| ΨΦΧ κύκλος ἔγγιόν ἐστι τοῦ κέντρου τῆς σφαίρας ἤπερ ὁ ΠΗΡ , μείζων ἄρα ὁ ΧΦΨ κύκλος τοῦ ΠΗΡ κύκλου | ||
| . ἐπεὶ οὖν δύο κύκλοι ἄνισοί εἰσιν οἱ ΧΦΨ , ΠΗΡ , καὶ ἐλάσσων ἐστὶν ὁ ΠΗΡ κύκλος , καὶ |
| κέντρου τῆς σφαίρας ἤπερ ὁ ΠΗΡ , μείζων ἄρα ὁ ΧΦΨ κύκλος τοῦ ΠΗΡ κύκλου . ἐπεὶ οὖν δύο κύκλοι | ||
| Ε , Β μέρη . παράλληλος δὲ ὁ ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται |
| ΑΓ . καὶ ἐπεὶ τὸ ΑΒΓ ὀρθογώνιόν ἐστιν , ἐν ἡμικυκλίῳ ἄρα ἐστίν , οὗ διάμετρος ἡ ΑΓ : περιγραφὲν | ||
| ὥστε καὶ ἡ πρὸς τῷ Ε ὀρθή ἐστιν : ἐν ἡμικυκλίῳ ἄρα ἐστίν : διάμετρος ἄρα ἐστὶν ἡ ΑΘ . |
| ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος | ||
| μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν |
| αἱ ΡΛ , ΡΜ , ΡΝ . καὶ ἐπεὶ ἡ ΡΞ ὀρθή ἐστι πρὸς τὸ τοῦ ΛΜΝ κύκλου ἐπίπεδον , | ||
| τις εὐθεῖα ἡ ΑΡ , ἡ ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ |
| τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
| ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
| αὐτοῦ ἀναγεγραμμένος : πάλιν γὰρ οἱ πήχεις μεταξὺ τῶν ἀγκυλῶν διεκβάλλονται καὶ ἀποσφίγγονται , τὸ δὲ διπλοῦν τῆς καιρίας χάλασμα | ||
| αὐτοῦ αἱ ἀρχαὶ διὰ δύο τρημάτων τῆς χελώνης ἄνωθεν κάτω διεκβάλλονται καὶ ἀποδίδονται τοῖς τύλοις τοῦ ἄξονος : ἡ δὲ |
| κύκλος ὁ ΗΘ , καὶ διῃρήσθω ἑκατέρα τῶν ΒΞ , ΔΞ εἰς τρία ἴσα κατὰ τὰ Κ , Λ , | ||
| . ἤχθω γὰρ διὰ τοῦ Δ τῇ ΑΕ παράλληλος ἡ ΔΞ . ἐπεὶ οὖν ὑπερβολή ἐστιν ἡ ΑΒ καὶ διάμετρος |
| ΞΗΟ ὑπερέχει τῷ δὶς ὑπὸ ΝΞΛ : τὰ ἄρα ἀπὸ ΞΗΟ μετὰ τοῦ δὶς ἀπὸ ΑΕ ἴσα ἐστὶ τοῖς ἀπὸ | ||
| ἀπὸ ΑΓ πρὸς τὸ ἀπὸ ΒΔ : καὶ τὰ ἀπὸ ΞΗΟ ἄρα μετὰ τοῦ δὶς ἀπὸ ΕΑ πρὸς τὰ ἀπὸ |
| δέδοται καὶ οὐχὶ ἡ ΕΖ καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς | ||
| τὰ τρίγωνα , καὶ ἡγούμενα μὲν εἶναι τὰ ΑΒΕ , ΕΒΓ , ΕΓΔ , ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ , |
| εἰκοσάεδρον , καὶ ἔστω ἓν μὲν τοῦ δωδεκαέδρου πεντάγωνον τὸ ΓΔΕΖΗ , τοῦ εἰκοσαέδρου δὲ τρίγωνον τὸ ΚΛΘ . λέγω | ||
| δεκαπέντε τοῖς ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ περὶ τὸ ΓΔΕΖΗ κύκλου : ὥστε καὶ τὸ ἓν τῷ ἑνὶ ἴσον |
| καὶ ὑφ ' ἡμῶν διχῶς . Ἔστω γὰρ κύκλου τοῦ ΚΛΘ περιφέρεια ἡ ΛΘ , καὶ δέον ἔστω τεμεῖν αὐτὴν | ||
| τοῦ ΔΖ , τὸ δὲ ΗΘ τοῦ ΖΗ καὶ ὁ ΚΛΘ κύκλος μείζων τοῦ ΚΛΔ . Ἐπὶ τὰ προβλήματα πάλιν |
| ΓΖ : ἴσον ἄρα καὶ τὸ ὑπὸ ΒΜΑ τῷ ὑπὸ ΒΚΓ : ὡς ἄρα ἡ ΜΒ πρὸς ΒΚ , ἡ | ||
| ΚΔ . οὐκοῦν μείζων ἡ ὑπὸ ΔΚΓ γωνία τῆς ὑπὸ ΒΚΓ γωνίας . τὰ δὲ ὑπὸ μείζονος γωνίας ὁρώμενα ἔγγιον |
| , τὸ ὑπὸ Η , ΔΛ πρὸς τὸ δὶς ὑπὸ ΓΔΛ : ὡς ἄρα τὸ ἀπὸ ΚΛ πρὸς τὸ ὑπὸ | ||
| ΔΛ εὐθείας περιφέρεια τοιούτων ρκ , οἵων ὁ περὶ τὸ ΓΔΛ ὀρθογώνιον κύκλος τξ , ἡ δ ' ἐπὶ τῆς |
| ἐδείχθη δὲ καὶ τὰ τέσσαρα τὰ ΓΚ , ΚΔ , ΗΡ , ΡΝ τοῦ ΓΚ τετραπλάσια : τὰ ἄρα ὀκτώ | ||
| κοινὴ δὲ αὐτῶν τομή ἐστιν ἡ ΗΡ : καὶ ἡ ΗΡ ἄρα ὀρθή ἐστι πρὸς τὸν ΑΒΓ κύκλον : καὶ |
| ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ | ||
| ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι |
| ἐν τριγώνῳ οὖν τῷ ΚΛΡ μείζων ἐστὶν ἡ ΛΚ τῆς ΛΡ : αὕτη δὲ τῆς ΛΠ μείζων . ὥστε καὶ | ||
| ἀρχόμεναι ἀπὸ μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων |
| ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω , | ||
| ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς |
| πρὸς τὸ ΔΛ τετράπλευρον , τὸ ἀπὸ ΒΓ πρὸς τὸ ΒΓΛ τρίγωνον . ἴσον δὲ τὸ ΔΛ τετράπλευρον τῷ ΑΕΗ | ||
| περιφέρεια τοιούτων νδ ιη , οἵων ἐστὶν ὁ περὶ τὸ ΒΓΛ ὀρθογώνιον κύκλος τξ , ἡ δ ' ἐπὶ τῆς |
| δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ | ||
| μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ |
| εἰσίν . ὁμοίως δὴ δείξομεν , ὅτι καὶ αἱ ὑπὸ ΒΑΔ , ΔΓΒ γωνίαι δυσὶν ὀρθαῖς ἴσαι εἰσίν . Τῶν | ||
| δοθεῖσα γωνία ὀρθή , καὶ ἔστω αὐτῇ ἴση ἡ ὑπὸ ΒΑΔ , καὶ τετμήσθω ἡ ΑΒ δίχα κατὰ τὸ Ε |
| ΑΒ πρὸς τὴν ΒΓ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΖ , ὡς δὲ ἡ ΑΒ πρὸς τὴν ΒΗ , | ||
| , ἡ ΕΖ τῇ ΓΔ οὐ συμπεσεῖται . ἡ ἄρα ΕΖ οὐδετέρᾳ τῶν ΑΒ , ΓΔ τομῶν συμπεσεῖται : κατὰ |
| ΑΓ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΑ , ΑΔ περιεχομένῳ ὀρθογωνίῳ . Ἐπεὶ γὰρ εὐθεῖα ἡ ΓΑ τέτμηται , ὡς | ||
| ὀρθογώνιον ἴσον ἐστὶν τῷ ὑπὸ τῶν ΛΔ , ΔΜ περιεχομένῳ ὀρθογωνίῳ , ἕξομεν καὶ τὸ ὑπὸ τῶν ΛΔ , ΔΜ |
| τοῦ κέντρου δύναται τὸ ὑπὸ ΛΑΒ , ὕψος δὲ ἡ ΓΟ , μείζων ἐστὶν τοῦ κώνου , οὗ ἡ μὲν | ||
| τὸ ΜΓΟΥ , καὶ τρεῖς αἱ ΥΜ , ΜΓ , ΓΟ ἴσαι ἀλλήλαις εἰσίν , καὶ μείζων ἐστὶν ἡ ΜΓ |
| ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
| , τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
| ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
| ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
| Ξ τῇ πρὸς τῷ Ε , περιεχομένῃ δὲ ὑπὸ τῶν ΓΕΔ , ἐλάσσων ἄρα φανήσεται ἡ ΓΔ τῆς ΗΘ . | ||
| τῇ ὑπὸ ΔΗΓ , καὶ συναμφότεραι ἄρα ἥ τε ὑπὸ ΓΕΔ καὶ ἡ ὑπὸ ΓΗΒ ἴσαι εἰσὶν τῇ ὑπὸ ΔΕΖ |
| τὸ ΗΚ . ἴσον δή ἐστι τὸ ΑΒ στερεὸν τῷ ΗΚ στερεῷ : ἐπί τε γὰρ ἴσων βάσεών εἰσι τῶν | ||
| ἄρα καὶ ἡ ΑΗ τῇ ΗΚ . ὥστε καὶ ἡ ΗΚ τῇ ΗΒ ἐστιν ἴση : ὅπερ ἀδύνατον . οὐκ |
| ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ | ||
| ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν |
| ΤΗ ἴσαι εἰσίν , ἄνισοι ἄρα εἰσὶν αἱ ΡΩ ΩΟ ἀρχόμεναι ἀπὸ μεγίστης τῆς ΡΩ . πάλιν ἐπεὶ αἱ ΘΨΚ | ||
| αἱ ΖΛ , ΛΞ , ΞΓ ἄρα μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΖΛ . διὰ τὰ αὐτὰ δὴ |
| καὶ περὶ τοῦ ἀφεῖναι τὴν ἀρχὴν καὶ καταθέσθαι τὴν δυναστείαν ἐσκοπούμην , ὅπως μόνον ἀσφαλῶς παύσαιτο ἄν τις ἐννοῶν , | ||
| ἀνθοῦσαν ἀγαθοῖς πᾶσιν οἷς θάλλει πόλις . Οὕτω δὴ ἔχων ἐσκοπούμην ἤδη περὶ τῶν πρακτέων , καὶ τὸ μὲν δεῖξαι |
| δὲ ἐπὶ τῆς ἑτέρας αὐτὴν λαβόντες τοῦ παραλληλογράμμου πλευρᾶς τῆς παραλλήλου τῇ κοινῇ αὐτῶν βάσει τὸ αὐτὸ ἀποδείξομεν . δύο | ||
| ἔρριψα . τὸ δὲ “ ἀνείλετο λαβοῦσα ” ἢ ἐκ παραλλήλου , ὡς τὸ “ ἁγνεύσας ἐκάθηρε ” καὶ “ |
| τὸν λόγον καὶ τὴν ἀλογίαν , καὶ ἑκάτερον ἀπὸ τοῦ κοινοτέρου προσαγορεύει , ἐπειδὴ καὶ περὶ κοινοτέρου ἔρωτος ὁ λόγος | ||
| καὶ ἑκάτερον ἀπὸ τοῦ κοινοτέρου προσαγορεύει , ἐπειδὴ καὶ περὶ κοινοτέρου ἔρωτος ὁ λόγος ἐστὶ νῦν : καὶ τὴν μὲν |
| τρίτα δὲ αὐτὴν διεξελθὼν Μεγάλην πόλιν , εἴκοσι σταδίοις ἀπωτέρω Μεγαλοπολιτῶν τοῦ ἄστεως κάτεισιν ἐς τὸν Ἀλφειόν . πλησίον δὲ | ||
| δὲ ὁ λόγος ἤδη μοι τὸ ἄγαλμα εἶναι τοῦ Ἀπόλλωνος Μεγαλοπολιτῶν ἐν τῇ ἀγορᾷ . ἔστι δὲ ὕδατος ἐν τῷ |
| ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ | ||
| ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ |
| τὴν ΟΛ : δι ' ἴσου ἄρα ἐστὶν ὡς ἡ ΒΞ πρὸς ΞΚ , οὕτως ἡ ΕΟ πρὸς ΟΛ . | ||
| ἡ ΒΝ ἴση τῇ ΒΚ καὶ τῇ ΠΒ καὶ αἱ ΒΞ , ΞΑ ἴσαι ταῖς ΒΛ , ΛΑ καὶ ταῖς |
| τὸ Ε , ἀφ ' οὗ ἡ ἐπὶ τὸ κέντρον ἐπιζευγνυμένη πρὸς ὀρθὰς τῇ ΓΔ , πρὸς δὲ τὴν ΑΒ | ||
| κύκλων , ἡ ἄρα ἀπὸ τοῦ αʹ ἐπὶ τὸ εʹ ἐπιζευγνυμένη εὐθεῖα διάμετρός ἐστι τῆς σφαίρας : ἀλλὰ καὶ ἡ |
| πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ | ||
| . τὸ ἄρα ὑπὸ τῶν ΝΜΞ ἴσον ἐστὶ τῷ ὑπὸ ΔΜΕ . ἔστιν ἄρα ὡς ἡ ΜΝ πρὸς ΜΔ , |
| ἔστω γὰρ ἡ ΓΖΘ . φανερόν , ὅτι τὸ ὑπὸ ΓΚΘ ἴσον τῷ ἀπὸ ΑΓ : τέτμηται γὰρ ἡ ΘΚ | ||
| ΚΘ , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΚΘ , ἡ δὲ ὑπὸ ΚΓΒ τῇ ὑπὸ ΓΑΔ , |
| εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ | ||
| τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε |
| ? [ ] [ ] ΧΕ [ ] [ ] ΕΡ ? ? ! [ ] [ ] ΓΟ [ | ||
| . τίς ἄρα ὁ τῆς ΕΠ πρὸς ΠΤ τῷ τῆς ΕΡ πρὸς ΡΤ ; ἀλλ ' ὁ τῆς ΕΡ πρὸς |
| ἀπὸ τῶν ΕΖ , ΖΒ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΒΕ , τοῖς δὲ ἀπὸ τῶν ΕΖ , ΖΛ ἴσον | ||
| ΓΔ : τὸ ἄρα ὑπὸ ΑΕ ΕΔ μετὰ τοῦ ὑπὸ ΒΕ ΕΓ ἴσον ἐστὶν τῷ ὑπὸ ΑΓΔ . ιθʹ . |
| ἀποτομή . Ἐκβεβλήσθω γὰρ ἡ ΨΟ , καὶ ἔστω ἡ ΨΩ : συμβάλλει ἄρα ἡ ΟΩ τῇ τοῦ κύβου διαμέτρῳ | ||
| ΣΨ , ἀπὸ δὲ τοῦ Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως |
| ΑΔΓ μετὰ τοῦ δὶς ὑπὸ ΑΕΓ καὶ δὶς τῶν ἀπὸ ΒΔ ΒΕ τετραγώνων . Τοῦτο δὲ φανερόν : τὸ μὲν | ||
| , ἀφ ' ἧς ἐπὶ τὴν ΑΓ βάσιν ἤχθω ἡ ΒΔ . λέγω , ὅτι ἡ ΒΔ πρὸς ΔΓ μείζονα |
| συνδέσμῳ ἕν , ὥσπερ ὁ οἶκος : ἐκ γὰρ τῆς συνδέσεως τῶν λίθων καὶ τῶν ξύλων ἔχει τὸ ἓν ἐπίκτητον | ||
| δεῖ ἄρα ἐξετάσαι τὴν αἰτίαν τῆς ἐν ταὐτῷ τῶν ἐναντίων συνδέσεως , ἵν ' οἰκεία φανεῖσα τῆς τοῦ δημιουργήσαντος ἀγαθότητος |
| λ , ἡ δὲ ΔΕ ρκ , τοιούτων ἐστὶν ἡ ΓΕ εὐθεῖα α κ κγ . τῶν δὲ αὐτῶν ἐδείχθη | ||
| τῆς παρούσης καταγραφῆς τὸ ἕτερον εἶδός ἐστιν : ἡ γὰρ ΓΕ ἴση ἐστὶ τῇ ΔΒ . τέμνουσαν ἔλαβεν ὁ στοιχειωτὴς |
| ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ | ||
| . καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ |
| κτείνουϲι . ἀϲινέϲτατα δὲ πάντων τὰ παιδία . Περὶ ὑϲτερικῆϲ πνιγόϲ . Ἐν τῇϲι λαγόϲι τῶν γυναικῶν μέϲῃϲι ἐγκέεται ἡ | ||
| ἐπὶ κολικῶν ἀλγημάτων πινόμενόν τε καὶ ἐνιέμενον καὶ ἐπὶ ὑϲτερικῆϲ πνιγόϲ . καὶ ὀξυδερκέϲ ἐϲτιν ἐϲθιόμενον καὶ διὰ τοῦτο οἱ |
| καὶ πεύκη καὶ ἐλάα δυσαυξῆ . καίτοι τό γ ' εὐθυπορεῖν ὑπάρχει τισὶ τούτων , ἀλλ ' ἤτοι πυκνότης ἢ | ||
| τόπῳ ἦν ἐκεῖνο αὐτό , προσχωρεῖν τε ἔδει ἐκεῖ καὶ εὐθυπορεῖν καὶ ἐν ἄλλῳ μέρει αὐτοῦ ἄλλῳ μέρει ἐφάπτεσθαι ἐκείνου |
| ΑΔ : ἰσογώνια ἄρα ἐστὶ τὰ τρίγωνα τὰ ΒΓΑ , ΔΖΑ . ὥστε ἴση ἐστὶν ἡ ὑπὸ ΓΑΒ γωνία τῇ | ||
| ἴσαι αἱ ΗΕ ΗΖ : ἴσον ἄρα καὶ τὸ ὑπὸ ΔΖΑ μετὰ τοῦ ἀπὸ ΑΗ τῷ ὑπὸ ΔΕΓ μετὰ τοῦ |
| , οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ | ||
| , οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς |
| ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς | ||
| καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε |
| τὸν μέγιστον πόδα τοῦ ἐλαχίστου πενταπλάσιον . Διαφέρουσι δὲ οἱ μείζονες πόδες τῶν ἐλαττόνων ἐν τῷ αὐτῷ γένει ἀγωγῇ . | ||
| δέκα , οἱ δὲ καὶ τριάκοντα , ἱστοροῦνται δὲ καὶ μείζονες . φολίσι τε κέχρηνται καθ ' ὅλον τὸ σῶμα |
| ὀρθὰς τῷ κύκλῳ διὰ τοῦ ἄξονος τριγώνου βάσις ἔστω ἡ ΓΒΔ , καὶ ἤχθωσαν τῇ ΓΔ πρὸς ὀρθὰς ἐν τῷ | ||
| τῷ κύκλῳ τριγώνου διὰ τοῦ ἄξονος ἠγμένου βάσις ἔστω ἡ ΓΒΔ , καὶ ἡ ὑπὸ ΑΒΔ γωνία ἐλάττων ἔστω ὀρθῆς |
| ΖΔ , ΚΒ , ΒΔ , καὶ γεγράφθω περὶ τὸ ΚΖΔ τρίγωνον τμῆμα κύκλου τὸ ΚΖΔ , καὶ κείσθω τῇ | ||
| τῇ ὑπὸ ΚΖΔ : ἐναλλὰξ γάρ . ἡ δὲ ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ |
| συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΕ , ΕΒ τετραγώνων τῷ συγκειμένῳ ἐκ τῶν ἀπὸ τῶν ΓΖ , ΖΔ , τὸ | ||
| ἀπὸ τῶν ΑΒ , ΒΓ καὶ σύμμετρον τῷ ἐξ αὐτῶν συγκειμένῳ , ἀνάγκη καὶ τὸ ἐκ τῶν ἀπ ' αὐτῶν |
| , ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος | ||
| τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον . |
| ΞΠ τῇ ΑΒ ἴση ἡ ΧΞ , καὶ ἐπεζεύχθω ἡ ΧΚ καὶ ἡ ΧΦ , καὶ ἀπὸ τοῦ Σ τῇ | ||
| τὸ ἀπὸ ΚΕ τὸν συγκείμενον ἔχει λόγον ἐκ τοῦ τῆς ΧΚ πρὸς ΚΕ καὶ τοῦ τῆς ΖΚ πρὸς ΚΕ , |
| καλοῖς , χειρί χερσί : σεσημείωται τὸ πᾶσι . Αἱ πλεονάσασαι τὸ α πρὸ μιᾶς ἔχουσι τὸν τόνον , πατράσι | ||
| τοῦ ε μόνως ὀρθοτονεῖται . εἴρηται δὲ ὡς καθόλου αἱ πλεονάσασαι τῷ ε μόνως ὀρθοτονοῦνταιΤῇ . τίν σύζυγος ἡ ἵν |
| ʹγʹ κϚ : ] ἡ δὲ ἀπ ' ἄρκτων τῷ Ἀφρικανῷ πελάγει τῷ ἀπὸ τοῦ Ἀμψάγα ποτ . μέχρι τοῦ | ||
| ὀνομαζόμενος . Ποσειδώνιος γοῦν ὁ στωικός , συναποδημήσας Σκιπίωνι τῷ Ἀφρικανῷ κληθέντι εἰς Ἀλεξάνδρειαν καὶ θεασάμενος αὐτόν , γράφει ἐν |
| ἀρετῆς ἐν βίῳ τελείῳ . ἔφη δὲ καὶ τὴν εὐδαιμονίαν συμπλήρωμα ἐκ τριῶν ἀγαθῶν εἶναι : τῶν περὶ ψυχήν , | ||
| περιηχοῦσαι δὲ καὶ ἀντικτυποῦσαι τῷ ἐπιθέοντι ῥοθίῳ . Τὸ δὲ συμπλήρωμα ἔχει ὁ Αἰγαῖος ἄχρι Τενέδου , ἔξω καὶ πόρρω |
| κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ | ||
| γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ |
| τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος γραφόμενος μὴ ἐρχέσθω διὰ τοῦ Γ , ἀλλ ' ὑπερπιπτέτω αὐτό : | ||
| ἤτοι διὰ τοῦ ἑτέρου αὐτῶν ἢ δι ' οὐδετέρου . ἐρχέσθω πρότερον διὰ τοῦ Κ καὶ τεμνέτω τὴν ΖΗ κατὰ |
| ἑκατέρα μὲν τῶν ΑΒ , ΑΖ ἑκατέρας τῶν ΑΗ , ΑΜ τῇ ἐκ τοῦ κέντρου τῆς σελήνης , ἴση δὲ | ||
| ἐστὶ καὶ ἡ ὑπὸ ΓΝΗ . καὶ παράλληλός ἐστιν ἡ ΑΜ τῇ ΝΒ , καὶ δύο διηγμέναι εἰσὶν αἱ ΑΒ |
| καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
| τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
| καὶ μαλάγματα καὶ ϲιναπιϲμοὶ καὶ κατάχριϲιϲ θαψίαϲ , ἰδίωϲ δὲ ἐπίδεϲιϲ ἡ εἰϲ τὰ ἀντικείμενα παράγουϲα καὶ ἀφαίρεϲιϲ ἐκ τῶν | ||
| Θεοδοτίῳ . παραλαμβανέϲθω δὲ ἐπ ' αὐτῶν καὶ ἡ προϲήκουϲα ἐπίδεϲιϲ . καταπλαττέϲθω δὲ τὰ φλεγμαίνοντα τῷ διὰ κωδιῶν καταπλάϲματι |
| τῶν πρὸς τὴν θεωρίαν . Ἐγένοντο δὲ τρισσαὶ στάσεις περὶ συνανατολῶν καὶ συγκαταδύσεων : οἳ μὲν γὰρ ἔφασαν τὴν πραγματείαν | ||
| παντὶ τόπῳ σχεδὸν τῆς οἰκουμένης δύνασθαι παρακολουθεῖν ταῖς διαφοραῖς τῶν συνανατολῶν καὶ συγκαταδύσεων . Πρῶτον μὲν οὖν ἐκθησόμεθα τὰς τῶν |
| τῶν ἵππων ὁ στρατὸς ἐψυχαγωγεῖτο , κεναὶ τῶν φορτίων ἐκ παραγγέλσεως ἦσαν αἱ νῆες , τῷ λόγῳ μέν , ὅπως | ||
| καὶ ἢν μέν γε διὰ στενῶν ὁδῶν ἐλαύνῃς , ἀπὸ παραγγέλσεως εἰς κέρας ἡγητέον : ἢν δὲ πλατείαις ἐπιτυγχάνῃς ὁδοῖς |
| ἀπὸ ΚΡ , τούτῳ διαφέρει τὸ ὑπὸ ΜΡΝ τοῦ ὑπὸ ΜΣΝ . ἐδείχθη δέ , ὅτι , ᾧ διαφέρει τὸ | ||
| τὸ ὑπὸ ΜΡΝ , τὸ ἀπὸ ΛΣ πρὸς τὸ ὑπὸ ΜΣΝ . ἐδείχθη δὲ καὶ ἐν ἀμφοτέροις ἡ αὐτὴ ὑπεροχή |
| ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ | ||
| τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν |
| αὗται σὺν τῷ ὀστέῳ πεφυκυῖαι παρὰ τὸ τοῦ ὀστέου ἄρθρον ἤρθρωνται ἐς τὸ κύβιτον : αἱ δὲ κάτω κείμεναι καὶ | ||
| ὤμοις αἰεὶ πεφύκασιν . Αἱ δὲ πλάται πρὸς τὰ γυῖα ἤρθρωνται , ἐπιβάλλουσαι ἐπὶ τὸ ὀστέον τὸ ἐν τῷ γυίῳ |
| ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ | ||
| τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ |
| ὑπ ' ἐμοῦ . . χειρωναξία ] βάναυσος τέχνη . ἁπλῷ λόγῳ ] ἐν ἀληθεῖ λόγῳ , ἢ ἐν συντόμῳ | ||
| γὰρ γίνεται ψυχόμενον . Καὶ τὸ βαλάνινον δὲ παραπληϲίωϲ τῷ ἁπλῷ ἀμυγδαλίνῳ γίνεται ἀπὸ τῶν ἐν ταῖϲ δρυϲὶ βαλάνων . |
| ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν , καὶ ἀπ ' αὐτῶν μέχρι Συήνης . , φησὶ δὴ [ . Ἵππαρχος ] τοῖς | ||
| τοῦ οἰκείου κύκλου . Δεῖ οὖν ἀναγκαίως καὶ τὸ ἀπὸ Συήνης εἰς Ἀλεξάνδρειαν διάστημα πεντηκοστὸν εἶναι μέρος τοῦ μεγίστου τῆς |
| ἑτέρωθι ἀνδρεῖός ἐστιν οὗτος ; πρὸς τοῖς “ θεσμοθέταις γραφὰς γραφόμενος , πρὸς τοῖς συνδίκοις ἀπογραφὰς ” ἀπογράφων . “ | ||
| Δ διαστήματι δὲ ἑνὶ τῶν Ε , Ζ , Η γραφόμενος κύκλος τεμεῖ τὰς ΑΒ , ΒΓ , ΓΑ εὐθείας |
| κατὰ τοῦ πήχεως ἐγγὺς τοῦ ἀγκῶνος , ἧς αἱ ἀρχαὶ φερέσθωσαν κάτω ὡς ἐπὶ τὸν ἄξονα . αἱ δὲ τάσεις | ||
| μεταξὺ τοῦ σφηνοειδοῦς καὶ τοῦ βραχίονος , ἧς αἱ ἀρχαὶ φερέσθωσαν ἔξω : δὲ καρχήσιος βρόχος ὑπὸ τὸ σφηνοειδὲς ὑπεράνω |
| β τοῦ πρώτου ζυγοῦ , καὶ τὸ ο μεταξὺ τοῦ ικ ὡς κατὰ τὸ γ , καὶ τὸ π μεταξὺ | ||
| [ ] αι ? ? [ ] [ ] ! ικ [ ] [ ] ! ! [ ] [ |
| , ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ | ||
| ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα |
| νοουμένου τοῦ ΗΛΜ συνεχοῦς ὄντος καὶ συνημμένου τῷ ΗΖΘ προλεχθέντι ἐσόπτρῳ , ἡ ΛΒ ἰσημερινὴ ἀκτὶς ἀνακλασθήσεται ἐπὶ τὸ Α | ||
| , οὐ δύναται ὁρᾶσθαι τὸ πρόσωπον τοῦ ἀνθρώπου ἐν τῷ ἐσόπτρῳ : οὕτως καὶ ὅταν ᾖ ἁμαρτία ἐν τῷ ἀνθρώπῳ |
| τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ | ||
| ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ |
| μετὰ τοῦ ὑπὸ ΗΘΚ : ἴσον ἄρα καὶ τὸ ὑπὸ ΒΑΛ μετὰ τοῦ ὑπὸ ΒΑ ΛΡ καὶ τοῦ ὑπὸ ΗΘΚ | ||
| ὑπὸ ΒΑΛ μετὰ τοῦ ὑπὸ ΗΘΚ . ἀλλὰ τῷ ὑπὸ ΒΑΛ μετὰ τοῦ ὑπὸ ΒΑ ΛΡ , τουτέστιν τῷ ὑπὸ |
| ἔσται τῷ εὐθυγράμμῳ τῷ συγκειμένῳ ἐκ τῶν τριῶν τριγώνων τῶν ΒΖΗ ΒΖΚ ΕΚΖ . τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ | ||
| δὲ ὑπὸ ΒΑΕ ἴση ἐστὶν τῇ ἐκτὸς τετραπλεύρου τῇ ὑπὸ ΒΖΗ : καὶ ἡ ὑπὸ ΘΖΒ ἄρα γωνία ἴση ἐστὶν |
| οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
| κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
| ἡ ΓΔ πρὸς τὴν ΗΛ , ὁ δὲ τοῦ ὑπὸ ΒΘ ΓΔ πρὸς τὸ ὑπὸ ΒΔ ΓΘ συνῆπται λόγος ἔκ | ||
| ἄρα , ὡς ἡ ΓΔ πρὸς ΕΖ , οὕτως ἡ ΒΘ πρὸς ΚΗ . ἐδείχθη δέ , ὡς ἡ ΓΔ |
| . καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ | ||
| ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ |
| συνεχὲς ἐν τοῖς δικτύοις τετράγωνον διάστημα , συνεστηκὸς ἐκ τεττάρων ἁμμάτων , ὃ τεινομένης τῆς ἄρκυος γίνεται ῥομβοειδές , δι | ||
| τῷ χρόνῳ μὴ παρέω ἀλλὰ διεξέλθωσι ὑμῖν αἱ ἡμέραι τῶν ἁμμάτων , ἀποπλέετε ἐς τὴν ὑμετέρην αὐτῶν . Μέχρι δὲ |
| πάσχοντος διεκβάλλονται χεῖρες , διὰ δὲ τοῦ λοιποῦ τῆς καιρίας χαλάσματος ἀσφαλίζεται τὸ σῶμα . Ἕνεκα τῆς πλοκῆς τῶν ὤτων | ||
| παρειμένη ἐᾶται . καὶ ἀπὸ μὲν τοῦ ἀντικειμένου τῆς καιρίας χαλάσματος μικρὸν πλέκεται ἀγκύλιον καὶ κατὰ τῆς ἀριστερᾶς τίθεται χειρός |
| μέγιστος κύκλος ὁ ΝΖΕ ἐφαπτόμενος τοῦ ΑΔΕ κύκλου , ὥστε ἀσύμπτωτον εἶναι τὸ ἀπὸ τοῦ Ε ἡμικύκλιον ὡς ἐπὶ τὰ | ||
| τοῦ Ρ ἡμικύκλιον ὡς ἐπὶ τὰ Α , Ν μέρη ἀσύμπτωτον εἶναι τοῖς διὰ τῶν Σ , Τ ἡμικυκλίοις ὡς |
| ὡς ὄντος τινὸς ἐν ᾅδου οὕτως λεγομένου λίθου . τῷ ξυνέτυχον : Ἀντὶ τοῦ , τίνι οἰωνῷ συνέτυχον ἐκ τῆς | ||
| ταῦτα εἵπετο τῷ Νείλῳ . προσειπὼν οὖν καὶ προσρηθείς , ξυνέτυχον δὲ ἀλλήλοις περὶ τὴν στοάν , ” ποῖ , |
| ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον | ||
| τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς |
| τῷ ΑΔΕ τριγώνῳ , τὸ ἄρα ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΑ πρὸς ΑΔ | ||
| τὸ ἀπὸ ΑΔ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον . Ἐπεὶ γὰρ ὅμοιόν ἐστιν τὸ ΑΒΓ τρίγωνον |
| λέγει πῶς γίνονται οἱ ὕδρωπες . καί φησιν ὅτι “ Ἄρχονται δὲ οἱ πλεῖστοι ἐκ τῶν κενεώνων τε καὶ τῆς | ||
| πυρὸς ἀπαλλάσσουσιν , ἐπώδυνοί τέ εἰσι κάρτα καὶ θανατώδεες . Ἄρχονται δὲ οἱ πλεῖστοι μὲν ἀπὸ τῶν κενεώνων καὶ τῆς |
| τῆϲ καλουμένηϲ ϲηπτικῆϲ δυνάμεωϲ : τῷ λεπτομερεῖ δὲ τῆϲ οὐϲίαϲ ἀνωδύνωϲ καίει . Κόνυζα διττή . Κόνυζα καὶ ἡ μείζων | ||
| ὑπάρχουϲα . τὰϲ μέντοι ἁπαλὰϲ ϲάρκαϲ ἑτοίμωϲ τε ἅμα καὶ ἀνωδύνωϲ ϲήπει : ἐκ τῆϲ γὰρ ἐν τοῖϲ ϲώμαϲι θερμότητοϲ |
| γίνεται φησὶ φιλεῖν Τρύφωνα . ἔνθεν γὰρ καὶ δύο αἰτιατικαὶ προσγίνονται τῇ τοιαύτῃ συντάξει . . γενικῆς μὲν γὰρ καὶ | ||
| δὲ διά τινα κακῶς διατεθέντα τῶν περὶ τὸ θώρακα μερῶν προσγίνονται : ἤτοι γὰρ χυμῶν τινων ἐπίρροια τὰς ὁδοὺς τοῦ |
| Φαιστός . Ἢ τὴν εἰς ἤπειρον ἐμπίπτουσαν καὶ πλατυνομένην . Αὗται γὰρ ἐν μέσῳ τῆς Κρήτης καὶ Κυρήνης εἰσί . | ||
| Μελάνθιον , ἄνδρα τῶν ἀστῶν ἐόντα τὰ πάντα δόκιμον . Αὗται δὲ αἱ νέες ἀρχὴ κακῶν ἐγένοντο Ἕλλησί τε καὶ |
| : τὸ Η ἄρα σημεῖον κέντρον ἐστὶ τῶν κύκλων . ἀνεστάτω ἀπὸ τοῦ Η σημείου τῷ μὲν τοῦ ΓΔ κύκλου | ||
| . ἔστω δὲ ἡ δοθεῖσα γωνία πρότερον ὀρθή , καὶ ἀνεστάτω ἀπὸ τῆς ΑΒ ἐπίπεδον ὀρθὸν πρὸς τὸ ὑποκείμενον , |
| τῇ ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΒΓ , ΒΔ , ΒΖ , ΒΚ , ἔστω δὲ πρότερον ἡ ΒΑ τῆς | ||
| ' ἡ ΖΒ τετραπλασία τῆς ΒΘ : καὶ ἔστιν τῆς ΒΖ διπλασίων ἡ ΖΓ : λόγος ἄρα τῆς ΖΓ πρὸς |
| τῆς Β ζ μϚ λϚ ιε οὐδέν . ἀσύμμετρος τῇ ΓΔ μήκει . . , ] δυνάμει δὲ δηλονότι σύμμετρος | ||
| ἐστι . καὶ πάντα ἑξάκις . τὸ ἄρα τριακοντάκις ὑπὸ ΓΔ , ΖΗ ἴσον ἐστὶ τῇ τοῦ δωδεκαέδρου ἐπιφανείᾳ . |
| , ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
| τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
| δ ' ἐν Γεωργικοῖς καταλέγει καὶ τίνες αὐτῶν εἰσιν οἱ θανάσιμοι , λέγων : ἐχθρὰ δ ' ἐλαίης ῥοιῆς τε | ||
| ἀβέβαια τὰ τοιαῦτα . Ψυχροὶ ἱδρῶτες ξὺν μὲν ὀξεῖ πυρετῷ θανάσιμοι , ξὺν δὲ πρηυτέρῳ μῆκος σημαίνουσι τῆς νούσου . |
| κ , οἵων ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριγ μγ : ὥστε καί , οἵων | ||
| ὡς μὲν ἡ ΖΔ πρὸς τὴν ΔΕ , οὕτως ἡ ΖΗ πρὸς τὴν ΗΕ , ὡς δὲ ἡ ΜΔ πρὸς |