ μοιρῶν ρϘα κβ νζ ἔγγιστα , μήκους δὲ κύκλων ͵δχια λειπόντων |
| . . . . . . . . . . ρμϚ λα Ϛʹ Ἔλδανα . . . . . . | ||
| . . . . . . . . . . ρμϚ ∠ ʹ κε ∠ ʹ Ἀγαναγόρα . . . |
| κάλλους καὶ ἀρετῆς ἡ ἐπὶ τὸ νοητὸν γίνεται ἄνοδος . Ϙβʹ Καὶ τοῖς ὀνόμασιν ἠναγκασμένη Ἀπολογεῖται ἐνταῦθα διὰ τί ποιητικοῖς | ||
| ] ἡμέραι [ ] Ϙαʹ , Εὐκτήμονι Ϙʹ , Καλλίππῳ Ϙβʹ . . . . κη : μετοπωρινὴ ἰσημερία . |
| ἐν τῷ ἡγουμένῳ ὤμῳ τοῦ Ὠρίωνος ἑσπέριος ἀνατέλλει . ὡρῶν ιδ ∠ ʹ : ὁ ἐπὶ τῆς κεφαλῆς τοῦ ἡγουμένου | ||
| ἡ πλευρὰ β μθ μβ , τοῦ δὲ ιη δ ιδ λγ . Οἷον ἐπὶ ὑποδείγματος ἔστωσαν σύμμετροι εὐθεῖαι ἔχουσαι |
| μεθοπωρινῆς ἐπὶ χειμερινὰς τροπὰς Εὐδόξωι ἡμέραι Ϙβʹ , Δημοκρίτωι ἡμέραι Ϙαʹ , Εὐκτήμονι Ϙʹ , Καλλίππωι πθʹ . Ἀπὸ τροπῶν | ||
| πθʹ . Περὶ τυροῦ . Ϙʹ . Περὶ ἰχθύων . Ϙαʹ . Περὶ ὀϲτρακοδέρμων . Ϙβʹ . Περὶ μαλακίων . |