ἔχειν ἀδύνατον . τὰς γὰρ ἄρκτους ταύτας ἃς ὁρᾷς μήτε δυνούσας μήτε ἀνατελλούσας , περὶ δὲ τὸ αὐτὸ στρεφομένας , | ||
μοιρῶν ἐστιν ογ γʹ , ἐκεῖ ἄν τις εὕροι μὴ δυνούσας τὰς ἐφ ' ἑκάτερα τῆς θερινῆς τροπῆς μοίρας με |
δὲ εʹ . Καὶ ὧδε τὴν τῆς ὥρας διαφορὰν νόει μοιρῶν οὖσαν εʹ , Ϙʹ . Ὁ ὀκτωκαιδέκατος ἀπέχων μοίρας | ||
ἐπὶ τὴν ΑΕ ἡ ΚΖ . ἐπεὶ ἡ ΕΖ περιφέρεια μοιρῶν ἐστιν λ , εἴη ἂν καὶ ἡ μὲν ὑπὸ |
ἢ ἀφελόντας τῶν ἰσημερινῶν χρόνων πρότερον : ἀμφοτέρους γὰρ τοὺς γνώμονας ἐπισυνθέντες καὶ τὴν ἡμίσειαν λαβόντες εὑρήσετε τὸ συνεχὲς ζητούμενον | ||
ἐπ ' ἄκρας τῆς Ἰνδικῆς ἰδεῖν ἔστιν ἀσκίους ὄντας τοὺς γνώμονας , νυκτὸς δὲ τὰς ἄρκτους ἀθεωρήτους : ἐν δὲ |
ρβ τῆς ἀνωμαλίας ἀπέχουσα τοῦ ἀπογείου τοῦ ἐπικύκλου καὶ μοίρας σνη ἕως σο , πλεῖστον καὶ τὸ παρὰ τὴν πρώτην | ||
, παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς τὰ # |
ὡρῶν ἰσημερινῶν ιδʹ καὶ τριῶν ἔγγιστα πεμπτημορίων , τὸ δὲ ἔξαρμα τοῦ πόλου μοιρῶν λζʹ ὡς ἔγγιστα . ὅπου δὲ | ||
Διομήδης διέφθαρτο καὶ αὐτὸς ὑπὸ τῆς συνουσίας καὶ οὐδὲν ἔχων ἔξαρμα φύσεως ἔτι ταπεινότερος ἐγεγόνει πρὸς τὰ ἐπιταττόμενα . καίτοι |
: ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ | ||
. αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ |
παρόδους νοτιώτερος ᾖ τοῦ διὰ μέσων μοίραις γ καὶ Ϛʹ ἔγγιστα , οἱ δὲ τῶν περὶ τὰς ὀρθὰς γωνίας λόγοι | ||
ἡ ΒΚ ἐκ τοῦ κέντρου τοῦ ἐπικύκλου ἔσται ια λ ἔγγιστα : ὅπερ ἔδει εὑρεῖν . Ἑξῆς δὲ καὶ τῶν |
λοιπὰ ὁμοίως ἀναγράφει : τὴν δὲ κεφαλὴν τοῦ Ὀφιούχου γράφει ἀνατέλλουσαν καὶ τὴν ἀριστερὰν μόνον χεῖρα : . . . | ||
τοῦ Καρκίνου , ὁ Ἄρατος θεωρῶν τὴν κεφαλὴν τοῦ Λέοντος ἀνατέλλουσαν καὶ ὑπολαμβάνων τὸ κατὰ τὸν Λέοντα δωδεκατημόριον ἀναφέρεσθαι , |
Ψέλκιν καὶ τὸν μέγαν καταῤῥάκτην , οὗ ἡ θέσις ἐπέχει μοίρας . . . . . . . . . | ||
ἡ διάμετρος τῆς σελήνης ὑποτείνει μεγίστου κύκλου περιφέρειαν ἑξηκοστῶν μιᾶς μοίρας λα γʹ . εὐκατανόητον δ ' αὐτόθεν , ὅτι |
δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
# λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
διαπορευομένου τὰς αεʹ ηγʹ περιφερείας οὐ φαίνεται τὸ δʹ ἄστρον ἐπιτέλλον , οὐδὲ μὴν τοῦ ἡλίου τὴν γζαʹ περιφέρειαν διαπορευομένου | ||
τῶν ἀπλανῶν ἀστέρων ἀπὸ ἑῴας φαινομένης ἐπιτολῆς ἑκάστης νυκτὸς ὁρᾶται ἐπιτέλλον μέχρι τῆς ἑσπερίας φαινομένης ἐπιτολῆς , ἐν ἄλλῳ δὲ |
ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ | ||
ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο |
κβʹ , ἐπὶ κγʹ ὥρᾳ τῆς νυκτός , Ταῦρος . Μαίου κγʹ , ἐπὶ ὥρᾳ δʹ , Δίδυμοι . Ἰουνίου | ||
ἡμίτομόν ἐστιν . ἡ ἐπιτολὴ δὲ τῶν Πλειάδων γίνεται ἀπὸ Μαίου ἐνάτης μέχρις Ἰουνίου κγʹ , ἡ δὲ τούτων δύσις |
τ ] . . . . . . ! ! σπε ? [ [ ] ἀπὸ Μυτιλήνης ? [ [ | ||
οδ μη ἕως ρε ιβ καὶ ἀπὸ σνδ μη ἕως σπε ιβ Ὅταν οὖν προαιρώμεθα κατά τινα τῶν ἐπιζητουμένων ἐνιαυτῶν |
☾ ὅροι ἀπὸ οδ μη ἕως ρε ιβ καὶ ἀπὸ σνδ μη ἕως σπε ιβ Ὅταν οὖν προαιρώμεθα κατά τινα | ||
͵αιϚ λαʹ ξβʹ ρκδʹ σμηʹ υϘϚʹ ιϚʹ φη υϘϚ λβʹ σνδ ∠ ʹ σμη ξδʹ ρκζ δʹ ρκδ ρκζʹ ξδ |
δηλονότι ποιούντων ἡμέραν μίαν . ἐγένετο δὲ καὶ αὐτὴ Ἰχθύσι μοίραις κδ θ . Τὰ δὲ συναγόμενα ἑξηκοστὰ μετοίσομεν εἰς | ||
ἀλλ ' ἐπεὶ βορειότερός ἐστιν ὁ ἀστὴρ τοῦ διὰ μέσων μοίραις Ϛ καὶ γʹ , ὅσων ἐστὶν ἡ ΚΗ περιφέρεια |
ὑπεροχὴν τῶν παραλλάξεων μείζονα εἶναι τῶν α κζ , ἢ συναμφοτέρας τὰς παραλλάξεις πλείονα τῶν αὐτῶν συνάγειν τμημάτων , ὅταν | ||
ἐφ ' ἧς συνεστάτω τρίγωνον ἰσοσκελὲς τὸ ΑΖΓ , ὥστε συναμφοτέρας τὰς ΑΖΓ ἴσας εἶναι συναμφοτέραις ταῖς ΑΒΓ διὰ τὸ |
, τοὺς τοσαῦτα ἔτη κειμένους , ὥστε καὶ τὴν μνήμην ἐπιλελοιπέναι , πῶς ἔνι τῆς αὐτῆς τυγχάνειν προσηγορίας ἧς οἱ | ||
δύνασθαι . εἰ γὰρ ὁ μὲν τοῦ μὴ παντάπασιν ἂν ἐπιλελοιπέναι τὰς λειτουργίας τὴν πόλιν , τούτου χάριν ἐγεγράφει τὸν |
, τὰ δὲ πέρατα ἐπὶ μασχάλην ἀπαθῆ . Κεφ . οθʹ . Ἡ μεσότης ὑπὸ μασχάλην βραχίονος πεπονθότος αἱ ἀρχαὶ | ||
τῶν ρηʹ ἐτῶν νδʹ καὶ τὰς ἐλαχίστας κεʹ : γίνονται οθʹ . τῷ δὲ Ἄρει τῆς αὐτῆς αἱρέσεως ὄντι ἡ |
ὡροσκόπου ἵνα μὴ κακὰς φάσεις ποιῶνται , τουτέστι στηριγμοὺς ἢ ἀναποδισμοὺς ἢ δύσεις : στηρίζοντες γὰρ χρόνου πολλοῦ καὶ βραδυτῆτος | ||
κακοποιῶν ὁμοίως τὸ ἐναντίον , τῶν στηριγμῶν δηλούντων κατοχὴν καὶ ἀναποδισμοὺς καὶ δυσχερείας ἐν τοῖς τόποις ἐν οἷς ἀναλόγως καὶ |
ἡ μὲν φαινομένη μέση πάροδος καὶ τὸ πλεῖστον διάφορον τῆς ἀνωμαλίας ἔσται κατὰ τὰς σο μοίρας , ἡ δ ' | ||
καὶ τῆς σελήνης ἀπεχούσης τοῦ ἀκριβοῦς ἀπογείου τὰς ὑποκειμένας τῆς ἀνωμαλίας μοίρας ρκ . Τὰ δὲ τοῦ ηʹ σελιδίου , |
τῶν νυκτὸς καὶ ἡμέρας γεννωμένων λαμβάνειν ἀπὸ τῆς συνοδικῆς ἢ πανσεληνιακῆς μοίρας ἕως ὡροσκόπου ἢ ἑτέρου κέντρου , δυναστικώτερον δὲ | ||
τελευταῖον συνοδικῆς μὲν οὔσης τῆς προγενομένης συζυγίας τὸν ὡροσκόπον , πανσεληνιακῆς δὲ τὸν κλῆρον τῆς τύχης . εἰ δὲ καὶ |
δι ' ἀψινθίου καὶ κυπρίνου πεποιημένῃ . Τῆς δὲ κοιλίας ἐπεχομένης , βαλανιστέον μάλιστα τοὺς παῖδας : ἐπιμενούσης δέ , | ||
μέχρι τῶν ἰσχίων πηγανίνῳ ἐλαίῳ ἢ Σικυωνίῳ ἢ παλαιῷ , ἐπεχομένης τε τῆς κοιλίας ἐνιέσθωσαν τήλεως ἢ μαλάχης ἀφεψήματι . |
ἡ ρξʹ : κοινὴ προσειλήφθω ἡ ροʹ : ἡ ἄρα ξοʹ ὅλῃ τῇ ρπʹ ἴση ἐστίν : ἡ δὲ ξοʹ | ||
: ἡ δὲ νθʹ ἡμίσους ἐστὶ ζῳδίου : καὶ ἡ ξοʹ ἄρα ἡμίσους ἐστὶ ζῳδίου περιφέρεια : καὶ ἐπεὶ τοῦ |
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ | ||
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ |
ἡ ὑπὸ ΑΕΒ γωνία τὰς διπλασίονας ἔγγιστα περιέχῃ μόνης τῆς ἡλιακῆς ἀνωμαλίας μοίρας δ μϚ , καὶ ἐπιζευχθείσης ἐπὶ τῆς | ||
φοῖνιξ καὶ τοῖς πατρῴοις ἔθεσι χρῆται , ὥστε ὑπὸ τῆς ἡλιακῆς μόνης αὐγῆς , πατρός τε καὶ μητρὸς χωρίς , |
αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . | ||
σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ . |
δένδρων ποιησόμεθα . Τούτῳ τῷ μηνὶ καλάμους φυτευτέον πρὸ τῆς ἰσημερίας . Τούτῳ τῷ μηνὶ θεραπεύσομεν τὰς ἰάσεως δεομένας ἐλαίας | ||
πρὸς διάγνωσιν τροπῶν τε ἡλίου καὶ χρόνων καὶ ὡρῶν καὶ ἰσημερίας . . . . [ . ] , , |
ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν | ||
τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων |
γὰρ ἰσημερίας ἐαρινῆς ἐπὶ τροπὴν θερινὴν ἐν ἡμέραις παραγίνεται Ϟδʹ ςʹ , ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἰσημερίαν μετοπωρινὴν ἡμέραις | ||
ἀνήλισκον δὲ ἡμιτάλαντον : οἱ δὲ τὸ ζευγίσιον τελοῦντες ἀπὸ ςʹ μέτρων διελέγοντο , ἀνήλισκον δὲ μνᾶς ιʹ : οἱ |
σὺν τούτοις τὴν Σελήνην τε καὶ τοὺς λοιποὺς ἀστέρας μὴ διαμέτρους ὑπάρχειν τούτους ἐκ τῶν ἰδίων ὑψωμάτων καὶ οἴκων τε | ||
περιτίθησι γνώμονα . ἄγει δὲ καὶ ἐν ἑκάστῳ τετραγώνῳ διαγωνίας διαμέτρους , λέγω δὴ τὴν ΑΘ καὶ τὴν ΘΖ καὶ |
δύσεως Παροπανισάδαις καὶ Ἀραχωσίᾳ καὶ Γεδρωσίᾳ παρὰ τὰς ἐκτεθειμένας αὐτῶν ἀνατολικὰς πλευρὰς , ἀπὸ δὲ ἄρκτων Ἰμάῳ ὄρει παρὰ τοὺς | ||
, ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν , Δράκοντος |
ἡμερήσιον κίνημα σχεδὸν ἀπαράλλακτον εὑρίσκομεν τῷ προκειμένῳ καὶ τὸ τῆς ἀποχῆς δηλονότι , τὸ δὲ τῆς ἀνωμαλίας ἔλαττον μοίραις # | ||
τῶν ια θ μοιρῶν περιφέρειαν διπλῆν γινομένην τῶν ἀπὸ τῆς ἀποχῆς μοιρῶν ιβ ια ∠ ʹ ἔγγιστα , καὶ διὰ |
γζʹ αἱ γʹ νικῶσιν . γηʹ αἱ ηʹ νικῶσιν . γθʹ αἱ γʹ νικῶσιν . δδʹ ὁ ἐγκαλούμενος νικᾷ καὶ | ||
ἐστὶν ἡμίσους ζῳδίου . Καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ γθʹ , καὶ ἡ ηγκʹ , καὶ ἔτι ἥ τε |
Η , διαστήματι δὲ τῷ ΗΒ , κύκλος γεγράφθω ὁ ΒΚΘ : παράλληλος ἄρα ἐστὶν ὁ ΓΔΕ κύκλος τῷ ΒΚΘ | ||
τῇ ΖΞ , ὅμοιόν ἐστι τὸ μὲν ΛΚΕ τρίγωνον τῷ ΒΚΘ , τὸ δὲ ΒΚΘ τῷ ΒΔΖ , καὶ ἔτι |
θεόν σφισιν ἐπιφοιτᾶν ἐς τῶν Θυίων τὴν ἑορτὴν λέγουσιν . ἀπέχει μέν γε τῆς πόλεως ὅσον τε ὀκτὼ στάδια ἔνθα | ||
οὐδὲν τῷ λέγοντι . ἡμεῖς δὲ φαμέν , ὅτι τοσοῦτον ἀπέχει ὀρθῶς λέγειν ὁ λέγων μὴ εἶναι ἐσχηματισμένους λόγους , |
τὸν δὲ μῆνα ἐλάχιστον ὑποθώμεθα , ὡς ἐπὶ τῆς ἐλαχίστης ἑπταμήνου ἔδειξεν , ἵνα ὅσῳ δυνατὸν ἐλαχίστῳ μείζων ἡ κατὰ | ||
γ λϚ : ὧν τὸ ιβʹ ὡς ἐπὶ τῆς ἐλαχίστης ἑπταμήνου λαβόντες , ἔστιν δὲ # ιη , προσθήσομεν οἷς |
παρὰ τὸν τότε δρόμον τῆς σελήνης , ἵνα ποιήσωμεν ὥρας ἰσημερινάς , ταῖς γινομέναις ὥραις ἕξομεν τὸν τῆς ἀκριβοῦς συζυγίας | ||
' ἀνατολικωτάτου τὰς τοῦ ἡμικυκλίου μοίρας ρπ καὶ ιβ ὥρας ἰσημερινάς : ὥστε συνάγεσθαι τὸ ἐγνωσμένον αὐτῆς μῆκος σταδίων , |
πανσελήνου ἐπὶ τὴν Σελήνην , καὶ ἐὰν μὲν ἐντὸς τῶν ρπʹ μοιρῶν εὑρεθῇ , χρῆσθαι τῷ ὑποδεδειγμένῳ τρόπῳ : ἐὰν | ||
γωνία μεʹ μέρος ἐστὶν ὀρθῆς , ἡ ΓΔ ἄρα περιφέρεια ρπʹ μέρος ἐστὶ τοῦ κύκλου : ἡ δὲ ΔΖ περιφέρεια |
κζʹ πρὸ τῆς τοῦ ἡλίου ἀνατολῆς , τουτέστιν μετὰ ε ὥρας ἔγγιστα ἰσημερινὰς τοῦ μεσονυκτίου , ἐπειδήπερ ἡ μὲν μέση | ||
τῶν αὐτῶν νυκτερινῆς . Τῇ εἰκοστῇ καὶ τετάρτῃ , ἀπὸ ὥρας ἑβδόμης καὶ αςʹ μορίων ὥρας ἡμερινῆς , ἕως τῶν |
∠ ʹ τὸ πέμπτον , ὃ καλεῖται Ἀντιβολή . . ρμη ∠ ʹ ιη δʹ : Ὄρη δὲ ὀνομάζεται ἐν | ||
ὑπὸ ΑΖΒ ὅλη τὸ ὁμαλὸν μῆκος περιέχουσα τῶν μὲν αὐτῶν ρμη λη , οἵων δ ' αἱ δ ὀρθαὶ τξ |
ἔτι ἡμέρᾳ α καὶ ∠ ʹ καὶ δʹ ἔγγιστα , περιδρομαῖς δὲ τοῦ ἀστέρος δυσὶ καὶ μοίρᾳ α καὶ διμοίρῳ | ||
τοῖς αὐτοῖς μϚ καὶ ἡμέρᾳ μιᾷ καὶ λʹ ἔγγιστα , περιδρομαῖς δὲ ταῖς ἰσαρίθμοις τῷ ἡλίῳ πάλιν μϚ καὶ μοίρᾳ |
ἤτοι κατὰ μὲν τὴν ἑτέραν τῶν συνόδων μηδὲν ἡ σελήνη παραλλάσσῃ ἢ κατ ' ἀμφοτέρας ἐπὶ τὰ αὐτὰ παραλλάσσῃ , | ||
μὲν ἀπ ' ἄρκτων ᾖ ἡ σελήνη τοῦ ἡλίου καὶ παραλλάσσῃ τὸ πλεῖστον πρὸς μεσημβρίαν , ἡ μὲν ΔΓ ἔσται |
τὴν σύστασιν ἐκ θεωρημάτων , ὡς φρόνησιν καὶ δικαιοσύνην : ἀθεωρήτους δὲ τὰς κατὰ παρέκτασιν θεωρουμένας ταῖς ἐκ τῶν θεωρημάτων | ||
τῶν προειρημένων : τὰς μὲν γὰρ ἀληθινὰς ἀνατολὰς καὶ δύσεις ἀθεωρήτους εἶναι συμβέβηκε , τὰς δὲ φαινομένας ἠδύναντο ὁρᾶν περὶ |
ρϘβ Κενταύριον τὸ μέγα ρϘγ Κενταύριον τὸ μικρόν ρϘδ Κέραϲοϲ ρϘε Κερατωνία ρϘϚ Κέϲτρον ρϘζ Κηκίϲ ρϘη Κηρόϲ ρϘθ Κιβώριον | ||
: καὶ ἐκτίθεμαι δύο ἀριθμοὺς ὧν τὸ ὑπό ἐστι Μο ρϘε , καί εἰσι ιε καὶ ιγ : καὶ τῆς |
κζ ιε τὸ πλεῖστον ἑῷος ἀφέξει τοῦ ἀκριβοῦς ἡλίου μοίρας κβ κγ . πάλιν ὑποκείσθω τὸ μέσον μῆκος ἀπέχων ἐπὶ | ||
γίνονται ξϚ : καὶ μέριζε καθολικῶς : ὧν τρίτον , κβ . ἔστω ἡ διάμετρος τοσοῦτον . Ἔστω δωδεκάγωνον καὶ |
δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα # | ||
. . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ |
, πρὶν παθεῖν , διδαχθῆναι , πηλίκον ἐστὶν ἡσυχία . Ϛγʹ . Νουμηνίῳ . Οὐ θρηνητέον οἵων φίλων ἐστερήθημεν , | ||
γʹʹ , τῶν αὐτῶν ἔσται καὶ ἡ μὲν ΒΖ ὑποτείνουσα Ϛγʹ δεκάτου , ἡ δὲ ὑπὸ ΒΖΕ γωνία τοιούτων ρνʹ |
ὡρισμένων καθ ' ἑκάστην τῶν ἐπὶ τοῦ ζῳδιακοῦ παρόδων τῆς σελήνης καὶ τῶν ἀπὸ τοῦ συνδέσμου διαστάσεων , ἀλλὰ καὶ | ||
τοῦ ἡλίου μέγεθος τοῦ ἡλιακοῦ κύκλου ὥσπερ καὶ τὸ τῆς σελήνης μέγεθος τοῦ σεληναίου ἑπτακοσιοστὸν καὶ εἰκοστὸν μέρος ἀπεφήνατο κατά |
ἐστιν , οἵων ὁ γνώμων ξ , τοιούτων ἡ μὲν ἰσημερινὴ σκιὰ κϚʹ ∠ , ἡ δὲ χειμερινὴ ξεʹ ∠ | ||
ἑξηκοστὰ Ϛʹ , ἡ δὲ θερινὴ εʹ , ἡ δὲ ἰσημερινὴ ηʹ ἐξ ἑκατέρου μέρους τοῦ ἰσημερινοῦ ἑξηκοστὰ δʹ , |
ιγ , ιε , ιζ , ιθ , κα , κγ , κε , κζ : β , δ , | ||
. . . . . . . . ϘϚ γʹ κγ Κόμμανα . . . . . . . . |
θερινῶν τροπῶν ἡμέραι εἰσὶν Ϙδʹ καὶ ἥμισυ , ἀπὸ δὲ θερινῆς τροπῆς μέχρι φθινοπωρινῆς ἰσημερίας ἡμέραι Ϙβʹ καὶ ἥμισυ , | ||
δὶς τοῦ ἔτους κατὰ κο - ρυφὴν , ἀπέχοντα τῆς θερινῆς τροπῆς ἐφ ' ἑκάτερα μοίρας με γʹ . Ἡ |
καὶ σξδ , παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς | ||
τὰς ιζ ἐπὶ τὰς ἓξ ὥρας , καὶ γίνονται χρόνοι ρβ . πάλιν οὖν δεῖ λαμβάνειν αὐτῆς τῆς ἑπομένης τὴν |
ι , ἡ δὲ ἰσημερινὴ λθʹ ∠ , ἡ δὲ χειμερινὴ Ϙγ ιβʹ . ιαʹ . ἑνδέκατός ἐστι παράλληλος , | ||
ἡ δὲ ἰσημερινὴ ξγʹ ∠ γʹ ιβʹ , ἡ δὲ χειμερινὴ ροα Ϛʹ . ιζʹ . ἑπτακαιδέκατός ἐστιν παράλληλος , |
κύκλον ἐν τοῖς αὐτοῖς δώδεκα ζωδίοις πληροῦσθαι ἐν ἰσαρίθμοις μοίραις τξʹ . Ὅθεν συνέβη τὰς βασιλείας τῶν παρ ' αὐτοῖς | ||
τι παντάπασιν ὁρᾶται , τὸ πᾶν περὶ μίαν μοῖραν τῶν τξʹ : ἡ δὲ σελήνη , καθὰ οἱ ἀρχαῖοί φασι |
λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
τοῖς Διδύμοις λέγει αὐτὸν ἀντικαταδύνειν : τοῦ δὲ Καρκίνου ἀρχομένου ἀνατέλλειν , ὅς ἐστι λοιπὸς τῶν τεσσάρων ζῳδίων , οἷς | ||
κʹ μοίρᾳ τοῦ Τοξότου συναναφέρεται . Τοῦ δὲ Ὑδροχόου ἀρχομένου ἀνατέλλειν φησὶ συνανατεταλκέναι τῷ Αἰγόκερῳ τοῦ Ἵππου τήν τε κεφαλὴν |
βαλανείοις καὶ αἰώραις καὶ γυμνασίαις ταῖς διὰ τῶν χειρῶν : ἀνυπερβάτως γὰρ σώζονται . τινὲς δὲ ἐπὶ αὐτῆς τῆς □ | ||
σοι φανήσεται ἢ τὸ τῆς μήνιγγος ἀποθέμενοι , σώζονται οὗτοι ἀνυπερβάτως . ἐὰν δὲ ἀπὸ τῆς ☍ ἐπὶ τὸ μεῖζον |
ἤδη τοῦ λοιποῦ τελέωϲ ὑγιὴϲ ὁ παῖϲ ἐγένετο καὶ οὐκέτι ἐπελήφθη ἢ ἐϲπάϲθη . Γναφάλιον ϲτυπτικῆϲ ἐϲτι μετρίωϲ δυνάμεωϲ καὶ | ||
ἐν τῶι παραυτίκα ἐπιτιμητὴς καὶ τοῦ ἐσύστερον κολαστήρ . . ἐπελήφθη : ἐπήρξατο . Ἀρριανός : ἤδη τε ἐπελήφθη νὺξ |
ἢ συμβεβηκός , ἐνδέχεται καὶ διαφόρους μέσους λαβεῖν καὶ διαφόρους ἐλάττονας , κἀντεῦθεν συναγαγεῖν καὶ διάφορα συμπεράσματα . κατὰ σημεῖον | ||
οἱ δὲ πορρωτέρω , καὶ διὰ τοῦτο ἢ πλέονας ἢ ἐλάττονας περιέπλευσαν σταδίους : τοῦ δὲ ἐπ ' εὐθείας γινομένου |
τήρησιν παραλλάξεως διὰ τοῦ παραλλακτικοῦ ὀργάνου δοθείσης μοίρας α καὶ ἑξηκοστῶν ζ , τὸ κατ ' αὐτὴν τὴν τήρησιν τῆς | ||
καὶ ἐπεὶ ταῖς τοσαύταις ὥραις ἐπιβάλλει κατὰ μῆκος παραλλάξεως ἕως ἑξηκοστῶν μη ἔγγιστα δῆλον ὡς ἂν μηδὲν μὲν διαλαμ - |
ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ | ||
ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ |
. ἀπὸ τῆς δυνούσης μοίρας λαβὼν κατὰ τὰς ἀναφορὰς τοῦ κλίματος ἕως τοῦ διαμέτρου τούτων τὴν ἡμίσειαν ἀπόλυε ἀπὸ τῆς | ||
τὸν ζωτικὸν ἀπολήψεται χρόνον καὶ τὴν ποσότητα κατὰ τὴν τοῦ κλίματος ἁρμονίαν : ὅτε δέ τις κατὰ μόνας αὐτοὺς ἀνακυκλήσῃ |
ΛΘ , ΘΒ . ἐδείχθη δὲ καὶ ὅλος ὁ ΜΝΞ γνώμων ὅλῳ τῷ ΓΗ ἴσος : καὶ λοιπὸν ἄρα τὸ | ||
γνώμων τετραπλάσιός ἐστι τοῦ ΖΗ τετραγώνου . ὁ ΞΟΠ ἄρα γνώμων καὶ τὸ ΖΗ τετράγωνον πεντα - πλάσιός ἐστι τοῦ |
οἱ τὰς πολιτείας αὐτὰς ἐφ ' ἑαυτῶν διηγησάμενοι οὔτε ταῖς χρονικαῖς παραπλήσιον ἃς ἐξέδωκαν οἱ τὰς Ἀτθίδας πραγματευσάμενοι : μονοειδεῖς | ||
εζ περιφέρεια , ἥτις ἐστὶ λέοντος , ἀνενεχθήσεται ἐν μοίραις χρονικαῖς λεʹ : διὰ τὰ αὐτὰ δὴ καὶ ἡ βγ |
μετῆλθεν , καὶ πότερον ἀπὸ κέντρου εἰς ἐπαναφορὰν ἢ εἰς ἀπόκλιμα ἢ ἀπὸ ἀποκλίματος εἰς ἐπίκεντρον τόπον , ἢ ἀνατολικὸς | ||
ἀπὸ ὡροσκόπου καλεῖται Κακὴ Τύχη καὶ ποινὴ καὶ πρόδυσις καὶ ἀπόκλιμα φαῦλον , τόπος Ἄρεως χρηματίζων . σημαίνει δὲ τὸν |
. Ταὐτὸ δεῖ νοεῖν ἐπὶ πάντα τὸν κύκλον τοῦ τε ὑπεργείου καὶ ὑπογείου μέρους καὶ μήτινα ἔχειν ἀμφιβολίαν . Καὶ | ||
οὔσης αὐτῆς . Ἐπειδὴ πολλὰ ἔργα τῆς γεωργίας ποτὲ μὲν ὑπεργείου , ποτὲ δὲ ὑπογείου τῆς σελήνης οὔσης , προβαίνειν |
μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
ιδʹ . Ἥλιος Λέοντι : τὸ ἥμισυ τῆς ἀναφο - ρᾶς ιηʹ : ἔσται ἀφανὴς ἡ Σελήνη Καρκίνῳ περὶ μοίρας | ||
τοῦ οὐρανοῦ στάς φησι τὸν Ὄλυμπον ἀνέλκειν τῆς σει - ρᾶς ἐκ τοῦ ῥίου ἐκδεθείσης . καὶ ὅτι ἡ ἐξ |
, ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϚʹ ἀπὸ πλευρᾶς ἑξάδος . κἂν ἐπὶ πλέον δὲ αὐξάνωνται | ||
καὶ Ἱππόβοτος καὶ Νεάνθης οἱ τὰ κατὰ τὸν ἄνδρα ἀναγράψαντες σιϚʹ ἔτεσι τὰς μετεμψυχώσεις τὰς αὐτῷ συμβεβηκυίας ἔφασαν γεγονέναι . |
ἡμέραις θέρους μεσοῦντος ἤδη καὶ ἡ λοιμώδης νόσος παντὶ τῷ θέματι Θρᾴκης τε καὶ Μακεδονίας ἐνέσκηψεν ἀρξαμένη μὲν ἀπὸ Θετταλίας | ||
κεκακωμένος ᾖ τοῖς δυσὶ καιροῖς , ἐπίκεντρος δὲ ὑπάρχει τῷ θέματι τῆς ἐναλλαγῆς καὶ κακωθῇ ὑπὸ τοῦ ἀστέρος ἀπὸ τετραγώνου |
τῆς σελήνης ὢν ὑποβέβληται τῷ ζῳδιακῷ παρ ' ὅλον αὐτὸν ἐγκεκλιμένος . Καὶ γὰρ τοῦ βορείου ἐφάπτεται , ἐφ ' | ||
κάτωθεν νότιος : ἐὰν δ ' ὀρθὸς καὶ μὴ καλῶς ἐγκεκλιμένος μέχρι τετράδος καὶ εὔκυκλος εἴωθε χειμάζειν μέχρι διχομηνίας . |
ἐπιβάλλον . ἐὰν δέ πως μήτε Ἥλιος μήτε Σελήνη τὸν ἀφετικὸν τόπον λάχωσιν ἀλλὰ ὡροσκόπος ἢ μεσουράνημα , οὐκέτι τὸ | ||
ἀφέτης . καὶ ἐὰν μὲν ὁ Ἥλιος ἢ Σελήνη τὸν ἀφετικὸν τόπον λάχῃ , λογίζεσθαι δεῖ ἀπὸ τῆς ἀφετικῆς μοίρας |
ἡ κωδύα ἐκτελεωθῇ καὶ τὰ ἄνθη περιρρυῇ . τῆς δὲ κωδύας τὸ μέγεθος ἡλίκον μήκωνος τῆς μεγίστης , καὶ διέζωσται | ||
καὶ συλλεάνας ἄλειφε , καὶ ὠῶν λεκίθοις χρῶ : ἢ κωδύας κόψας καὶ σήσας μετὰ χυλοῦ πολυγόνου , ἢ σέρεως |
τῇ ἕλικι [ οἱ ἄρα λοιποὶ οὐκ ἐναρμόσουσιν εἰς τὰς λοιπὰς ἕλικας ] . ἐὰν οὖν ἐπιστρέφωμεν τὸν κοχλίαν , | ||
χρημάτων ἰδιωτικῶν τε καὶ δημοσίων ἁρπαγῆς . ἐπιών τε τὰς λοιπὰς πόλεις ὅσαι τὰς Μαξιμίνου τιμὰς καθῃρήκεσαν , τοὺς μὲν |
ἥλιος εἰς τὰ ἐναντία τῶν ζῳδίων κινούμενος πέντε ζῳδίων περιφέρειαν κεκινήσθω καὶ ἔστω ἐπὶ τοῦ πʹ τόπου : ἀπὸ μὲν | ||
, τὸ δὲ Δ τὸ κέντρον τοῦ ζῳδιακοῦ , καὶ κεκινήσθω περὶ μὲν τὸ Γ σημεῖον τὸ Ζ κέντρον τοῦ |
ἐπαναφερομένων τῇ ὡροσκοπούσῃ , καὶ ταύταις ταῖς λ μοίραις δεξιὰς ἑξαγώνους μὲν τὰς τοῦ ιαʹ τόπου ὃν καὶ ἀγαθὸν δαίμονά | ||
μοιρῶν εἴκοσι πέντε καὶ τὰς ταύταις ταῖς λʹ μοίραις δεξιὰς ἑξαγώνους τὰς τοῦ ἀγαθοῦ δαίμονος καὶ τετραγώνους τοῦ ὑπὲρ γῆν |
παραφερόμενοί τε καὶ καταφυόμενοι , διὰ τὰς ἐν ταῖς μασήσεσιν περιφορὰς τῆς γένυος ὑπὸ τῆς φύσεως γενόμενοι καὶ τῶν γνάθων | ||
, ἀπεκρίνατο τοῦ τὸν κόσμον θεάσασθαι , τὰς χορείας καὶ περιφορὰς τῶν ἀστέρων αἰνιττόμενος , κατὰ δὲ τρίτον , ὡς |
τούτων τῶν ἡμικυκλίων συναναφοραὶ διοίσουσιν τῶν μὲν ὁμαλῶς θεωρουμένων χρόνων ρπ τοῖς διαφόροις τῆς μεγίστης ἢ ἐλαχίστης ἡμέρας παρὰ τὴν | ||
σελήνης ἀριθμοῦ ἀφελοῦμεν τοῦ τοῦ ἐπικύκλου , ὑπὲρ δὲ τὰς ρπ προσθήσομεν αὐτῷ , καὶ ἀπὸ τοῦ οὕτω διακριθέντος τοῦ |
, καὶ ἀναλογοῦσιν ἑκάστῃ μερίδι μοῖρα α λεπτὰ Ϛ καὶ δευτερόλεπτα μ . καὶ ὁ μὲν Κρόνος ὁ κύριος τοῦ | ||
μερίδα ἐπὶ ἐννέα , καὶ γίνεται ἑκάστη μερὶς λεπτὰ ζ δευτερόλεπτα κε καὶ τριτόλεπτα λγ , γινόμενα ὧραι γ καὶ |
, καὶ τὴν ηκ πηʹ ηʹʹ , τὴν δὲ κε Ϟʹ ηʹʹ . φανερὸν οὖν ὡς ἐπὶ μὲν τοῦ ε | ||
μὲν οʹ τριπλασιασθεῖσαι τοῦ σιʹ ποιητικαί εἰσιν , αἱ δὲ Ϟʹ τοῦ σοʹ , ἑπταμήνου καὶ ἐννεαμήνου . ὅτι καὶ |
: καὶ λοιπὴ ἄρα ἡ ΓΜ ἡ ἀπὸ τῆς γʹ ἀκρωνύκτου ἐπὶ τὸ περίγειον μοιρῶν ἐστιν λθ ιθ . φανερὸν | ||
ἀκρώνυκτον ὁ ἀστήρ . πάλιν ἐκκείσθω ἡ ὁμοία τῆς βʹ ἀκρωνύκτου καταγραφή . ἐπεὶ τοίνυν ἡ ὑπὸ ΒΘΕ γωνία τῆς |
δ ' ἐστὶ περὶ τὴν διχομηνίαν . Ἔστι δὲ ὁ μηνιαῖος χρόνος ἡμερῶν κθ ∠ ʹ λγʹ . Ἐν δὲ | ||
κατὰ τὰς ἡμέρας καὶ κατὰ τοὺς ἐμβολίμους . Ὁ γὰρ μηνιαῖος χρόνος οὐκ ἀκριβῶς εἴληπται . Ἔστι γὰρ ὁ μηνιαῖος |
μοίρᾳ κατὰ τὰς ἐπ ' ὀρθῆς τῆς σφαίρας ἀναφοράς . ἰσημερινῶν μὲν τυγχανουσῶν τῶν διδομένων ὡρῶν ἤτοι τῶν ἀπὸ τῆς | ||
ὅσον τετρακοσίοις σταδίοις , ὅπου ἡ μεγίστη ἡμέρα ὡρῶν ἐστιν ἰσημερινῶν δεκατεττάρων , κατὰ κορυφὴν γίνεται ὁ ἀρκτοῦρος , μικρὸν |
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
Κρόνος διακείμενος συνοδεύσει ἀστέρι ἢ ἀκτῖνι ἀστέρος ἢ κλήρῳ ἢ δωδεκατημορίῳ ἢ ἐναντίῳ σχή - ματι ἐπιβλέψει τούτους κατὰ πῆξιν | ||
καὶ ἐπεὶ ὅροι ὁσοιδηποτοῦν εἰσιν αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ |
δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω | ||
πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ |
καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ | ||
τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε |
μου , ἐμὴν οἰκίαν οἰκίαν μου . Τοσαῦτα περὶ τῶν αἰτιολογικῶν . Παρὰ τοῖς πλείστοις ἐστὶ πρόληψις , ὡς οἱ | ||
ἐπιφερόμενον αἰτοῦσι . Καὶ τοσαῦτα μὲν περὶ τῆς ἐννοίας τῶν αἰτιολογικῶν . Ὅτι . Τὸ προκείμενον μόριον διαφορὰς ἔχει τέσσαρας |
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α , | ||
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι |
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα | ||
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ |
σύνδενδρον τόπον , τοὺς δὲ πόδας μελανθῆναι τῷ ἡλίῳ , ἀσκίους ὄντας . . . : Σκίρφαι , πόλις Φωκική | ||
τμήματα , ὥστε τότε μόνον τοὺς γνώμονας ἐν ταῖς μεσουρανήσεσιν ἀσκίους γίνεσθαι , τοῦ δὲ ἡλίου τὸ μὲν βόρειον ἡμικύκλιον |
σκιᾶς πλάτος σεληνῶν εἶναι δύο . Ϛʹ . Τὴν σελήνην ὑποτείνειν ὑπὸ πεντεκαιδέκατον μέρος ζῳδίου . Ἐπιλογίζεται οὖν τὸ τοῦ | ||
τῇ ὑπὸ ΕΑΓ ἴση διὰ τὸ καὶ τὸ ΔΓ τμῆμα ὑποτείνειν αὐτάς . Πόθεν , ὅτι ἡ πρὸς ὀρθὰς αὐτῇ |
χρῶ τῷ ἐλαίῳ . ἄλλο . λάδανον καὶ ἀψίνθιον καὶ ἀρκευθίδας λειώσας , εἰς ὀθόνην ἔνδησον , καὶ ἔμβαλε εἰς | ||
ἀντιβαίνειν τοῖς δηλητηρίοις : μὴ παρούσης δ ' αὐτῆς , ἀρκευθίδας ἐννέα καὶ πηγάνου εἴκοσι φύλλα λειώσας πότιζε , ἢ |
λε # ʂ β . θέλομεν δὴ ταῦτα πλευρὰν εἶναι κυβικὴν τῶν γενομένων ΚΥ κζ , τουτέστι ʂ γ : | ||
, εὑρίσκομεν Μο η . θέλομεν δὲ τοὺς ʂ η κυβικὴν εἶναι πλευρὰν τῶν η Μο : Μο ἄρα β |
πολλαπλασιαζόμενοι ἑκάτερος τούτων καὶ εἰς ἀλλήλους παραβαλλόμενοι καὶ ἕτερος θάτερον πολλαπλασιάζων ποιοῦσι τὸ ὅλον ἐμβαδὸν τοῦ τετραγώνου ἤγουν τοῦ ΑΔΕΒ | ||
καὶ ἐφεξῆς οὕτω παρ ' ἕνα ποτὲ ἄρτιόν ποτε περιττὸν πολλαπλασιάζων , ποιήσεις τοὺς διπλασίους . τριπλάσιοι δὲ πάντες εἰσίν |
ἐκκειμένην μετοπωρινὴν ἰσημερίαν ἀποχῆς ἀπὸ τοῦ ἀπογείου τοῦ ἐκκέντρου μοίραις ριϚ μ προσθῶμεν ἑνὸς κύκλου μοίρας τξ καὶ ἀπὸ τῶν | ||
. . . . . . . . . . ριϚ ιϚ ∠ ʹδ . Τῶν δὲ ἀνδρῶν Πειρατῶν μεσόγειοι |
παθητικὸν πάθους μὲν αἴτιον ἢ παρ ' αὐτοῦ γενομένου τοῦ κινήματος ἐκ τῆς φαντασίας τῆς αἰσθητικῆς ἢ καὶ ἄνευ φαντασίας | ||
μόρια οὖσαι καὶ ἀποσπάσματα , οὐ παντὸς δ ' αὐτῶν κινήματος ἅτε οἰκείου καὶ συμφυοῦς ὁ θεὸς αἰσθάνεται ; ἀλλὰ |
τὸ φρουρεῖν τὴν ὁδόν : τὸ τῆς Ἑλένης : τὸν ἀνατολικόν φησιν : καὶ μὴν ἐγὼ τόνδ ' : ἡνιοχεῖ | ||
καὶ εἰς δύο τινὰ ἡμικύκλια διαιροῦντος , ὧν τὸ μὲν ἀνατολικόν , τὸ δὲ δυτικὸν ὀνομάζεται , συμβαίνει τὰς μεσημβρίας |
καὶ συνάγεται ὁ ἀπὸ τῆς ἐποχῆς μέχρι τοῦ μέσου τῆς ἐκλείψεως χρόνος ἐτῶν Αἰγυπτιακῶν χϚ καὶ ἡμερῶν ρκα καὶ ὡρῶν | ||
ἀντιφράττεται : τοῦτο ἀνάλυσις ἀπὸ τοῦ αἰτιατοῦ , ἤγουν τῆς ἐκλείψεως , εἰς τὸ αἴτιον , ἤγουν τὴν ἀντίφραξιν . |
, ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον | ||
εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ |