ΔΚΗΒ . ἐπεὶ οὖν μείζων ἡ ὑπὸ ΚΖΔ τῆς ὑπὸ ΚΗΔ : ἐπιζευχθείσης γὰρ τῆς ΟΚ φανερὸν τοῦτο : ἴση | ||
Ε , Θ σημείων πεσεῖται . ἔστω ἡ ὑπὸ τῶν ΚΗΔ ἴση τῇ ὑπὸ τῶν ΔΗΖ . ἔστι δὲ καὶ |
ἡ ΒΚΑ περιφέρεια τῇ ΘΖΕ περιφερείᾳ . Ἀλλ ' ἡ ΒΚΑ τῆς ΗΘΖ μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ | ||
τῶν ΒΘΑ : ἡμίσους ἄρα ἐστὶν καὶ ἡ ὑπὸ τῶν ΒΚΑ . ὀρθὴ δέ ἐστιν ἡ ὑπὸ τῶν ΒΕΚ : |
ὅτι τὸ ἀπὸ τῆς ΚΛ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΘΖΛ . ἤχθω γὰρ διὰ τοῦ Λ τῇ ΒΓ παράλληλος | ||
ΛΖΑ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ |
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς | ||
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία , |
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
τὸ ἀπὸ ΗΚ . καὶ ἐδείχθη ἴσον τὸ ὑπὸ τῶν ΔΗΛ τῷ ἀπὸ ΗΚ : ἴσον ἄρα καὶ τὸ ὑπὸ | ||
μείζονας εἶναι συναμφοτέραις τῇ τε ὑπὸ ΔΕΓ καὶ τῇ ὑπὸ ΔΗΛ , αἵπερ εἰσὶν δυσὶν ὀρθαῖς ἴσαι : ὅπερ ἔδει |
ΓΕ ἡ ΗΚΘ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΓΕΖ τῇ ὑπὸ ΘΕΚ , ἡ δὲ ὑπὸ ΖΕΓ τῇ | ||
ΖΕΓΗ παραλληλόγραμμον τῷ ΑΒΓ τριγώνῳ . καὶ ἔχει τὴν ὑπὸ ΓΕΖ γωνίαν ἴσην τῇ δοθείσῃ τῇ Δ . Τῷ ἄρα |
ΘΗ , ΖΗ πρὸς τὴν ΗΑ . ἔστω τῷ ὑπὸ ΘΗΖ ἴσον τὸ ὑπὸ ΗΑ , Κ . καὶ ἐπεί | ||
τῇ ὑπὸ τῶν ΘΖΓ ἐστὶν ἴση : καὶ ἡ ὑπὸ ΘΗΖ ἄρα τῇ ὑπὸ ΘΖΗ ἐστὶν ἴση . καὶ κάθετος |
. ὅτι μείζων ἐστὶν ἡ ὑπὸ ΑΓΕ γωνία τῆς ὑπὸ ΕΓΖ . Ἐπεὶ γὰρ μείζων ἐστὶν ἡ ΕΒ τῆς ΖΗ | ||
εἶναι τὴν ΑΔ τῇ ΑΕ , καὶ ἐπεζεύχθωσαν αἱ ΒΔ ΕΓΖ , καὶ ἀπὸ τοῦ Ζ κάθετος ἐπὶ τὴν ΓΒ |
ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ | ||
ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν |
ΔΘ μείζων ἐστὶν τῆς ΑΛ . καὶ ἔστιν ὅμοια τὰ ΔΗΘ ΑΚΛ τρίγωνα : ὡς ἄρα ἡ ΔΘ πρὸς ΘΗ | ||
αὑτή ἐστιν τῇ ὑπὸ ΔΗΘ . δοθεῖσα οὖν ἡ ὑπὸ ΔΗΘ . ἀλλὰ καὶ ὀρθὴ ἡ πρὸς τῷ Θ . |
ἀποτομή . Ἐκβεβλήσθω γὰρ ἡ ΨΟ , καὶ ἔστω ἡ ΨΩ : συμβάλλει ἄρα ἡ ΟΩ τῇ τοῦ κύβου διαμέτρῳ | ||
ΣΨ , ἀπὸ δὲ τοῦ Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως |
καὶ τῆς ἀπολαμβανομένης ὑπ ' αὐτοῦ πρὸς τῷ Α σημείῳ κωνικῆς ἐπιφανείας κῶνός ἐστι . καὶ συναποδέδεικται , ὅτι ἡ | ||
τοῦ κυλίνδρου τομῆς : τὸ Ρ ἄρα σημεῖον ἐπὶ τῆς κωνικῆς ἐπιφανείας καὶ ἐπὶ τῆς τοῦ κυλίνδρου ἐπιφανείας ἐστί . |
δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ | ||
κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν |
ἡ ΗΒ ἐλάττων τῆς ἐκ τοῦ κέντρου , τὸ ἄρα ΗΓΔ οὐκ ἔσται μέγιστον τῶν παραλλήλους αὐτῷ βάσεις ἐχόντων : | ||
καὶ τὸ ΑΓΔ τοῦ ΑΕΖ , εἰ δὲ μεῖζον τὸ ΗΓΔ τοῦ ΗΕΖ , μεῖζον καὶ τὸ ΑΓΔ τοῦ ΑΕΖ |
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ : | ||
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου |
⃞ον καὶ ἔστιν ΔΥ α # Μο ιβ ἴσ . ⃞ῳ καὶ ʂ Ϛ ∠ ʹ # Μο ιβ ἴσ | ||
α . πάλιν , ἐπεὶ θέλω τοὺς τρεῖς ἴσους εἶναι ⃞ῳ , εἰσὶ δὲ οἱ τρεῖς ʂ ιγ , ταῦτα |
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
μείζονα λόγον ἔχει ἤπερ ἡ ὑπὸ ΒΑΓ πρὸς τὴν ὑπὸ ΒΑΖ , καὶ συνθέντι ὁ ΔΓΑ τομεὺς πρὸς τὸ ΔΑΒ | ||
δὶς ὑπὸ τῶν ΒΑΕ , τουτέστι τοῦ δὶς ὑπὸ τῶν ΒΑΖ , ἴσα ἐστὶ τῷ ἀπὸ τῆς ΒΓ . κοινὸν |
τῶν ΔΖΕ , περὶ δὲ τὰς ὑπὸ τῶν ΒΑΓ , ΔΖΕ γωνίας τὰς πλευρὰς ἀνάλογον , ὅμοιον ἄρα ἐστὶ τὸ | ||
τῷ ὑπὸ ΝΞΕ τὸ ὑπὸ ΘΜΕ , καὶ τὸ ὑπὸ ΔΖΕ ἄρα μεῖζόν ἐστιν τοῦ ὑπὸ ΘΜΕ , ὥστε καὶ |
γωνία τῇ ἐναλλὰξ ὑπὸ ΡΠΤ ἴση . ἐὰν δὲ ἡ ΤΦ παράλληλος ᾖ τῇ ΡΠ , διὰ τὰς ἴσας ἐναλλὰξ | ||
οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΤΦ πρὸς τὸν ἀπὸ τοῦ ΞΦ παραλληλογράμμου κύλινδρον περὶ τὸν |
ΚΘ περιφερειῶν τοιούτων ἐστὶν Ϙ , οἵων ὁ περὶ τὸ ΒΘΚ ὀρθογώνιον κύκλος τξ . καὶ τῶν ὑπ ' αὐτὰς | ||
τῷ ἀπὸ τῆς ΑΜ . διὰ γὰρ τὴν ὁμοιότητα τῶν ΒΘΚ ΖΛΓ τριγώνων ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΘ , |
ἐδείχθη δὲ καὶ ἡ ΘΣ τῆς ΝΒ διπλῆ . καὶ συναμφότεραι ἄρα αἱ ΘΣ , ΠΡ τῆς ΝΒΜ ὅλης διπλασίους | ||
δ ' ἐπὶ τοῦ τριγώνου τῆς βάσεως αἱ εὐθεῖαι συνίστανται συναμφότεραι μείζους τῶν ἐκτὸς αἱ ἐντός , ἀλλὰ καὶ ἐπὶ |
τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ | ||
τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ |
ΚΘΕΖ διπλασίονα λόγον ἔχει ἤπερ τὸ ΑΓΔ τρίγωνον πρὸς τὸ ΚΕΖ , ὡς ἐδείχθη . ὡς δὲ ὁ ΑΗΓΔ κῶνος | ||
τὸ ΒΕΖ τριπλασίονα λόγον ἔχει ἤπερ τὸ ΑΓΔ πρὸς τὸ ΚΕΖ : τὸ ἄρα ΚΕΖ πρὸς τὸ ΒΕΖ διπλασίονα λόγον |
δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων , τοῦ δὲ ΒΔΖ ὀρθογωνίου τὸ ἀπὸ τῆς ΒΖ τετράγωνον ἴσον ἐστὶν τῷ | ||
τῷ ἀπὸ ΒΝ τετραγώνῳ . ἐπεὶ δὲ ἐν τριγώνῳ τῷ ΒΔΖ κάθετος ἦκται ἡ ΔΝΞ , καὶ κεκλασμέναι πρὸς αὐτῇ |
τῇ ὑπὸ ΔΖΕ γωνίᾳ . ἔστιν δὲ καὶ ἡ ὑπὸ ΑΖΓ γωνία τῇ ὑπὸ ΒΖΕ γωνίᾳ : ὅλη ἄρα ἡ | ||
καὶ ἐπεζεύχθωσαν αἱ ΔΚ ΚΒ ΚΕ ἐπεὶ οὖν τὸ ὑπὸ ΑΖΓ μετὰ τοῦ ἀπὸ ΖΚ ἴσον ἐστὶν τῷ ἀπὸ ΑΚ |
ξου εἰς δεύτερα ξξα , ὧν δύο τὰ ΑΡ , ΡΨ , ἐὰν μὲν πρῶτα ἐπὶ δεύτερα , οἷον τὸ | ||
ΩϘ , τῷ ΨΥ στερεῷ , οὗ βάσις μὲν τὸ ΡΨ παραλληλόγραμμον , ἀπεναντίον δὲ τὸ ΥΦ : ἐπί τε |
, ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ | ||
ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα |
τὸ ἀπὸ ΛΒ ἄρα τοῦ ἀπὸ ΛΔ ὑπερέχει τῷ ὑπὸ ΚΒΔ : καὶ ὁ ἀπὸ τοῦ ΖΗ ἄρα ⃞ος ἴσ | ||
ὁ ἀπὸ τοῦ ΖΗ ἄρα ἴσ . τῷ τε ὑπὸ ΚΒΔ καὶ τῷ ἀπὸ ΔΕ ⃞ῳ . Καὶ ἐπεὶ ὁ |
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
ἡ ΑΒ τῇ ΓΔ , ἀλλὰ καὶ γωνία ἡ ὑπὸ ΑΒΘ τῇ ὑπὸ ΔΓΚ ἐστιν ἴση . καὶ περιφέρεια ἄρα | ||
καὶ ἔστω ὡς ὁ ΒΑΘ : μέγιστος ἄρα ἐστὶν ὁ ΑΒΘ κύκλος : ἡ γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση |
ἀπὸ ΗΓ ἐστιν ἴσον , καί ἐστιν ὡς τὸ ὑπὸ ΗΘΖ πρὸς τὸ ἀπὸ ΘΕ , ἡ ὀρθία πρὸς τὴν | ||
καί ἐστιν ὁ τοῦ ΕΘΠ πόλος μεταξὺ τῶν ΒΓ , ΗΘΖ , μείζων ἐστὶν ἡ ΠΥ περιφέρεια τῆς ΥΝΞ περιφερείας |
: καὶ βέβηκεν ἐπὶ μὲν τῆς ΖΑΒΓΔ περιφερείας ἡ ὑπὸ ΖΕΔ γωνία , ἐπὶ δὲ τῆς ΕΔΓΒΑ περιφερείας ἡ ὑπὸ | ||
ἐμπέπτωκεν ἡ ΒΕΔ , ἴση ἄρα ἐστὶν ἡ ὑπὸ τῶν ΖΕΔ γωνία τῇ ὑπὸ τῶν ΑΔΓ γωνίᾳ : δοθεῖσα δὲ |
δέ εἰσιν ἄνισοι , ὥς φησιν , αἱ ΑΔ , ΛΔ . τὸ γὰρ ἀπὸ ΑΛ , τῶν # λ | ||
ἄρα οὐκ ἐφάπτεται τοῦ ΕΖΗΘ κύκλου : πολλῷ ἄρα αἱ ΛΔ , ΔΝ οὐκ ἐφάπτονται τοῦ ΕΖΗΘ κύκλου . ἐὰν |
ἄρα ἐστὶν ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν | ||
ἡ μὲν ΠΟ τῆς ΟΚ , ἡ δὲ ΞΟ τῆς ΟΛ , ἴση ἐστὶ τῇ ΚΟ ἡ ΟΛ . διὰ |
ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖ τρίγωνον , οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . | ||
τοῦ καθ ' ἑαυτὸ παραλληλογράμμου . ἀλλὰ τὸ μὲν τοῦ ΕΘΠΟ . , ] ἰσουψεῖς γάρ εἰσιν . ἀλλ ' |
[ ] Σ ? ΕΠΕΙ [ ] ΛΟΓΟΝ [ ] ΤΟΙ ? [ ] ΟΥΝ [ ] Υ ! [ | ||
ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ προκατασκευὴ |
τοῦ βαστάσω . . ἐγὼ βαστάζω . . ὠὸπ , παραβαλοῦ : Ἐλατικὸν ἐπίφθεγμα τὸ ὠόπ . τὸ δὲ παραβαλοῦ | ||
. . ἢ παῦε τῆς ὁμιλίας . τῷ δὲ πλοίῳ παραβαλοῦ . πρὸς τὴν γῆν δὲ φθάσας φησὶ ταῦτα . |
πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν | ||
ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ |
τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ ΞΜΕ . τὸ δὲ ὑπὸ ΠΜΡ ἴσον ἐδείχθη τῷ ἀπὸ τῆς ΛΜ : καὶ τὸ | ||
ἄρα ὡς τὸ ὑπὸ τῶν ΕΜΔ πρὸς τὸ ὑπὸ τῶν ΠΜΡ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΘ , τουτέστιν |
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε | ||
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ |
ΒΕ , ΓΖ : ὅμοια ἄρα ἐστὶ τὰ ΕΒΔ , ΓΖΔ ὀρθογώνια διὰ τὸ παραλλήλους εἶναι τὰς ΒΕ , ΖΓ | ||
καὶ θερινὸς μὲν τροπικὸς ὁ ΒΕΑ , χειμερινὸς δὲ ὁ ΓΖΔ , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς |
καεὶς καὶ σὺν μέλιτι λειωθεὶς καὶ χρισθείς , μελικηρίδας καὶ στεατώματα θεραπεύει . ὀπτὸς δὲ ἐσθιόμενος , δυσεντερικοὺς ἰᾶται . | ||
δακτύλοις καὶ τῷ τὴν βάσιν μὴ ἔχειν στενὴν ὥσπερ τὰ στεατώματα . χειρίζεται δὲ καὶ ἀποθεραπεύεται παραπλησίως μελικηρίσι τε καὶ |
ΖΔΜ ὀρθογώνιον κύκλος τξ : ὥστε καὶ ἡ μὲν ὑπὸ ΒΖΔ γωνία τοιούτων ἐστὶν β μδ , οἵων αἱ β | ||
εἰσὶν αἱ ΒΖ , ΖΔ περιέχουσαι ἀμβλεῖαν , ἡ ὑπὸ ΒΖΔ ἄρα γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς |
δὴ δείξομεν , ὅτι ἴση ἐστὶν ἡ ΑΔΖ περιφέρεια τῇ ΑΕΖ περιφερείᾳ . καὶ τετμήσθω ἡ ΑΖ περιφέρεια δίχα κατὰ | ||
καὶ ἐν ταῖς αὐταῖς παραλλήλοις : τὸ δὲ ΗΕΖ τῷ ΑΕΖ ἴσον : τὸ ἄρα ΑΓΔ τοῦ ΑΕΖ μεῖζόν ἐστιν |
. Ἐν δὲ τῷ σκέλει καὶ σύριγγας καὶ χειρώνεια καὶ θηριοδήκτους καὶ ὑδρωπικοὺς παρεγχυθέντας ἐπὶ ἑπτὰ ἡμέρας θεραπεύει : σπληνικοὺς | ||
καταπλασσομένη δὲ λεία βουβῶνας ἰᾶται . ποιεῖ δὲ καὶ πρὸς θηριοδήκτους , πινομένη τε καὶ περιαπτομένη . Μάραθρον βοτάνη ἐστι |
πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι | ||
τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ |
τῇ ΑΗ , καὶ ἡ ὑπὸ ΑΒΔ γωνία τῇ ὑπὸ ΑΗΔ . ἡ δὲ ὑπὸ ΑΗΔ διπλασία τῆς ὑπὸ ΑΕΔ | ||
ἀλλὰ τὸ ΔΘΛ τῷ ΒΔΖ ἐστιν ἴσον : καὶ τὸ ΑΗΔ ἄρα τῷ ΒΔΖ ἐστιν ἴσον . ὥστε καὶ τὸ |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
τῇ Θ , ἰσογώνιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΒΑ πρὸς τὴν | ||
ἄρα ἐστὶν καὶ ἡ ὑπὸ ΑΚΓ , τουτέστιν ἡ ὑπὸ ΔΕΘ , τῇ ὑπὸ ΑΒΓ . ἀλλὰ καὶ ἡ ὑπὸ |
, ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ | ||
, ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ |
. Ὑπὸ γὰρ τοῦ ν ἀμεταβόλου ἐκτείνεται . . ΟΥΔΕ ΤΙ ΔΕΙΛΟΝ ΓΗΡΑΣ . Οὐδὲ κατά τι δειλὸν ὑπῆρχεν αὐτοῖς | ||
ΔΡΕ , ὡς δὲ τὸ ἀπὸ ΛΤ πρὸς τὸ ἀπὸ ΤΙ , τὸ ὑπὸ ΟΡΓ πρὸς τὸ ὑπὸ ΔΡΕ . |
ἐκ τῶν ΑΓ Ε Ζ τρίγωνον συστήσασθαι . συνεστάτω τὸ ΑΓΔ * * * [ καὶ φανερὸν ὅτι εἰ μὲν | ||
τομεὺς τοῦ ΑΓΕ τομέως : μείζονα ἄρα λόγον ἔχει ὁ ΑΓΔ τομεὺς πρὸς τὸ ΑΒΓ τρίγωνον ἤπερ ὁ ΑΓΕ τομεὺς |
οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
τοῦ κέντρου δύναται τὸ ὑπὸ ΛΑΒ , ὕψος δὲ ἡ ΓΟ , μείζων ἐστὶν τοῦ κώνου , οὗ ἡ μὲν | ||
τὸ ΜΓΟΥ , καὶ τρεῖς αἱ ΥΜ , ΜΓ , ΓΟ ἴσαι ἀλλήλαις εἰσίν , καὶ μείζων ἐστὶν ἡ ΜΓ |
ἐνεψήσας εἰς ἐλαίου γο . γʹ . δίδου ἅμα καὶ διάκλυζε . ἄλλο . πήγανον ὁμοίως ἐνεψήσας ἴσῳ ἐλαίῳ , | ||
ἐλαίου τήξας εἰς ὀθόνιον κατάπλασσε . Ὕδατι ἢ γάλακτι ἐγχυματίζων διάκλυζε ἢ μέλιτι ἢ ἐλαίῳ ἔγχριε , ὥστε δάκρυον ἐκκριθῆναι |
, τοιούτων # λγ . τοσούτων ἐστὶν ἄρα καὶ ἡ ΛΤ τοῦ ζῳδιακοῦ περιφέρεια . ἐπεὶ οὖν καὶ ἐπὶ τῆς | ||
δὴ ἡ μὲν ΙΤ παρὰ τὴν ΔΠ , αἱ δὲ ΛΤ , ΜΥ παρὰ τὰς ΑΠ , ΟΡ . καὶ |
τῷ Λ ἴση , ἰσογώνιον ἄρα ἐστὶ τὸ ΞΣΠ τῷ ΚΕΛ τριγώνῳ . καί ἐστιν , ὡς ἡ πλαγία πρὸς | ||
τὸ ἀπὸ ΚΛ πρὸς τὸ ἀπὸ ΘΗ , τουτέστιν τὸ ΚΕΛ τρίγωνον πρὸς τὸ ΕΗΘ τρίγωνον . καὶ τὰ ἑξαπλᾶ |
σιωπᾷν , ἢ λαλεῖν οὐ καιρίως . . ΖΕΥΣ ΔΕ ΠΑΤΗΡ . Ὁ Ζεὺς δὲ ὁ πατὴρ τῶν ἀνθρώπων καὶ | ||
θεοῦ . . ὩΣ ΕΦΑΤ ' ΕΚ Δ ' ΕΓΕΛΑΣΣΕ ΠΑΤΗΡ ΑΝΔΡΩΝ ΤΕ ΘΕΩΝ ΤΕ . Καὶ τοῦτο δὲ προσωποποιΐα |
, ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη ἄρα τῶν ἀνεσταμένων πυραμίδων μείζων | ||
τὸ ΕΖΗΘ , καὶ ἀνεστάτω ἀπὸ τοῦ ΕΖΗΘ τετραγώνου πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἡ ἄρα ἀνεσταμένη πυραμὶς μεῖζόν ἐστιν |
καὶ ὡς ἡ ΤΒ πρὸς τὴν ΒΛ , οὕτως ἡ ΟΖ πρὸς τὴν ΖΝ . δι ' ἴσου ἄρα ὡς | ||
τὸ ὑπὸ ΓΞΑ μετὰ τοῦ ἀπὸ ΑΕ καὶ τοῦ ἀπὸ ΟΖ , τουτέστι τοῦ ἀπὸ ΕΘ , πρὸς τὸ ὑπὸ |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
ὀρθὰς τῷ κύκλῳ διὰ τοῦ ἄξονος τριγώνου βάσις ἔστω ἡ ΓΒΔ , καὶ ἤχθωσαν τῇ ΓΔ πρὸς ὀρθὰς ἐν τῷ | ||
τῷ κύκλῳ τριγώνου διὰ τοῦ ἄξονος ἠγμένου βάσις ἔστω ἡ ΓΒΔ , καὶ ἡ ὑπὸ ΑΒΔ γωνία ἐλάττων ἔστω ὀρθῆς |
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ | ||
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις . |
τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης | ||
ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ |
πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ | ||
. τὸ ἄρα ὑπὸ τῶν ΝΜΞ ἴσον ἐστὶ τῷ ὑπὸ ΔΜΕ . ἔστιν ἄρα ὡς ἡ ΜΝ πρὸς ΜΔ , |
Ἐπεὶ γὰρ ἐν ἴσῳ χρόνῳ ἀνατέλλει τὸ ΒΘΓ ἡμικύκλιον τῷ ΘΓΗ , κοινὸς ἀφῃρήσθω ὁ τῆς ΘΓ περιφερείας ἀνατολικὸς χρόνος | ||
ἡμικύκλιον : ἐν ἴσῳ ἄρα χρόνῳ τὸ ΒΘΓ ἡμικύκλιον τῷ ΘΓΗ ἡμικυκλίῳ ἀνατέλλει . Διὰ τὰ αὐτὰ δὴ καὶ τὸ |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη τὰς ὑπὸ ΒΗΘ , ΗΘΔ δυσὶν ὀρθαῖς ἴσας : λέγω , ὅτι παράλληλός ἐστιν | ||
τῇ ΓΔ . Πάλιν , ἐπεὶ αἱ ὑπὸ ΒΗΘ , ΗΘΔ δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ |
καὶ ὡς ἡ ΔΑ πρὸς τὴν ΑΒ , οὕτως ἡ ΗΑ πρὸς τὴν ΑΕ : καὶ ὡς ἄρα ἡ ΗΑ | ||
δειχθέντα ἡ ΖΗ πρὸς ΖΒ ἐλάττονα λόγον ἔχει ἤπερ ἡ ΗΑ πρὸς ΑΒ . ἐπεὶ οὖν ἡ ΖΒ ἴση οὖσα |
τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν | ||
, ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ |
ἡ ΓΖ , καὶ ὁ ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΖΕΗ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΒ τῇ ΒΓ | ||
τῶν Ε Γ ἀνεστάτωσαν ὀρθαὶ τῷ ἐπιπέδῳ τοῦ κύκλου αἱ ΖΕΗ ΓΛ , καὶ ἑκατέρα μὲν τῶν ΕΘ ΓΛ ἑξαγώνου |
ἡ ΒΕ βάσει τῇ ΑΓ ἴση ἐστίν , καὶ τὸ ΑΒΕ τρίγωνον τῷ ΑΒΓ τριγώνῳ ἴσον ἐστίν , καὶ αἱ | ||
πρὸς ὅλην καὶ ἀναστρέψαντι καὶ χωρίον χωρίῳ τὸ ἄρα ὑπὸ ΑΒΕ ἴσον ἐστὶν τῷ ὑπὸ ΓΒΔ . Φανερὸν δὲ ὅτι |
ΘΕΩΝ ΟΠΙΝ . Ὁ ΤΕ σύνδεσμος πλεονάζει . . ΟΥΤΕ ΘΕΩΝ ΟΠΙΝ ΕΙΔΟΤΕΣ . Τουτέστιν οὔτε εἰς θεοὺς εἰδότες ἐπιστρέφεσθαι | ||
Νῦν γὰρ θεοὺς τὰς ψυχικὰς δυνάμεις φησίν . . ΟΥΤΕ ΘΕΩΝ ΟΠΙΝ . Ὁ ΤΕ σύνδεσμος πλεονάζει . . ΟΥΤΕ |
τε ΕΞ καὶ ἡ ΞΤ , δοθήσεται καὶ ἥ τε ΕΤ ὑποτείνουσα καὶ ἡ ὑπὸ ΤΕΞ γωνία , ἡ ὑπὸ | ||
ὁ κύκλος μοιρῶν τξ , ἑκατέραν δὲ τῶν ΕΣ , ΕΤ μοιρῶν εἶναι β ∠ ʹ , ἑκατέραν δὲ τῶν |
καὶ ἤχθωσαν αὐτῆς δύο συζυγεῖς διάμετροι , ὀρθία μὲν ἡ ΑΕΓ , πλαγία δὲ ἡ ΒΕΔ , καὶ παρὰ τὰς | ||
ὁ ΑΒΓΔ περὶ κέντρον τὸ Ε καὶ διάμετρος αὐτοῦ ἡ ΑΕΓ ἐκβεβλημένη ἐπὶ τὸ Ζ κέντρον τοῦ διὰ μέσων τῶν |
δ τὴν Ϛ ἀπ ' αὐτῆς ἀναγράφεις τετράγωνον ἴσον τῷ παραλληλογράμμῳ . ἀλλ ' εἴτε τὸ τί ἐστι τετραγωνίζειν λέγοις | ||
ΗΘ , ΕΚ , ΖΛ : καὶ τῷ μὲν ΑΘ παραλληλογράμμῳ ἴσον τετράγωνον συνεστάτω τὸ ΣΝ , τῷ δὲ ΗΚ |
εἰσίν . ὁμοίως δὴ δείξομεν , ὅτι καὶ αἱ ὑπὸ ΒΑΔ , ΔΓΒ γωνίαι δυσὶν ὀρθαῖς ἴσαι εἰσίν . Τῶν | ||
δοθεῖσα γωνία ὀρθή , καὶ ἔστω αὐτῇ ἴση ἡ ὑπὸ ΒΑΔ , καὶ τετμήσθω ἡ ΑΒ δίχα κατὰ τὸ Ε |
ἑκατέρᾳ τῶν ΚΣ , ΒΟ : καὶ ἑκατέρα ἄρα τῶν ΚΣ , ΒΟ τῆς ΣΟ μείζων ἐστίν . καὶ ἐπεὶ | ||
μία ἄρα τῶν ΘΚ , ΚΛ ἑκατέρας τῶν ΨΚ , ΚΣ μείζων ἐστίν . καὶ ἐπεὶ παράλληλός ἐστιν ὁ ΒΖΓ |
οἱ Στωϊκοὶ Διὸς νοῦν προσηγορεύκασι , . ΟΥΤΩΣ ΟΥΤΙ ΠΟΥ ΕΣΤΙ . Τὸ σχῆμα ἐπιλογικὸν καὶ συμπερασματικώτατον : κατὰ δὲ | ||
. . ἙΚΤΗ Δ ' Ἡ ΜΕΣΣΗ ΜΑΛ ' ΑΣΥΜΦΟΡΟΣ ΕΣΤΙ ΦΥΤΟΙΣΙΝ . Ἡ ἑκκαιδεκάτη μετέχει ψυχρότητος : τότε γὰρ |
οἱ μὲν ἐκείνων ξύμμαχοι ἐπὶ δουλείᾳ τῇ αὑτῶν φέροντες οὐκ ἀπεροῦσιν , ἡμεῖς δ ' ἐπὶ τῷ τιμωρούμενοι τοὺς ἐχθροὺς | ||
ἀεὶ τὸ ταχὺ ἐλαυνόμενον θεάσεται , οἱ δὲ ἵπποι οὐκ ἀπεροῦσιν ἐν μέρει ἀναπαυόμενοι . ὅταν γε μὴν ἐν τῷ |
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
ἐπίσταιτο χρῆσθαι αὐτῷ . Καὶ σὺ δέ μοι δοκεῖς οὕτω συνομολογεῖν , ἀφ ' ὧν τις ὠφελεῖσθαι δύναται , χρήματα | ||
οὖνὦ Μηνόδωρεοἶμαι ἔχειν ? , ἐφ ' οἷς τὸ μὴ συνομολογεῖν ? ? ? οὐ ῥᾴδιον , καὶ εἰ μάλα |
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
λοιπὸν ἄρα τὸ ἀπὸ τῆς ΒΨ λοιπῷ τῷ ἀπὸ τῆς ΨΚ ἴσον ἐστίν : ἴση ἄρα ἡ ΒΨ τῇ ΨΚ | ||
ἄρα τὸ ἀπὸ τῆς ΚΒ τῶν ἀπὸ τῶν ΒΨ , ΨΚ . ἴση δὲ ἡ ΒΨ τῇ ΨΚ : ὥστε |
Ἀλκιμέδοντι παιδὶ παλαιστῇ , καὶ Τιμοσθένει παλαιστῇ Νέμεα . Μελησίᾳ ἀλείπτῃ . Ἀλκιμέδοντι παιδὶ παλαιστῇ καὶ Τιμοσθένει καὶ Μελησίᾳ παγκρατιστῇ | ||
φησὶν ἔχειν ὁ Δίδυμος : ὡς δὲ Ἀριστόδημος , ὅτι ἀλείπτῃ ἐκέχρητο τῷ Νεοπτολέμῳ . διὸ εἰς ἔπαινον τοῦ ὀνόματος |
ὀρθὰς ἤχθωσαν αἱ ΓΕ , ΔΖ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΖΒ , ΕΒ . καὶ ἐπεὶ διπλῆ ἐστιν | ||
ὡς δὲ ἡ ΑΓ πρὸς τὴν ΓΒ , οὕτως ἡ ΑΖ πρὸς τὴν ΖΕ , δι ' ἴσου ἄρα ἐστὶν |
τὴν τῆς ὁμαλῆς κινήσεως ὑποτείνει περιφέρειαν , ἡ δὲ ὑπὸ ΑΖΒ τὴν τῆς φαινομένης ἀνωμάλου , ὑπεροχὴ δὲ αὐτῶν ἐστιν | ||
: τὸ ἄρα ὑπὸ ΑΕΛ ἴσον ἐστὶν τῷ τε ὑπὸ ΑΖΒ καὶ τῷ ἀπὸ ΖΕ τετραγώνῳ . ἀλλὰ τὸ μὲν |
ἄρα ἡ ὑπὸ ΖΔΗ . ὀρθὴ δὲ καὶ ἡ ὑπὸ ΖΒΗ : ἐν κύκλῳ ἄρα τὸ ΒΖΔΗ τετράπλευρον . καὶ | ||
καὶ διὰ μὲν τοῦ Β παρὰ τὴν ΓΔ ἤχθω ἡ ΖΒΗ , διὰ δὲ τοῦ Γ τῇ ΔΕ ἡ ΓΑΗ |
ὁ ΕΑΒ τομεὺς πρὸς τὸν ΑΗΒ τομέα ἤπερ τὸ ΔΑΒ τρίγραμμον πρὸς τὸν ΑΗΒ τομέα . τὸ δὲ ΔΑΒ τρίγραμμον | ||
ΑΗΒ τομέα , ὁ ἄρα ΔΘΕ τομεὺς πρὸς τὸ ΔΕΚ τρίγραμμον μείζονα λόγον ἔχει ἤπερ ὁ αὐτὸς τομεὺς πρὸς τὸν |
πλευρὰς ἀνάλογον . ὅμοιον ἄρα ἐστὶ τὸ ΑΒΓΔΕ πολύγωνον τῷ ΘΚΛΜΝ πολυγώνῳ . εἰς ἄρα τὸν δοθέντα κύκλον τὸν ΘΚΛΜΝ | ||
αἱ τῶν τριγώνων ἴσαι εἰσίν . τὰ ἄρα ΑΒΓΔΕ , ΘΚΛΜΝ πολύγωνα ἴσας ἔχει τὰς γωνίας κατὰ μίαν καὶ τὰς |
οὖν , χάριν ἐχέτω ὁ Ἀγησίδαμος ὥσπερ Ἀχιλλεῖ Πάτροκλος . Ἰόλᾳ φερέτω χάριν : οὕτω , φησὶ , τῷ Ἰόλᾳ | ||
. Ἰόλαος Ἡρακλέους ἦν ἡνίοχος : ἐκ συσσήμου οὖν λέγει Ἰόλᾳ , τουτέστι τῷ Ἡρακλεῖ . φησὶν οὖν , ὅτι |
ΑΕΗ τρίγωνον τῷ ΛΔ τετραπλεύρῳ καὶ τὸ ΒΛΓ τρίγωνον τῷ ΑΓΘ . ἐπεὶ οὖν ἡ ΖΚ τῇ ΚΔ ἐστιν ἴση | ||
ΑΘ ὄψις τῇ ΓΚ ὄψει , ἴση ἐστὶ καὶ ἡ ΑΓΘ περιφέρεια τῇ ΓΘΚ περιφερείᾳ . ὥστε καὶ ἡ Μ |
τῶν πόλων τῶν παραλλήλων . λέγω , ὅτι καὶ ὁ ΒΘΔ κύκλος διὰ τῶν πόλων ἐστὶ τῶν παραλλήλων , τουτέστιν | ||
ὑπὸ ΛΑΓ , ἥ ἐστιν ἴση συναμφοτέραις ταῖς ὑπὸ ΒΑΓ ΒΘΔ . καὶ ἔστι τοῦτο καθολικώτερον πολλῷ τοῦ ἐν τοῖς |
, τὸ ὑπὸ Η , ΔΛ πρὸς τὸ δὶς ὑπὸ ΓΔΛ : ὡς ἄρα τὸ ἀπὸ ΚΛ πρὸς τὸ ὑπὸ | ||
ΔΛ εὐθείας περιφέρεια τοιούτων ρκ , οἵων ὁ περὶ τὸ ΓΔΛ ὀρθογώνιον κύκλος τξ , ἡ δ ' ἐπὶ τῆς |
τῶν πρὸς τὴν θεωρίαν . Ἐγένοντο δὲ τρισσαὶ στάσεις περὶ συνανατολῶν καὶ συγκαταδύσεων : οἳ μὲν γὰρ ἔφασαν τὴν πραγματείαν | ||
παντὶ τόπῳ σχεδὸν τῆς οἰκουμένης δύνασθαι παρακολουθεῖν ταῖς διαφοραῖς τῶν συνανατολῶν καὶ συγκαταδύσεων . Πρῶτον μὲν οὖν ἐκθησόμεθα τὰς τῶν |
ἐστὶν τῇ ὑπὸ τῶν ΔΒΖ , τουτέστιν τῇ ὑπὸ τῶν ΓΔΒ , τουτέστιν τῇ ὑπὸ τῶν ΒΑΔ : ἡ ἄρα | ||
ὀρθαῖς ἴσαι , μείζων ἄρα ἡ ὑπὸ ΑΓΒ τῆς ὑπὸ ΓΔΒ . Ἐὰν ἐν κώνῳ σκαληνῷ τμηθέντι διὰ τῆς κορυφῆς |
κοινοῦ ὕψους λαμβανομένης οὕτως τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ | ||
ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΞΜΕ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ |
ποιεῖν , ποιῶν , ἢ ποιεῖν καὶ ποίησις εἰς ἓν ληπτέα ; Ἐμφαίνει δὲ μᾶλλον τὸ ποιεῖν καὶ τὸν ποιοῦντα | ||
βλάβας . Τὰ γόνατα πρός τε ἰσχὺν καὶ εὐανδρίαν ἐστὶ ληπτέα καὶ πρὸς κινήσεις καὶ πράξεις . ὅθεν ἐρρωμένα καὶ |